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1. Introduction

We assume throughout this paper thatM is an-dimensional compact Riemannian
manifold andO(M ) its orthonormal frame bundle. We useH to denote theRd-
valued Cameron-Martin space over the interval [0, 1] with zero initial values and
H0 the subspace ofH with zero values at 1. We fix a pointo ∈ M and a frame
uo ∈ O(M ) over o. We useWo(M ) to denote the set ofM -valued paths (of time
length 1) starting fromo andLo(M ) the set of loops ato, i.e., the set of pathsγ
in Wo(M ) such thatγ(1) = o.

The Levi-Civita connection determines a Laplace-Beltrami operator∆ on
M . We useν to denote the Wiener measure onWo(M ) generated by∆/2. The
measureνo defined intuitively by

νo(·) = ν(·|ω(1) = o)

is a measure on the loop spaceLo(M ), which we call the Wiener measure on
Lo(M ).

For a smooth or a typical Brownianγ ∈ Wo(M ) or Lo(M ), let U (γ) be the
horizontal lift of γ such thatU (γ)o = uo. Fix an h ∈ H (or H0) , the “vector
field” Dh on Wo(M ) (or Lo(M )) is defined by

Dh(γ)s = U (γ)shs.(1)

There is a complete theory of integration by parts forDh on Wo(M ), developed
by Driver[1] and supplemented by Hsu[5]. See also Enchev and Stroock[3] for
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another approach. In the case of the loop spaceLo(M ), Driver[2] proved an inte-
gration by parts formula for vector fieldsDh with lipschitzianh and the complete
result for all Cameron-Martin vector fields was proved in Enchev and Stroock[4].
The purpose of this paper is to give an alternative approach to integration by
parts in loop spaces. Armed with an upper estimate on the∇2 logp(s, x, y) due
to Sheu[8] (see (7) below), we prove an integration by parts formula in the loop
spaceLo(M ) through the corresponding formula for the path spaceWo(M ). Such
an approach avoids the quasi-invariance of the Wiener measure in the loop spaces
thus providing a more direct route to the result.

2. Integration by parts in path spaces

Let µ be the usual Wiener measure on the pathWo(Rn). Let {Us} be the solution
of the stochastic differential equation onO(M )

dUs = HUs ◦ dωs, U0 = uo.(2)

HereH = {Hi , i = 1, . . . , d} are the canonical horizontal vector fields onO(M )
and{ωs} is the coordinate process onWo(Rn). Let γs = π(Us) be the projection
of U in Wo(M ). The It̂o mapJ : Wo(Rn) → Wo(M ) is defined byJω = γ. It
is well known that the law ofγ is ν, the Wiener measure onWo(M ), i.e., J
carries the Wiener measureµ on Wo(Rd) to the Wiener measureν on Wo(M ).
The inverseJ−1 : Wo(M ) → Wo(Rd) is the stochastic development map.

A function F : Wo(M ) → R
1 is called cylindrical if there is a positive

integer l , a set of l points 0 ≤ s1 < · · · < sl ≤ 1 and a smooth function
f : M × · · · × M → R

1 such that

F (γ) = f
(
γs1, · · · , γsl

)
.(3)

The set of cylindrical functions onWo(M ) is denoted byC .
We will useL2(ν) to denote the Hilbert space of measurable functionsF on

Wo(M ) such that

‖F‖2
L2(ν) =

∫
Wo(M )

|F (γ)|2
E
ν(dγ) <∞.

The inner product onL2(ν) is denoted by (·, ·)L2(ν) or simply (·, ·).
Let F ∈ C be given by (3). From the defintion of the vector fieldDh in (1)

it is natural to define

DhF (γ) =
l∑

p=1

〈∇(p)F (γ),U (γ)sp hsp〉,(4)

where∇(p)F denotes the gradient off with respect to thepth variable.
Let h ∈ H, define
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lh(γ) =
∫ 1

0
〈ḣs +

1
2

RicUshs, dωs〉,

whereω = J−1γ, U = U (γ) is the horizontal lift ofγ to O(M ), and Ricu : Rn →
R

n is the Ricci transform atu ∈ O(M ).

Theorem 2.1. (Integration by parts in path space) Let F,G be two cylindrical
functions on Wo(M ). Then

(DhF ,G) =
(
F ,D∗

h G
)
,(5)

where

D∗
h = −Dh + lh.

The assumption thath ∈ H implies that there exists a constantc > 0 such
thatEνec|lh|2 <∞. By a standard functional analysis argument, the integration by
parts formula implies thatDh is closable and the adjointD∗

h is densely defined (the
closability ofDh requires onlylh ∈ L2(ν)). There are plenty of functions in Dom
(D∗

h ). More precisely, we have the following result. LetL2+(ν) =
⋃

p>2 Lp(ν).

Theorem 2.2. Let h ∈ H. Then Dh : C → L2(ν) is closable in L2(ν) and has a
densely defined adjoint D∗h . Furtheremore,

Dom(Dh) ∩ L2+(ν) ⊂ Dom
(
D∗

h

)
and for all G∈ Dom(Dh) ∩ L2+(ν) we have

D∗
h G = −DhG + lhG.

3. Some preliminary results

In this section we collect some results which will be used in the proof of inte-
gration by parts formula on the loop space in the next section.

We denote byp(s, x, y) the heat kernel of the half Laplacian∆/2 on M .

Proposition 3.1. There exists a constant depending only on M such that for all
(s, x, y) ∈ (0, 1)× M × M ,

|∇ logp(s, x, y)| ≤ C

{
d(x, y)

s
+

1√
s

}
(6)

|∇2 logp(s, x, y)| ≤ C

{
d(x, y)2

s2
+

1
s

}
.(7)

Proof. As far as we know, these results are due to Sheu[8]. See also Hsu[7] and
Stroock and Trubetsky[9] for further discussions. ut
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Lemma 3.2. For each positive integer N there is a constant CN depending only
on N and M such that

Eνo d(γs, o)N ≤ CN min
{

sN/2, (1− s)N/2
}
.

Proof. This inequality is intuitively clear and can be proved based on the estimate
(6). See Driver[2] or Hsu[6] for details. ut
Lemma 3.3. (Hardy’s inequality) Let h∈ H0, then∫ 1

0

∣∣∣∣ hs

1− s

∣∣∣∣2 ds≤ 4
∫ 1

0
|ḣs|2 ds.

Proof. We have for anyt ∈ (0, 1),∫ t

0

∣∣∣∣ hs

1− s

∣∣∣∣2 ds =
∫ t

0
|hs|2d

[
1

1− s

]
= 2

∫ t

0

hs · ḣs

1− s
ds +

|ht |2
1− t

≤ 1
2

∫ t

0

∣∣∣∣ hs

1− s

∣∣∣∣2 ds + 2
∫ t

0
|ḣs|2ds +

|ht |2
1− t

.

In the last step we have used inequality

2ab ≤ 1
2

a2 + 2b2.

Therefore ∫ t

0

∣∣∣∣ hs

1− s

∣∣∣∣2 ds≤ 4
∫ t

0
|ḣs|2ds +

2|ht |2
1− t

.

The desired inequality follows by lettingt → 1 in the above inequality because

|ht |2
1− t

=
1

1− t

∣∣∣∣∣
∫ 1

t
ḣsds

∣∣∣∣∣
2

≤
∫ 1

t
|ḣs|2ds→ 0. ut

4. Integration by parts on loop spaces

Recall that in path spaceWo(M ) the adjoint ofDh is given by

D∗
h = −Dh + lh,(8)

wherelh : Wo(M ) → R
n is defined by

lh(γ) =
∫ 1

0
〈ḣs +

1
2

RicUshs, dωs〉.

Here U is the horizontal lift ofγ andω = J−1γ is the stochastic development
of γ. On the loop spaceLo(M ), we defineDhF for a cylindrical function by



Integration by parts in loop spaces 335

the same formula (4) as in the path space. The next proposition shows thatlh is
well defined under the measureνo. This step is necessary becauseν andνo are
mutually singular.

Let {lh,s} be theν-martingale

lh,s =
∫ s

0
〈ḣτ +

1
2

RicUτ
hτ , dωτ 〉.

Let {Bs, 0≤ s ≤ 1} be the standard filtration ofσ-fields onWo(M ). Then the
measuresνo and ν are mutually absolutely continuous onBs for all s < 1.
Hence the process{lh,s, 0≤ s < 1} is well defined under the measureνo. The
next lemma concerns the limit oflh,s ass → 1 under the measureνo.

Proposition 4.1. The limit lh,s → lh exists in L1(νo) as s → 1. Furthermore
lh ∈ L2(νo).

Proof. Under the measureν, the stochastic developmentω = J−1γ is a Brownian
motion. Under the measureνo, it is a local semimartingale before time 1 and its
martingale part{bs} is a Brownian motion. The measureνo is characterized by
the fact that

ωs = bs +
∫ s

0
U−1
τ ∇ logp(1− τ, γτ , o)dτ.

Let

Qs = U−1
s ∇ logp(1− s, γs, o),

Fs = hs − 1
2

∫ 1

s
RicUτ hτdτ

for simplicity. We have fors < 1

lh,s =
∫ s

0
〈Ḟτ , dbτ 〉 +

∫ s

0
〈Ḟτ ,Qτdτ〉

=
∫ s

0
〈Ḟτ , dbτ 〉 −

∫ s

0
〈Fτ , dQτ 〉 + 〈Qs,Fs〉 − 〈Q0,F0〉

= I1,s − I2,s + I3,s − 〈Q0,F0〉.

Now Ricuhτ is uniformly bounded, anḋh ∈ L2[0, 1]. These facts imply that
the limit I1,s → I1 exists inL2(νo) and

I1 =
∫ 1

0
〈Ḟs, dbs〉.

For I3,s we have|Fs| ≤ C {|hs| + (1− s)} and using (6) and Lemma 3.2 we
have
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Eνo |〈Fs,Qs〉| ≤ C {|hs| + (1− s)}Eνo |∇ logp(1− s, γs, o)|
≤ C1 {|hs| + (1− s)}

{
Eνo d(γs, o)

1− s
+

1√
1− s

}

≤ C2

√1− s

√∫ 1

s
|ḣτ |2dτ + (1− s)

 1√
1− s

→ 0.

This shows thatI3,s → 0 in L1(νo).
For I2,s we use It̂o’s formula on theRn-valued function

Qs = U−1
s ∇ logp(1− s, γs, 0) =∇H logP(1− s,Us)

of (s,Us) ∈ (0, 1) × O(M ), whereP(s, u) = p(s, πu, o). Using the stochastic
differential equation (2) forUs we have for thei th component

dHi logP(1− s,Us)(9)

= 〈Hi∇H logP(1− s,Us), dbs〉 +
1
2
〈RicUsei ,∇H logP(1− s,Us)〉ds

+Hi

{
�

H logP(1− s,Us) +
1
2
|∇H logP(1− s,Us)|2

}
ds,

where

�
H =

1
2
∆H +

∂

∂s
,

and∆H =
∑n

j =1 H 2
j is Bochner’s horizontal Laplacian. Note that in the above

computation we need to use the second structural equation

[Hi ,Hj ] = Ω(Hi ,Hj )
∗

to exchangeHi and Hj (Ω∗ is the canonical vertical vector field corresponding
to Ω ∈ o(n)). The last term in (9) vanishes becausep(t , x, y) satisfies the heat
equation. Hence we have

I2,s =
∫ s

0
〈Fτ ,U

−1
τ ∇2 logp(1− τ, γτ , o), dbτ 〉

+
1
2

∫ s

0
〈RicUτ

Fτ ,U
−1
τ ∇ logp(1− τ, γτ , o)dτ〉.

To show that the limitI2,s → I2 exists inL2(νo) it is enough to show that

Eνo

∫ 1

0
|Fs|2 · |∇2 logp(1− s, γs, o)|2ds<∞(10)

and

Eνo

∫ 1

0
|Fs|2 · |∇ logp(1− s, γs, o)|2ds<∞.(11)
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From the definition ofFs there exists a constantC such that

|Fs| ≤ C {|hs| + (1− s)} .(12)

Using the estimate (7) and Lemma 3.2 we see that there exists a constantC such
that

Eνo |∇2 logp(1− s, γs, o)|2 ≤ C
(1− s)2

.

It follows from Lemma 3.3 that

Eνo

∫ 1

0
|Fs|2 · |∇2 logp(1− s, γs, o)|2ds

≤ C
∫ 1

0

{ |hs| + (1− s)
(1− s)

}2

ds

≤ 8C

{∫ 1

0
|ḣs|2ds + 1

}
.

This proves (10). From (6) and Lemma 3.2 there is a constantC such that

Eνo |∇ logp(1− s, γs, o)|2 ≤ C
1− s

.

Using this inequality and (12) we have

Eνo

∫ 1

0
|Fs|2|∇ logp(1− s, γs, o)|2ds

≤ C
∫ 1

0

{|hs| + (1− s)}2

1− s
ds

≤ 8C

{∫ 1

0
|ḣs|2ds + 1

}
.

This proves (11). It follows that the limitI2,s → I2 exists inL2(νo) and

I2 =
∫ 1

0
〈Fs,U

−1
s ∇2 logp(1− s, γs, o), dbs〉

+
1
2

∫ 1

0
〈RicUsFs,U

−1
s ∇ logp(1− s, γs, o)ds〉.

To summarize, we have

lh,s = I1,s − I2,s + I3,s − 〈Q0,F0〉;
I1,s → I1, I2,s → I2, both in L2(νo), and I3,s → 0 in L1(νo). It follows that the
stochastic integral

lh =
∫ 1

0
〈ḣs +

1
2

RicUshs, dωs〉

(ω = J−1γ) exists as theL1(νo)-limit of lh,s ass → 1 andlh ∈ L2(νo). ut
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We now prove the main theorem.

Theorem 4.2. (Integration by parts formula in loop space) Let F,G be two cylin-
drical functions on Lo(M ). Then

(DhF ,G)L2(νo) =
(
F ,D∗

h G
)

L2(νo)
,

where
D∗

h = −Dh + lh

and lh ∈ L2(νo) is defined by

lh(γ) =
∫ 1

0
〈ḣs +

1
2

RicUshs, dωs〉.

Hereω = J−1γ is the stochastic development ofγ and U is the horizontal lift of
γ.

Proof. Suppose thatF and G depend on the path up to times∗ < 1. Then we
have for alls ∈ (s∗, 1),

(DhF ,G)L2(νo) = Co (DhF ,Gp(1− s, γs, o))L2(ν) ,

where Co = p(1, o, o)−1. By the integration by parts formula (5) for the path
space, we have

(DhF ,G)L2(νo)

= Co
(
F ,D∗

h {Gp(1− s, γs, o)})
L2(ν)

= −Co (F ,DhGp(1− s, γs, o))L2(ν)

−Co (F ,GDhp(1− s, γs, o))L2(ν)

+Co (F , lhGp(1− s, γs, o))L2(ν)

= − (F ,DhG)L2(νo) − (F ,GDh logp(1− s, γs, o))L2(νo)

+
(
F , lh,sG

)
L2(νo)

.

SinceF andG are uniformly bounded, by Proposition 4.1 we have(
F , lh,sG

)
L2(νo)

→ (F , lhG)L2(νo) .

It is therefore enough to show

(F ,GDh logp(1− s, γs, o))L2(νo) → 0.

This is implied by
Eνo |Dh logp(1− s, γs, o)| → 0.(13)

We have

Dh logp(1− s, γs, o) = 〈hs,U
−1
s ∇ logp(1− s, γs, o)〉.

By (6) and Lemma 3.2 we have
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Eνo |Dh logp(1− s, γs, o)| = |hs| · Eνo |∇p(1− s, γs, o)|
≤ C |hs|

{
Eνo d(γs, o)

1− s
+

1√
1− s

}
≤ C1|hs|√

1− s

=
C1√
1− s

∣∣∣∣∣
∫ 1

s
ḣτdτ

∣∣∣∣∣
≤ C1

√∫ 1

s
|ḣτ |2dτ

→ 0.

This shows (13) and the theorem is proved. ut
As a consequence of the above integration by parts formula and the fact that

lh ∈ L2(νo), we have the following result parallel to Theorem 2.2. LetB(νo) be
the space ofνo-essentially bounded measurable functions onLo(M ).

Theorem 4.3. Let h∈ H0. Then Dh : C → L2(νo) is closable in L2(νo) and has
a densely defined adjoint D∗h . Furthermore

Dom(Dh) ∩ B(νo) ⊂ Dom(D∗
h )

and for all G∈ Dom(Dh) ∩ B(νo) we have

D∗
h G = −DhG + lhG.(14)

Acknowledgement.I want to thank Professor M. Cranston for his generous help throughout the work.

References

1. Driver, B.: A Cameron-Martin type of quasiinvarance for the Brownian motion on a compact
manifold. J. Funct. Anal.,110 (1992), 237–376.

2. Driver, B.: A Cameron-Martin type of quasiinvarance theorem for pinned Brownian motion on
a compact manifold. TAMS,342, No. 1 (1994), 375-395.

3. Enchev, O., Stroock, D. W.: Towards a Riemannian geometry on the path space over a Rieman-
nian manifold. J. Funct. Anal.,134 (1995).

4. Enchev, O., Stroock, D. W.: Integration by parts for pinned Brownian motion. To appear in
Advances in Mathematics.

5. Hsu, E. P.: Quasiinvariance of the Wiener measure and integration by parts in the path space
over a compact Riemannian manifold. J. Funct. Anal.,134 (1995), 417–450.

6. Hsu, E. P.: Stochastic Gauss-Bonnet-Chern formula. J. Theoret. Probability (1995).
7. Hsu, E. P.: Estimates of the derivatives of the heat kernel, preprint (1996).
8. Sheu, S.-Y.: Some estimates of the transition density function of a nondegenerate diffusion

Markov process. Annals of Probability,19, No. 2 (1991), 538–561.
9. Stroock, D. W., Trubetsky, J.: Upper bounds for the derivatives of the logarithm of the heat

kernel, preprint (1996)


