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ABSTRACT. Inspired by Stein’s theory in mathematical statistics,
we show that the Wiener measure on the pinned path space over
a compact Riemannian manifold is uniquely characterized by its
integration by parts formula among the set of probability mea-
sures on the path space for which the coordinate process is a semi-
martingale. Because of the presence of the curvature, the usual
proof will not be readily extended to this infinite dimensional set-
ting. Instead, we show that the integration by parts formula im-
plies that the stochastic anti-development of the coordinate pro-
cess satisfies Lévy’s criterion.
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1. INTRODUCTION

The basis of Stein’s approach to the central limit theorem is the fact
that the equation

(1.1) E f ′(X) = EX f (X)

characterizes the standard normal distribution N(0, 1). More pre-
cisely, for a real-valued random variable X, if the above equality
holds for all real-valued functions f such that both x f (x) and f ′(x)
are uniformly bounded, then X has the standard normal distribu-
tion:

P {X ≤ x} =
1√
2π

∫ x

−∞
e−y2/2dy.
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(1.1) is an integration by parts formula for the standard Gaussian
measure µ because it moves the differentiation away from the func-
tion f .. Let

D =
d

dx
, D∗ = − d

dx
+ x.

Then D∗ is the adjoint of D with respect to µ:

〈Dg, f 〉µ = 〈g, D∗ f 〉µ .

It can be simply written as ED∗ f (X) = 0. In this article, we con-
sider an infinite dimensional extension of this characterization of the
standard Gaussian distribution.

Consider a real-valued Brownian motion W = {Wt, 0 ≤ t ≤ 1}
starting from zero and with the unit time horizon. It can be viewed
as a random variable of infinite dimensional standard Gaussian dis-
tribution, which takes values in the path space Po(R) = Co([0, 1], R),
the space of real-valued continuous functions on [0, 1] starting from
zero. The analog of the above integration by parts formula is the
following identity by Malliavin

E DhF(W) = E

[
F(W)

∫ 1

0
ḣs dWs

]
for a large class of functions F on Po(R) and directions h.

More generally, let M be a compact Riemannian manifold M and
o ∈ M a fixed point. The pinned path space over M is

Po(M) = Co([0, 1], M).

Consider the probability space (Po(M), B(P(M)), ν), where ν is the
Wiener measure. Let X = {Xt, 0 ≤ t ≤ 1} be the coordinate process
on Po(M), namely X(γ)t = γt for γ ∈ Po(M). Thus under the prob-
ability ν, the process X is the standard Brownian motion on M. The
corresponding integration by parts formula, due to Bismut[1] and
Driver[2], is

EDhF(X) = E

[
F(X)

∫ 1

0

〈
ḣs +

1
2

RicU(X)s hs, dWs

〉]
.

The purpose of this article is to show that this integration by parts
formula characterizes Brownian motion among the set of M-valued
semimartingales.
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2. ONE DIMENSIONAL CASE

The relation E f ′(X) = E X f (X) for a standard Gaussian random
variable can be verified directly by using the density function

µX(dx)
dx

=
e−x2/2
√

2π
.

However, the following point of view is more fruitful. The differen-
tiation operator D = d/dx generates the the translation semigroup:
Ttx = x + t. For the shifted Gaussian measure µX+t = µX ◦ T−1

t we
have

µX+t(dx)
µX(dx)

= etx−t2/2.

Now we have

E f (X + t) =
∫

R
f (x)µX+t(dx)

=
∫

R
f (x)etx−t2/2µX(dx)

= E
[
etX−t2/2 f (X)

]
.

The relation E f ′(X) = E X f (X) is then obtained by differentiating
with respect to t and letting t = 0.

An operator D on a function space is called derivation if it satisfies

D( f g) = gD f + f Dg.

For any derivation operator D, the adjoint operator has the form

D∗ = −D + D∗1.

Thus finding an integration by parts formula is equivalent to calcu-
lating D∗1, the divergence of 1 (the unit vector). The general integra-
tion by parts formula takes the form

〈Dg, f 〉µ = − 〈g, D f 〉µ + 〈g, (D∗1) f 〉µ .

If we take g = 1 and let X be a random variable with the law µ, then
we have

ED f (X) = E f (X)D∗1(X).
In our case, the underlying Gaussian measure µ has a density func-
tion p(x) = e−x2/2/

√
2π with respect to the Lebesgue measure, which

is invariant under the translation group {Tt, t ∈ R}, and we have

D∗1(x) = − d
dx

ln p (x) = x.
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In infinite dimensional situation we will not have a measure invari-
ant under translations. Nevertheless, as we will see, the expression
D∗1 (the derivative of the logarithmic “density”) still makes sense.

The fact that the equation E f ′(X) = E X f (X) implies that X has
the distribution N(0, 1) can be proved using Stein’s equation. Let

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2dt

be the distribution function of N(0, 1). The general Stein’s equation
has the form

f ′(x)− x f (x) = h(x)−
∫

R
h(z) dΦ(z).

Take the special case h(x) = I(−∞,z](x) (z fixed). The equation

f ′(x)− x f (x) = I(−∞,z](x)−Φ(z)

can be solved explicitly:

f (x) =
1

Φ′(x)
·
{

Φ(x)(1−Φ(z)), x ≤ z;
Φ(z)(1−Φ(x)), x ≥ z.

It is easy to verify that both x f (x) and f ′(x) are uniformly bounded.
Using this f in E f ′(X) = E X f (X) we have immediately

P {X ≤ z} = Φ(z).

There is not a direct infinite dimensional analog of the above method,
for the significance of Stein’s equation in an infinite dimensional set-
ting has thus far not been explored. We will resort to the well known
Lévy’s criterion in order to identify a Brownian motion among semi-
martingales.

Proposition 2.1. (Lévy’s criterion) Let W = {Wt, t ≥ 0} be a contin-
uous semimartingale in Rn adapted to a filtration F∗ = {Ft, t ≥ 0} of
σ-fields. Then W is a Brownian motion if and only if

(1) W is a continuous local F∗-martingale;
(2) 〈W∗, W〉t =

{〈
W i, Wj

〉
t

}
1≤i,j≤n

= In · t.
Here In is the n× n identity matrix.

3. INFINITE PRODUCT GAUSSIAN MEASURE

The one dimensional theory in the preceding section can be ex-
tended directly to the product Gaussian measure on RZ+ . Proba-
bilistically, this corresponds the case of a sequence X = {Xn} of i.i.d.
random variables with the standard Gaussian distribution N(0, 1).
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We consider the set C of cylinder functions

F(x) = f (x0, x1, · · · , xn).

Here x = (x0, x1, x2, · · · ). Consider the gradient

DF(x) = ( fx0(x), fx1(x), · · · ).

More conveniently, consider the set of directional derivatives:

Dl F(x) = 〈DF(x), l〉 =
∞

∑
i=0

li fxi(x).

Each l = (l1, l2, · · · ) is a direction of differentiation. It is easy to see
that

(3.1) E Dl F(X) = E 〈X, l〉 F(X),

where 〈X, l〉 = ∑∞
n=0 Xnln is the inner product in l2(Z+). This equa-

tion characterizes the product Gaussian measure on RZ+ . To see this,
let

Yl = 〈X, l〉 = l0X0 + · · ·+ lnXn

and
F(x) = f (l0x0 + l1x1 + · · ·+ lnxn) = f (〈x, l〉).

Then
Dl F(X) = |l|22 f ′(Yl)

and (3.1) becomes

|l|22 E f ′(Yl) = EYl f (Yl).

Hence by the one dimensional result, Yl has the distribution N(0, |l|22),
the Gaussian distribution of mean zero and variance |l|22. It is an
easy exercise to show that if Yl = 〈X, l〉 has the law N(0, |l|22) for
all l ∈ l2(Z+), then X = (X1, X2, . . .) is i.i.d. with the distribution
N(0, 1).

4. ONE DIMENSIONAL BROWNIAN MOTION

Consider the path space Po(R) = Co([0, 1], R) and the map Φ :
Po(R)→ RZ+ defined by

Φ(W) = {Xn, n ∈ Z+} =
{∫ 1

0
endWt, n ∈ Z+

}
.

Here {en, n ∈ R+} is an orthonormal basis for L2[0, 1], which we may
take to be e0(t) = 1 and

en(t) =
√

2 cos πnt, n = 1, 2, . . . .
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Here we assume that W = {Wt, 0 ≤ t ≤ 1} is a semimartingale so
that the stochastic integration makes sense. Let

hn(t) =
∫ t

0
en(s) ds.

The inverse Φ−1 : RZ+ → Po(R) can be loosely described as

(4.1) W = Φ−1(X) =
∞

∑
n=0

hnXn.

If ν is the Wiener measure ν on P0(R) (the law of Brownian motion
W) and µ the product Gaussian measure on RZ+ , then we have an
isometry Φ : (Po(R), ν)→ (RZ+ , µ) in the sense that µ = ν ◦Φ−1.

Recall that on (RZ+ , µ) we have

EDl F(X) = E 〈X, l〉 F(X).

We use the isometry Φ to rewrite the above relation in the path space
Po(R). Namely, let W = Φ−1X and G = F ◦Φ. Then

EDhG(W) = E G(W)D∗h1(W),

where Dh = Φ−1
∗ Dl is the pullback of Dl by Φ and D∗h1(W) = 〈X, l〉.

We need to calculate Dh and D∗h1 on the path space Po(R) in terms
of h and W. From (4.1) we see immediately that the pullback Dh =
Φ−1
∗ Dl is given by

DhG(W) = lim
t→0

G(W + th)− G(W)
t

,

where

h(t) =
∞

∑
n=0

lnhn(t) =
∫ t

0

[
∞

∑
n=0

lnen(s)

]
ds.

On the other hand,

〈X, l〉 =
∞

∑
n=0

lnXn =
∞

∑
n=0

ln
∫ 1

0
en(s) dWs =

∫ 1

0
ḣ(s) dWs.

Introducing the Cameron-Martin space

H = {h ∈ Po(R) : |h|H < ∞} ,

where

|h|2H =
∫ 1

0
|ḣs|2ds
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if the integral is defined and |h|H = ∞ otherwise, we can write sym-
bolically

D∗h1(W) = 〈h, W〉H =
∫ 1

0
ḣs dWs.

Now that we have found D∗h1(W) as a stochastic integral, the in-
tegration by parts formula has been transplanted from the product
space RZ+ to the path space Po(R) to read

EDhG(W) = E 〈h, W〉H G(W).

We can prove the above integration by parts formula from another
point of view. Let µW be the law of Brownian motion W and µW+th

be the law of W + th (Brownian motion shifted by th) with h ∈ H .
Then we have the Cameron-Martin-Maruyama-Girsanov theorem:

dµW+th

dµW = exp
[

t
∫ 1

0
ḣsdWs −

t2

2

∫ 1

0
|ḣs|2ds

]
.

Differentiating the identity

E G(W + th) = E

[
G(W)

dµW+th

dµW

]
with respect to t and then letting t = 0 we have

EDhG(W) = E

[
G(W)

∫ 1

0
ḣs dWs

]
.

This relation holds for all h ∈ H and nice functions G (e.g., cylin-
der functions). Note that h does not have to be deterministic, for
it suffices to assume that it be B∗-adapted and that E|h|2H < ∞,
B∗ = {Bs, 0 ≤ s ≤ 1} being the standard Borel filtration on the path
space Po(R).

Theorem 4.1. Let W be a real-valued continuous semimartingale. It is a
Brownian motion if and only if the integration by parts formula

EDhG(W) = E 〈h, W〉H G(W)

holds for and all cylinder functions G and all adapted ḣ such that 〈h, W〉H G(W)
is integrable.

Proof. We have shown that the above integration by parts formula
holds if W is a Brownian motion. To show the implication in the
other direction, we can resort to the map Φ and work on the product
space RZ+ . Of course, this proof will not extend to the path space
over a compact manifold (non-flat path space). A better way is to
use Lévy’s criterion.
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Taking G = 1, we have DhG = 0 and

E 〈h, W〉H = E

∫ 1

0
ḣs dWs = 0

for all adapted ḣ such that the stochastic integral is integrable. This
implies that W is a (local) martingale from the fact that W, as a con-
tinuous semimartingale, is the sum of a local martingale and a pro-
cess of local bounded variation.

Now we take G(W) = W1. From the definition of Dh we have

DhG(W) = lim
t→0

G(W + th)− G(W)
t

= h1.

The integration by parts formula becomes

Eh1 = E 〈h, W〉H W1.

The right side is

E

[
W1

∫ 1

0
ḣs dWs

]
= E

∫ 1

0
ḣs d 〈W, W〉s .

Hence, equating the expressions, we have

E

∫ 1

0
ḣs ds = E

∫ 1

0
ḣs d 〈W, W〉s .

This holds for all suitable adapted ḣ, from which we conclude im-
mediately that 〈W, W〉t = t. By Lévy’s criterion W is a Brownian
motion. �

5. BROWNIAN MOTION ON A RIEMANNIAN MANIFOLD

We briefly describe Brownian motion on a Riemannian manifold
and its integration by parts formula. For a detailed discussion, the
reader is referred to the monograph Hsu[3].

Let M be a compact Riemannian manifold (or more generally, a
complete Riemannian manifold with uniformly bounded Ricci cur-
vature) and o a fixed point on M. Let ν be the Wiener measure on the
path space Po(M). On the probability space (Po(M), B(Po(M)), ν),
the coordinate process Π = {Πt, 0 ≤ t ≤ 1} is a Brownian motion
on Rn.

Let O(M) be the orthonormal frame bundle of M and π : O(M)→
M the canonical projection. Let H1, · · · , Hn be the canonical horizon-
tal vector field on O(M). Fix a frame Uo ∈ π−1o and consider the Itô
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type stochastic differential equation on O(M):

dUt =
n

∑
i=1

H(Ut) ◦ dW i
t .

Its unique solution is called a horizontal Brownian motion. The pro-
jection X = πU is a Brownian motion on M starting from o, whose
law is the Wiener measure ν on the path space (Po(M), B(Po(M)).
The map J : Po(Rn) → Po(M), which we call the Itô map, is the
stochastic equivalent of the development map (rolling without slip-
ping) in differential geometry. In differential geometry, the map J
carries straight lines (with uniform speed) to geodesics. In the con-
text of stochastic analysis, it carries a euclidean Brownian motion on
Rn to a Riemannian Brownian motion on M. As in the case in differ-
ential geometry, J is invertible and the inverse image W = J−1X is
again obtained by solving an Itô type stochastic differential equation
driven by X. The Wiener measure (the law of Brownian motion X on
M) is ν = µ ◦ J−1 and we have an isometry:

J : (Po(Rn), ν)→ (Po(M), ν).

Since W = J−1X is obtained from X by solving an Itô type stochas-
tic differential equation, W is well defined when X is a semimartin-
gale. We have the following basic fact (see Hsu[3]).

Proposition 5.1. X is a Brownian motion on M if and only if its stochastic
anti-development W = J−1X is a Brownian motion on Rn.

Let x ∈ M and Tx M the tangent space at x. Let Ricx : Tx M→ Tx M
be the Ricci transform at x of the Levi-Civita connection of M. Let
u ∈ O(M) be an orthonormal frame at x = πu. Then u : Rn → Tx M
is a linear isometry. The scalarized Ricci transform at u is

Ricu
def= u−1Ricxu : Rn → Rn.

In [1],Bismut proved his famous integration by parts formula

E 〈∇ f (Xt), ht〉 = E

[
f (Xt)

∫ 1

0

〈
ḣs +

1
2

RicU(X)s hs, dWs

〉]
for : for h ∈ H , f ∈ C∞(M) and 0 ≤ t ≤ 1. This formula can be ex-
tended to a more general integration by parts formula for directional
derivative operators Dh on the path space Po(M).

We briefly recall the definition of Dh. For a path h ∈ Po(Rn) and a
path γ ∈ Po(M) for which the horizontal lift U(γ) makes sense, we
define Dh(γ)s = U(γ)shs. We can regard Dh as a vector field on the
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path space Po(M). The directional derivative Dh along the direction
h can be defined as

DhG(γ) = lim
t→0

G(ζt
hγ)− G(γ)

t
,

where
{

ζh
t , t ∈ R

}
is the flow generated by the vector field Dh. It

takes a fair amount of effort to define Dh in this matter. However
for a cylinder function G(γ) = g(γs1 , · · · , γsl) with 0 ≤ s1 < s2 <

· · · < sl ≤ 1 and g ∈ C∞(Ml), DhG(γ) can be simply defined by the
formula:

DhG(γ) =
l

∑
i=1

〈
U(γ)−1

si
∇i f (γ), hsi

〉
.

Starting from Bismut’s integration by parts formula, we can show
by induction on the number of time dependencies the following inte-
gration by parts formula for the Wiener measure ν on the path space
Po(M): for all cylinder functions G and h ∈H ,

E DhG(X) = E

[
G(X)

∫ 1

0

〈
ḣs +

1
2

RicU(X)s hs, dWs

〉]
.

This form of integration by parts formula was first proved in Driver[2].
It is the proper generalization in the path space Po(M) of the relation
E f ′(X) = E X f (X) for a standard Gaussian variable X.

In the next section we show that this equation characterizes Brow-
nian motion in the set of semimartingales.

6. CHARACTERIZATION OF RIEMANNIAN BROWNIAN MOTION

In this section we prove the main result of the article.

Theorem 6.1. Let X be an M-valued semimartingale on a filtered proba-
bility space (Ω, F∗, P). Then it is a Brownian motion on M if and only
if

E DhG(X) = E

[
G(X)

∫ 1

0

〈
ḣs +

1
2

RicU(X)s hs, dWs

〉]
for all cylinder functions G and all F∗-adapted ḣ ∈ H such that the ran-
dom variables on the two sides are integrable. Here W and U are the anti-
development of X in Rn and the horizontal lift of X in O(M), respectively.

Proof. Recall that X is a Brownian motion on M if and only if the
continuous semimartingale W = J−1X is a Brownian motion on Rn.
All we need to show is that the semimartingale W satisfies Lévy’s
criterion.
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To show that W is a local martingale, we again let G ≡ 1. From
Dh1 = 0 we have

E

∫ 1

0

〈
ḣs +

1
2

RicU(X)s hs, dWs

〉
= 0.

Let W = M + A be the Doob-Meyer decomposition of the semi-
martingale and introduce the notation

(6.1) |W|s = ∑
1≤i,j≤n

|
〈

Mi, Mj
〉
|s + ∑

1≤i≤n
|Ai|s.

Consider the set F (W) of adapted h = {hs, 0 ≤ s ≤ 1} such that

E

[∫ 1

0
|ḣs|2d|W|s +

(∫ 1

0
|ḣs| d|W|s

)2
]

< ∞.

[For a function real-valued function f of locally bounded variation
we use | f |t to denote its total variation on [0, t].] It is easy to verify
that if g ∈ F (W), the unique solution h of the ordinary differential
equation

ḣs +
1
2

RicU(X)s hs = ġs, 0 ≤ s ≤ 1

is again in F (W). Therefore,

E

∫ 1

0
〈ġs, dWs〉 = 0

for all g ∈ F (W). This easily implies immediately that W is a local
martingale.

The verification that the quadratic variation

〈W∗, W〉t = In · t, In = (n× n)− identity matrix

is more difficult. First of all for a fixed 0 < u < t ≤ 1 we take the
function G to be

G(X) = Wt −Wu = (J−1X)t − (J−1X)u.

Of course, G is not a cylinder function on Po(M). However, from
general approximation theory for stochastic differential equations
(see Ikeda and Watanabe[5]) one can approximate G(X) = Wt −Wu
by a sequence of cylinder functions in a very strong sense. More
precisely, suppose that h ∈ F (W), i.e., it satisfies the condition

E

∫ 1

0
|ḣs|2 d|W|s < ∞,
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see (6.1). Let

l1(X) =
∫ 1

0

〈
ḣs +

1
2

RicU(X)s hs, dWs

〉
.

Then there is a sequence of cylinder functions Gn such that

lim
n→∞

Gn(X)l1(X) = G(X)l1(X)

and
lim

n→∞
DhGn(X) = DhG(X),

both limits taking place in L2(Po(M), B(Po(M)), ν). Here DhG(X) is
obtained by calculating formally the pushforward of the vector field
Dh through the map J−1:

DhG(X) = Dh(J−1X)t − (J−1X)u = (J−1
∗ Dh)t − (J−1

∗ Dh)u.

This calculation can be found in [2] and [4] when W is assumed to be
a Brownian motion but only slight modifications are needed if W is
only assumed to be a local martingale. We have

(J−1
∗ Dh)t − (J−1

∗ Dh)u =
∫ t

u
〈θ(h)s, dWs〉

+
∫ t

u

{
ḣs ds +

1
2 ∑

1≤i,j≤n
Ωj(U(X)s)(Hei, Hhs) d

〈
W i, W j

〉
s

}
.

Here Ω is the scalarized curvature tensor (or the curvature form on
the orthonormal frame bundle O(M)) and H f = ∑n

i=1 fiHi is the
horizontal vector defined by f ∈ Rn. The explicit expression of the
integrand θ(h) involves the curvature tensor and W is not impor-
tant for our purpose. What is important is that under the condition
imposed on h the stochastic integral on the right side is a martingale.

Now we have

EDhGn(X) = E

[
Gn(X)

∫ 1

0

〈
ḣs +

1
2

RicU(X)s hs, dWs

〉]
.

We take the limit as n→ ∞. On the left side we have

E

∫ t

u

{
ḣs ds +

1
2 ∑

1≤i,j≤n
Ωj(U(X)s)(Hei, Hhs) d

〈
W i, W j

〉
s

}
.

On the right side we have

E

[
(Wt −Wu)

∫ 1

0

〈
ḣs +

1
2

RicUs hs, dWs

〉]
.
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Because W is a local martingale, the above expression is equal to

E

∫ t

u
d 〈W∗, W〉s

{
ḣs +

1
2

RicUs hs

}
.

Equating the two sides, the resulting equality has the following form:

(6.2) E

∫ t

u
{Inds− d 〈W∗, W〉s} ḣs + E

∫ t

u
Cijk(s) hk

sd
〈

W i, W j
〉

= 0.

Here Cijk =
{

Cijk(s), 0 ≤ s ≤ 1
}

is continuous and adapted, whose
actual expression is not needed in the following discussion. Using

hs =
∫ s

0
ḣτ dτ

and changing the order of integration we find that the second term
is the sum of

E

∫ u

0
ḣk

τ dτ
∫ t

u
Cijk(s) d

〈
W i, W j

〉
s

and

E

∫ t

u
ḣk

τ dτ
∫ t

τ
Cijk(s) d

〈
W i, W j

〉
s

.

Note that the last term here and the first term in (6.2) do not involve
the values ḣτ for 0 ≤ τ ≤ u, hence we must have

E

[∫ t

u
Cijk(s) d

〈
W i, W j

〉
s

∣∣∣∣Fτ

]
= 0

for all 0 ≤ τ ≤ u ≤ t ≤ 1. This fact in term implies in turn that both
terms in rftwot2 vanish. It follows that

E

∫ t

u
{Inds− d 〈W∗, W〉s} ḣs = 0,

which implies that 〈W∗, W〉t = In · t. By Lévy’s criterion W W is
a Brownian motion on Rn. By PROPOSITION 2.1 X is a Brownian
motion on M. �

7. CONCLUDING REMARKS AND ACKNOWLEDGEMENTS

We have shown that the integration by parts formula for the Wiener
measure on the path space over a Riemannian manifold character-
izes uniquely the Wiener measure among the set of probability mea-
sures on the path space under which the coordinate process is a semi-
martingale. This may be regarded as the first step towards explor-
ing in the context of stochastic analysis the circle of ideas surround-
ing the well known Stein-Chen technique in mathematical statistics.
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The success of the Stein method in the theory of central limit theo-
rems may point to a possible parallel theory in the current context.
In particular, one wonders whether it is possible to introduce a use-
ful concept of distance between a semimartingale and a Brownian
motion on a fixed Riemannian manifold. In addition, in view of the
importance of Stein’s equation, it may also be worthwhile to explore
this equation in an infinite dimensional setting.

An early draft of this article was written and presented at the con-
ference in honor of Professor Charles Stein in August, 2003, at the
National University of Singapore. The final version was completed
during the author’s visit at the Institute of Applied Mathematics of
the Chinese Academy of Sciences in Beijing. The research of this arti-
cle was supported in part by the NSF grants DMS-010479 and DMS-
0407819. The author gratefully acknowledges the financial support
received from the above mentioned sources.
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