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Let B = (Bt ,  3rt, P;  t > 0) be s tandard  Brownian motion s tar t ing at zero and define 
its extreme processes as 

Mt  = max B~ and rnt = rain Bs. 
O<s<t o<s<t 

The point  of this note is to observe a mapping proper ty  of Brownian motion and use it to 
derive some results about  excursions of B from its extremes which are related to the work 
of Groeneboom [4], Bassi1] and Pitman[9] and of Imhof[7]. It must  be pointed out  tha t  
these results are consequences of general excursion theory as expounded by Getoor [2],[3] 
and Jacobs[S}, for example.  However this mapping proper ty  is new and its appl icat ion to 
excursions is direct. 

Let rt = Mt  - ms be the range process and for each e > 0 define the increasing 
processes 

a(t ,e)  = 4r22ds  

and 

Let 

(1) 

r ( t ,e)  = inf{s :  a(s,e)  > t}. 

2Bt  - g t  - rat 
X t  = 

M t - T r t t  

and define X~ = Xr(t,~). 

P r o p o s i t i o n  1. The  process X ~ X ~ O) is a = ( t ,  7r(t,~),P; t >>- reflecting Brownian  mo t ion  

on [ -1 ,  1]. Its local times at  +1 are 

¢~,+ = / ~(t'~) 

and 

4 r ~ l d M a  

i 
r ( t , e )  

¢ ¢'- = 4r ~ t d ( -  m~ ) respect ive ly  
t 

Proof. We may write equation (1) as Xt  = F ( B t ,  Mr, nat) where 

F ( z , y , z )  (2z - g - z ) i ( y  - . z ) .  
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Since F is smooth on {y # z}, we may apply It6's formula there to obtain 

2dB~ 2(M~ - B ~ ) d ( m ~ )  2(B~ - rns)dM~ 
(2) dXs  M~ - rn, (iVls - rn~) 2 (Ms - ms)  ~ 

Because each r(t,  e) is an 7t-stopping time we may write (2) in the integrated form 

(3) 

where 

1 ~ _ 1 ~ , +  
x~it,~ / -- x~  -- w {  + ~¢~' - ~ ¢ t  

f r ( t , ~ )  

W~ = ./. 2 r~ ldBs  

('-- ]E - - 1  (4) ¢~ : < 4ro d ( - m s )  

rr(t,~ ) 
¢~'+ = / 4r :  I d M ,  

a £  

To finish the proof we check that  W ~ is a s tandard Brownian motion and that  (3) is its 
Skorohod equation (Tanaka[ill).  Clearly W ~ is an 7"T(t,~)-martingale and 

f 
r(t,~) 

[ W E ] t :  4r]2ds  : a(r( t ,E) ,e)  = t. 
u E  

By L~vy's criterion, W ~ is a Brownain motion, independent of XE. Now ¢~'± are con- 
tinuous, incereasing 7T(t,~)-adapted processes which increase only when B attains a new 
extremum, that is only when X ~ = ±1. o 

As the next propostion shows, we may write the extreme processes in terms of the 
local times ¢~,±. Set 0~ = ¢~'+ + ¢~'- .  

P r o p o s i t i o n  2. For t > e, 

f 
~(t,~) 

(i) Mt  M~ + r(e) ~ ~"- = e×p { ¢ ; / 4 }  d¢~ 
J 0 

(ii) rnt = m~ + r(e) exp {¢~,/4} d¢~'-  
J 0  

where a(t ,~)  = inf{~ : T(s,e) > t} ~nd 

r(t,E) = e =  ~r(e) 2 e x p { O i / 2 } d s .  

Proof. By (4) we have 

f (t~) r(r(t,~)) 
T 

~ = 4r21dr~ = 4tog r(E) 
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hence 

(5) r(T(t, ~)) = r(~) exp { ~ / 4 }  

Since a(r(t ,  e), e) = t it follows that  dr(t ,  e) r(r(t ,  e))~dt/4.  Thus by (5), 

r(t,~) =r(O,E) + ~ r(r( t ,~))2ds  

L' 
: e  + 4r(e) 2 exp {6~/2} ds. 

It follows that  r and hence a are defined solely in terms of ,~//e, me and ¢~'±. 
Next, by (4) 

~v(t,e) L t  - ldM~(~,e) , 
¢~'+ = 4 r ; l d M s  = 4r(r(s ,e))  £ (6) 

and so 

(7a) 

Similarly, we have 

1 L t d,6e,+ l'~I~(t,e) = Me + ~re exp (q~;/4} "~s , 

1 L t  
(7b) m~(t,~l = me + 4r~ exp {¢;/'4} d e ; ' - ,  

and the proposition follows from a time change in (7a) and (7b).(> 

These propositions allow us to compare excursions of B from its extremes with excur- 
sions of reflecting Brownian motion in [ -  l, t*,. To be precise, let 

(s) f ( t ,E)  = i n f { s : ¢ ~  > t} 

be the inverse of boundary focal t ime and let q~ be the point process of excursions of X% 
That  is, let 

Dq< = {s :  f(s ,E) > f ( s - , ~ ) }  

and for each s E Dq, let 

(9) %(u) = X e ( f ( s - , e )  + u A l~), u > 0  

where l~ = f ( s ,  e) - f ( s - ,  e) is the duration of the excursion. Similarly, consider the point 
process p of excursions of B from its extremes. Let 

(10) #(t) : inf(s : r(s) > t}, 

let the domain o f p b e  D =  {t : lz( t )  > ~ ( t  )} and for e a c h t ~  D l e t  

(11) pt(u) = S ( # ( t - )  + u A A(t)),  u >_ 0 

where A(t) = #(t) - # ( t - ) .  Proposition 4 provides a formula for p in terms of q~. To ensure 
the formula is well defined we need the 
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L e m m a  3. Let D e : {t : lz(t) > t t ( t - )  and #(t)  > e}. Then 

(i) f ( t ,  e) = a(#(r(e)et/4),  e) 
(ii) Dq. = {s(u,e)  : u E D e} where s(t,e) = 41og( tr (e) - l ) .  

Proof. The lemma follows easily from the equality T(f(t, e), e) = t t(r(e)et/4),  which we now 
show. Let a(t) and 3(t) denote the left and right side of this equality, respectively. On 
the one hand, by (7a) and (7b), we have 

r(a( t ) )  = r(e)exp{¢e(f( t ,  e))} = r(e)e t/4 die" g(t). 

On the other hand, by definition rO3(t)) = g(t). Thus r(a(t))  = r(B(t)) .  Since g(t) is 
strictly increasing, for any 6 > 0 

a(t  + 6) >_~,(r(a(t + 6 ) ) - )  = ~(g(t + 6 ) - )  

>#(g(t))  : #(r(fl(t))) : ~(t). 

Letting 6 ~ 0 we get a(t)  > ~3(t). Since the reverse inequality is similar, the lemma is 
pro-ed.~ 

P r o p o s i t i o n  4. Let {pt; t E D} be the point  process of  excursions of  B from its extremes.  
For each t C D e 

tq~ ( 4 u )  1 
pt(u) = ~ s(t,~) ~ + ~ (M~,(t) + rn.(t)) 

Proof. First note that  the statement makes sense, by Lemma 3. Let s E Dq, where 
s = s(t ,e)  and t e D e . The durations l~(s) of q~ and A(t) of pt are related, according to 
Lemma 3, by 

(12) le(s) = f ( s ( t ,  e),e) - f ( s ( t , ¢ ) - , ¢ )  
- 

f 
~,(t) 

: 4  r~2du 
J , ( t - )  

_ # ( t )  - # ( t - )  _4 ) t ( t )  

Thus by the formulas 

X~ ~' 2B~ - M~ - rn~ , X~ = X ~ ( . , ~ )  
M u - 77 /u  

and the definition of qC and p we get 

) qL,e)(u) : t 2w - - , 

from which the proposition follows, o 
An immediate corollary is the identification of the conditional law of excursions of B 

from its extremes. Indeed, let - c o  < c < d < oo and introduce the transition density of 
Brownian motion in ic, d 1 with absorption at the endpoints (Port-Stone[10!): 

(14) p~)'g(t,x,y) = d----c (d - c) ~ 
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as well as the functions 

(15) 

1 0 c d .  , 
gc'd( t ,y;a)  = ~ n  po' ( t , a , y ) ,  a = c , d  

1 0 2 c'd~t b), a ,b c,d.  
O~'d(t'a'b) -- 40n-~Onb p° ( ,a,  = 

There exist unique probabi l i ty  laws .P~'b;l¢,d on C([O, oe), [c, d]) with absolute dis t r ibut ion:  

g ~ ' d ( u ' y ; a ) g c ' d ( l - u ' y ; b ) d y ,  0 < u < l  (16) a,b;l P~,d (e(u) E dy) = O~,d(l,a,b ) 

and transi t ion density 

dy ~(~) ) ~,d , , ~ ,d( l  - . ,  y; b) (17) pa,b;tc,d e(v) E = x  = P 0  ( v - u , x ,  aYlgc-C-~l~(l u , x ;b )  O<u<v<l._ _ 

Indeed, if X c'd is reflecting Brownian motion in [c,d I then p~,b;t is just  the law of the 
c , d  

excursion process of X c,d condit ioned to begin at a, end at b and have durat ion l. This is a 
simple extension of the well-known case of one reflecting barr ier  (e.g. [keda-Watanabe{6]) 
and also can be proved by imita t ing the calculations of Hsu[5!. Final ly let us note a scaling 

proper ty  of the laws p~,b;l which follows from the invariance of the family { p ~ , d - o c  < 
c , d  

c < d < c~} under affine changes of variable: 

(18) I f Z = { Z ( t ) ; 0 < t  < l }  has the law p~,b;t then { a Z ( a - 2 t ) + f l ; O  < t  < a2l}  has the 
- -  - -  c , d  

pC~a + ~ ,c*b4-~;c*~" l 
law ac+fl,c~d+~ " 

Theorem 5. Let t E D. Let -oo < ¢ < d < oc and let l > O. Then conditional on the 

event  ~ = [rn~(t) = c, }v/t,(t ) = d, pt(O) = a, pt(A(t))  = b, A(t) = II, the taw of  the excursion 
process Pt(') is pa,b;l 

¢ , d  " 

Proof. Fix some e with t E D ~ and let s = s( t ,e) .  By (9) and (12), we have 

= [q~(0) = sgn(a), q~ (l~(s)) - sgn(b), l ~ (s) = ',d - ci21/4] 

But then conditional on ~, the process q~(.) has law pe,f;m_l,1 with e = s g n ( a ) , f  = sgn(b) 

and m = Id - cl2l/4. So by Proposit ion 4 and the invariance proper ty  (18) we find tha t  
conditional on ~, Pt(') has the law pa&t  

* c , d  " ' ~  

It is known that  if X is reflecting Brownian motion in an interval then condit ional  
on the a-field generated by the boundary  local t ime of X, the various excursions of X 
from the boundary  are mutual ly  independent .  This is evident from the construct ion of 
the excursions law characterizing the excursion point process in the one reflecting barr ier  
case (Ikeda-Watanabe[6]).  Or again, one can either imitate  the argument  of Hsu[5] or 
simply quote the results in Jacobs[81. Let us show that  this condi t ional  independence 
proper ty  is shared by excursions of Brownian motion B from its extremes, condi t ional  on 
a{M~, rn~; s  >_ 0}. 

L e m m a  6. Let  B~ = a{¢~ ,+ ,¢~ , - ; s  > 0} and ~ = a { M ~ , m s ; s  > 0}. Then  B~ C B and  
l i m ~ 0  g~ = 8. 

Proof. Since Proposi t ion 2 exhibits M and m as explicit  functions of ¢~'+, we have the 
inclusions 
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a{Ms - M~,m~ - m~;s >_ e} C a{Mc,m~,¢~'±;s >_ O} C a{M~,ms;s  >_ e} 

and the lemma follows from this.<> 

T h e o r e m  7. Conditional on ~ = a{Ms,m~;s  >_ 0}, the excursions [pt(');t E V] are 
mutually independent. 

Proof. For n >_ 1 consider functionals F : C(lO, c~), R) '~ ---* R of the form 

F(wl,w2 . . . .  ,~ , )  = f l  fj(czj(s3,1 ) . . . . .  ¢¢j(si,,~(j)) ) 
j = l  

for bounded continuous functions fj. Let tL . . . .  ,t~ E D. Using Proposition 1, for all 
sufficiently small e, 

1=1 

by the conditional independence property of q~. Thus by the martingale convergence 
theorems and Lemma 6; taking the limit as e J. 0 yields 

j = l  

We close by remarking that Theorem 5 and 7 show that Brownian motion consists of 
conditionally independent Brownian excursions properly interpolated between endpoints 
of flat stretches of the extreme process AI and m. 
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