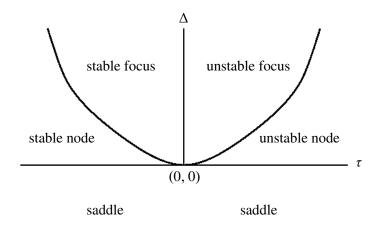
Two-dimensional Constant Coefficient Linear Systems

The eigenvalues of a two dimensional linear system can be determined from the trace τ and determinant Δ as given in Theorem 4.3. See the following figure.



Summary of Drawing the Phase Portraits

The first step is to find the eigenvalues r_1 and r_2 with corresponding eigenvectors \mathbf{v}^1 and \mathbf{v}^2 .

- **1.** If $r_1 < 0 < r_2$ (real), then **0** is a saddle. See Table 1 on page 25 and Figure 2 on page 24. Solutions along the line span(\mathbf{v}^1) are attracted toward **0** and solutions along the line span(\mathbf{v}^2) are repelled away from **0**.
- **2.** If $r_2 < r_1 < 0$ (real), then **0** is a stable node. See Table 2 on page 27 and Figure 3 on page 26. Trajectories off span(\mathbf{v}^2) approach **0** tangent to span(\mathbf{v}^1).
- **3.** If $0 < r_1 < r_2$ (real), then **0** is an unstable node. See Figure 4 on page 28. Letting time decrease, trajectories off span(\mathbf{v}^2) approach **0** tangent to span(\mathbf{v}^1). As t goes to infinity, the growth rate of the component along \mathbf{v}^2 is faster than the one along \mathbf{v}^1 .
- **4.** If $r_1 = r_2 < 0$ with only one independent eigenvector, then **0** is a degenerate stable node. See Table 4 on page 41 and Figure 11 on page 39.
- **5.** If $r_1 = r_2 > 0$ with only one independent eigenvector, then **0** is a degenerate unstable node. The phase plane is similar to case 4 with the directions reversed.
- **6.** If the eigenvalues are complex $\alpha \pm i \beta$ with $\beta \neq 0$, then we have the following cases. See Table 3 on page 33. In the phase plane, it is important to get the direction correct, i.e., clockwise or counterclockwise.
 - **a.** If $\alpha = 0$, then **0** is an elliptic center. See Figure 6 on page 30.
 - **b.** If $\alpha < 0$, then **0** is a stable focus. See Figure 8 on page 32.
 - **c.** If $\alpha = 0$, then **0** is an unstable focus. Reverse the directions of the trajectories on Figure 8 on page 32.