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Abstract. For a boundedC1,α domain inRd we show that there exists a strong solution to
the multidimensional Skorokhod equation and that weak uniqueness holds for this equation.
These results imply that pathwise uniqueness and strong uniqueness hold for the Skorokhod
equation.

1. Introduction

Let D be a domain inRd andν the inward-pointing unit normal vector field on
∂D, the boundary ofD. LetB be ad-dimensional Brownian motion starting at the
origin. Consider the Skorokhod equation for a pair of processes(X,L):

Xt = X0 + Bt + 1

2

∫ t

0
ν(Xs)dLs , (1)

whereX is aD-valued continuous process,X0 is a point inD, andL is a con-
tinuous nondecreasing process which increases only whenXt ∈ ∂D. WhenD is
aC2 domain it was proved in Lions and Sznitman[13] and Hsu[9] that pathwise
uniqueness holds for the equation. In fact, given anf ∈ CD(R+,Rd) (the space of
continuous functions fromR+ = [0,∞) to Rd starting from a point inD) there is
a unique solution(g, l) to the deterministic Skorokhod equation

gt = ft + 1

2

∫ t

0
ν(gs)dls .

(We often writeft forf (t).) The mapF : CD(R+,Rd) → C(R+,D)×C0(R+,R+)
given byF(f ) = (g, l) is (progressively) measurable and is the unique strong so-
lution to the Skorokhod equation (1). This means that if(B,X,L) are related by
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(1) andB is a Brownian motion (with initial value zero) independent ofX0 then we
must have(X,L) = F(B+X0). Furthermore,X has the law of reflecting Brownian
motion. As an application of Itô’s formula the processL can be recovered by the
formula

Lt = lim
λ↓0

1

λ

∫ t

0
ISλ(Xs)ds ,

whereSλ = {
x ∈ D : dist(x, ∂D) ≤ λ

}
.

Dupuis and Ishii[5] showed that pathwise uniqueness for Brownian motion with
oblique reflection holds forC1 domains; however they required the angle of reflec-
tion to vary in almost aC2 manner. For normal reflection this implies the domains
must be nearlyC2.

For an arbitrary domain, we define reflecting Brownian motion onD to be
a D-valued diffusion process (strong continuous Markov process with continu-
ous sample paths) whose transition density function is the one determined by the
Dirichlet form

E(f, f ) = 1

2

∫
D

|∇f (x)|2dx, f ∈ H 1(D);

(see Fukushima[6]). IfD has a rough boundary, such a process does not always
exist. But it was proved in Bass and Hsu[3],[4] that ifD is Lipschitz, then such an
X exists,X is a reflecting Brownian motion as defined above, and the Skorokhod
equation holds. The processL in this case is just the continuous additive function-
al determined by the surface measure of∂D. This means that ifX is a reflecting
Brownian motion on a Lipschitz domainD, then there exists a Brownian motion
starting at a point inD such that (1) holds. More recently, Bass[1] proved that under
certain additional conditions onL weak uniqueness holds for the Skorokhod equa-
tion on a Lipschitz domain. This means that for such domains ifB is a Brownian
motion starting from the origin,X0 is a point inD, and(B,X,L) satisfies (1), then
X is a reflecting Brownian motion.

C2 domains are smooth enough so that reflecting Brownian motion in such a
domain shares many properties with reflecting Brownian motion in a half space,
and this fact can be exploited in proving pathwise results. This is no longer the case
in less smooth domains such asC1,α domains. (This is analogous to the situation for
the Neumann problem in analysis, where there is an extensive literature attempting
to extend results known to hold inC2 domains to less smooth ones.)

The main result of the present paper is Theorem 5.1, which states that in aC1,α

domain the solution to the Skorokhod equation is pathwise unique. The method
we use is quite different from existing techniques for proving pathwise uniqueness
and consists primarily of a measurability argument. First, we prove that forC1

domains, there exists a strong solution. Second, forC1,α domains we remove the
technical conditions imposed in Bass[1], that is, we prove that weak uniqueness
holds forC1,α domains. We put these two results together to imply, by a measure-
theoretic argument whose origins can be traced back to Knight[11], Perkins, and
Girsanov, that there exists a unique strong solution for the Skorokhod equation on
C1,α domains and that the solution is pathwise unique.
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It is tempting to conjecture that there exists a unique pathwise solution for the
Skorokhod equation on Lipschitz domains, but we do not know how to prove this.

2. Deterministic Skorokhod equation

In this section we show that ifD is a boundedC1 domain, then there is a solution to
the deterministic Skorokhod equation. Recall that aC1 function is one whose first
partial derivatives are continuous and aC1,α function is one whose first derivatives
are Ḧolder continuous of orderα. A domainD is aC1 domain if for allz ∈ ∂D

there exists a coordinate systemCSz, anrz > 0, and aC1 functionϕz such that

D ∩ B(z, rz) = {x = (x1, . . . , xd) in CSz : xd > ϕz(x1, . . . , xd−1)} ∩ B(z, rz) ,
i.e., locallyD looks like the region above the graph of aC1 function. Similar
definitions apply toC1,α orC2 domains.

Let Sλ be the shell of widthλ around the boundary∂D:

Sλ = {
x ∈ D : dist(x, ∂D) ≤ λ

}
.

For a boundedC1 domainD, the inward-pointing unit normal vector fieldν :
∂D → Sd−1 ⊆ Rd is uniformly continuous. Let

θ(λ) = sup{|ν(x)− ν(y)| : x, y ∈ ∂D, |x − y| ≤ λ}
be the modulus of continuity ofν. Thenθ(λ) ↓ 0 asλ ↓ 0.

Lemma 2.1. LetD be a boundedC1 domain inRd . Then there exists a positive
λ0 depending only on the modulus of continuityθ of the normal vector fieldν such
that

(a) For all (x, y) ∈ ∂D × ∂D, |x − y| ≤ λ0,

|ν(y)− (ν(y) · ν(x))ν(x)| ≤ 1

3
ν(y) · ν(x) .

(b) Letz ∈ ∂D andλ ≤ λ0. LetF be the right circular cylinder which is centered
at z with height6λ, base radius3λ, and axis parallel toν(z). Then the two
bases ofF lie entirely outside the shellS2λ.

Proof. (a) It is easy to check that

|ν(y)− (ν(y) · ν(x))ν(x)| ≤ 2θ(|x − y|), |ν(y) · ν(x)− 1| ≤ θ(|x − y|) .
Thus it is enough to chooseλ0 such thatθ(λ0) ≤ 1/7.

(b) Choose a coordinate systemCSz centered atz such that the unit vector along
thexd -axis isν(z). Chooseλ0 such thatθ(10λ0) ≤ 1/400. SinceF ⊆ B(z,5λ),
it is clear that there is aC1 functionϕ defined onB(z,10λ0) ∩ L (whereL is the
hyperplane perpendicular toν(z)) such thatD ∩ B(z,10λ) is the region above the
graph ofϕ.

Suppose thatx ∈ S2λ ∩ F . Then there is a pointy ∈ ∂D such that|x − y| =
dist(x, ∂D) andx = y + |x − y|ν(y); hence|xd | ≤ |yd | + 2λ. On the other hand,
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|y| ≤ |y − x| + |x − z| ≤ 2λ + 5λ = 7λ andy ∈ ∂D, hence there is a point
y = (w, ϕ(w)) for somew ∈ B(z,7λ) ∩ L. Therefore

|yd | = |ϕ(w)| ≤ 7λ sup
|u|≤7λ

|∇ϕ(u)| .

Now ν(u) = (∇ϕ(u),1)/
√

1 + |∇ϕ(u)|2. Comparing the components in the di-
rection of thexd axis, we have

|∇ϕ(u)| =
√

1

(ν(u) · ν(z))2 − 1 .

But foru ∈ B(z,7λ)we have|ν(u) · ν(z)− 1| ≤ 1/400, and the above relation
gives|∇ϕ(u)| ≤ 1/14. It follows that|yd | ≤ λ/2 and hence|xd | ≤ (5/2)λ. Thus
we have shown thatx ∈ S2λ ∩ F implies|xd | < 3λ. Finally, if x is on either of the
two bases ofF , then|xd | = 3λ; this means thatx cannot be inS2λ. ut

Definition 2.2. LetD be a boundedC1 domain inRd andν its inward-pointing
unit normal vector field on∂D. Let f ∈ CD(R+,Rd) such thatf0 ∈ D. We say
that a pair of function(g, l) is a solution to the Skorokhod equation

gt = ft + 1

2

∫ t

0
ν(gs)dls

if g ∈ C(R+,D) andl is a continuous nondecreasing function onR+ (with initial
valuel0 = 0) which increases only whengt ∈ ∂D.

Our strategy for proving the solvability of the Skorokhod equation for a bound-
edC1 domain is to approximateD from outside by a sequence of boundedC2

domains. The existence and uniqueness for the solutions to the Skorokhod equa-
tion for C2 domains are well known. Later we will need the fact that the map
f 7→ (g, l) is continuous forC2 domains (see Lemma 3.2). This is the content of
the next theorem.

Theorem 2.3. LetD be a boundedC2 domain. Then for anyf ∈ CD(R+,Rd)

there is a unique solution(g, l) to the Skorokhod equation. Furthermore, the map
f 7→ (g, l) is continuous fromCD(R+,Rd) toC(R+,D)× C0(R+,R+).

Proof. The existence and uniqueness are proved in Lions and Sznitman[13] and
Hsu[9]. The continuity off 7→ g is proved in [13], Theorem 2.2 on p. 521, so we
only need to prove the continuity off 7→ l.

Let f n → f uniformly on bounded intervals. Thengn → g does the same.
Let ψ : Rd → Rd be a continuous function with compact support such that
ψ(x) = ν(x) for x ∈ ∂D. We can show that

{
lnt

}
is uniformly bounded just as in

part (a) of the proof of Theorem 2.6 below. Letti = it/N, i = 0, . . . , N . We have
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lt =
∫ t

0
ψ(gs) · ν(gs)dls

=
N∑
i=1

ψ(gti ) ·
∫ ti

ti−1

ν(gs)dls +
N∑
i=1

∫ ti

ti−1

{
ψ(gs)− ψ(gti−1)

} · ν(gs)dls

= 2
N∑
i=1

ψ(gti−1) · {
gti − gti−1 − fti + fti−1

}

+
N∑
i=1

∫ ti

ti−1

{
ψ(gs)− ψ(gti−1)

} · ν(gs)dls

= I1
t + I2

t .

Similarly we havelnt = I
n,1
t + I

n,2
t . Sincegnt → gt uniformly on [0, T ], it is clear

that for anyε, there existsN such that for alln ≥ N ,

sup
0≤t≤T

|In,2t | ≤ lnT ε, sup
0≤t≤T

|I2
t | ≤ lT ε .

Fix thisN . Again by the uniform convergence ofgnt → gt on [0, T ], we see that
there existsn0 depending onN andε such that for alln ≥ n0,

sup
0≤t≤T

|In,1t − I1
t | ≤ ε .

It follows that
sup

0≤t≤T
|lnt − lt | ≤ (1 + lnT + lT )ε .

This shows thatlnt → lt uniformly on [0, T ]. ut
The next result shows that the modulus of continuity of the solution of the

Skorokhod equation is completely controlled by that off and the numberλ0 in
Lemma 2.1. For our later application, it is important that the proof of this result
depends onD only through the modulus of continuityθ of the normal vector field
on the boundary.

For a continuous function taking values inRd , let

ωT (δ;h) = sup{|hs − ht | : 0 ≤ s, t ≤ T , |t − s| ≤ δ} .

We denote the range of a pathh over a time interval [s, t ] by h[s, t ].

Proposition 2.4. LetD be a boundedC2 domain inRd andf ∈ CD(R+,Rd). Let
(g, l) be the solution of the Skorokhod equation forD with the driving pathf . For
each fixedT > 0, there exists aδ0 = δ0(θ, f ) > 0such thatωT (δ; g) ≤ 9ωT (δ; f )
for all δ ≤ δ0,

Proof. Set λ = ωT (δ; f ). We can chooseδ0 small such thatδ ≤ δ0 implies
λ ≤ λ0/5 for theλ0 in Lemma 2.1. Suppose thats, t ∈ [0, T ] and |t − s| ≤ δ.
One case can be dismissed quickly, namely when the pathg[s, t ] lies entirely inD
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and does not intersect∂D. In this casel does not increase on [s, t ]. We then have
gs − gt = fs − ft . Hence

|gs − gt | ≤ ωT (δ; f ) ≤ λ .

So it is enough to consider the case when there is a pointu0 ∈ [s, t ] such that
gu0 ∈ ∂D. Fix such au0.

We first show that the assumption thatgu0 ∈ ∂D implies that the whole path
g[s, t ] lies within a narrow shell around the boundary; more precisely,g[s, t ] ⊆ S2λ.
If this were not the case, then there must be a timeu ∈ [s, t ] such thatgu ∈ D\S2λ.
Assume without loss of generality thatu < u0. Letw ∈ [u, u0] be the first time
such thatgw ∈ ∂D. Theng[u,w) lies entirely inD. This means thatl does not
increases on the time interval [u,w]. Hence

2λ ≤ |gu − gw| = |fu − fw| ≤ ωT (δ; f ) ≤ λ .

This is a contradiction.
We now choose a coordinate system centered atz = gu0 ∈ ∂D such that the

unit vector along thexd -axised = ν(z). LetF be the right circular cylinder whose
axis is parallel toν(z) and which is centered at the origin with height 6λ and base
radius 3λ. We will show thatg[s, t ] ⊆ F . SinceF ⊆ B(0,9λ/2), this will imply
that|gs − gt | ≤ 9λ and the proof of the equicontinuity of{gn} will be completed.

Obviouslygu0 ∈ F . Let

τ = sup{u ≤ u0 : gu 6∈ F } , σ = inf {u ≥ u0 : gu 6∈ F } .

What we want amounts to showingτ < s andσ > t . The two cases being similar
we prove the first statement.

Suppose on the contrary thatτ ∈ [s, u0]. By our assumptionλ ≤ λ0, the bases
ofF lie entirely outside the shellS2λ (see Lemma 2.1). We have shown that the shell
S2λ contains the entire pathg[s, t ]. Hence the exit positiongτ must be on the side
surface ofF . This implies that the horizontal part (the component perpendicular to
ν(z), the axis of the cylinder) ofg has to travel a distance at least 3λ from timeτ
to u0. This is not possible, because the displacement ofg between these times is
the sum of that off , which is at mostλ, and the integral

∫ u0
τ
ν(gu)dlu, which is

almost along the vertical directionν(z). The rest of this proof is to make precise
this intuition.

For a vectorγ , we denote its vertical and horizontal components byγ V =
(γ · ν(z))ν(z) andγH = γ − γ V , respectively. Since the exit positiongτ is on the
side surface ofF , we have|gHτ | ≥ 3λ. Hence

1

2

∣∣∣∣
∫ u0

τ

ν(gu)
Hdlu

∣∣∣∣ ≥ |gHu0
− gHτ | − |f Hu0

− f Hτ | ≥ 3λ− λ = 2λ .

The pathg[τ, u0] lies entirely inF ⊆ B(0,9λ/2) ⊂ B(0, λ0). Hence by Lemma
2.1(a), foru ∈ [τ, u0],

|ν(gu)H | ≤ 1

3
ν(gu) · ed .
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It follows that

1

2

∣∣∣∣
∫ u0

τ

ν(gu)
V dlu

∣∣∣∣ = 1

2

∣∣∣∣
∫ u0

τ

{ν(gu) · ed} dlu
∣∣∣∣

≥ 3

2

∫ u0

τ

|ν(gu)H |dlu
≥ 6λ .

This in turn implies that

|gVτ | ≥ |gVu0
− gVτ | − |gVu0

|

≥ 1

2

∣∣∣∣
∫ u0

τ

ν(gu)
V dlu

∣∣∣∣ − |f Vu0
− f Vτ | − λ

≥ 6λ− λ− λ

= 4λ .

This is a contradiction becausegτ ∈ F implies |gVτ | ≤ 3λ, the half-height of the
cylinderF . ut

LetD be a boundedC1 domain. We can choose a sequence{Dn} of bounded
C2 domains with the following properties:

(i) D ⊆ Dn,Dn ↓ D, and∂Dn → ∂D;
(ii) νn(xn) → ν(x) if xn ∈ ∂Dn, x ∈ ∂D, andxn → x; hereνn is the inward-

pointing unit normal vector field on∂Dn;
(iii) the set of functions{νn} is equicontinuous; therefore there is an increasing

functionθ : R+ → R+ with θ(0) = 0 such that

|νn(x)− νn(y)| ≤ θ(|x − y|)

for all n ≥ 1 and allx, y ∈ ∂Dn; and there is a positiveλ0 such that (a) and
(b) of Lemma 2.1 hold for everyDn.

For star-like domainsD this can be done as in [1], Prop. 3.4; for the general case
one can use a partition of unity.

Let f ∈ CD(R+,Rd) and(gn, ln) the solution to the Skorokhod equation on
Dn with driving pathf :

gnt = ft + 1

2

∫ t

0
νn(gns )dl

n
s . (2)

Theorem 2.5. The sequence{gn} is equicontinuous on each finite interval.

Proof. By our choice of{Dn} and Proposition 2.4 there existsδ0 = δ0(θ, f ) such
thatωT (δ; gn) ≤ 9ωT (δ; f ) for all δ ≤ δ0. ut
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Theorem 2.6. Let (gn, ln) be as above. Suppose that a subsequence{gnj } of {gn}
converges tog. Thenlnj converges uniformly on every finite interval to a contin-
uous, nondecreasing functionl which increases only whengt ∈ ∂D. Furthermore
the Skorokhod equation holds:

gt = ft + 1

2

∫ t

0
ν(gs)dls .

Proof. In this proof, we assume that a subsequence of integers
{
nj

}
has been fixed

such that{gnj } converges tog. When we say a sequence converges asn goes to
infinity we always mean it converges through the subsequence

{
nj

}
. It is enough

to consider a fixed interval [0, T ]. For simplicity we let

hnt = gnt − ft , ht = gt − ft .

Also, in this proof,ψ : Rd → Rd is a continuous function supported in a nar-
row neighborhood of∂D such thatψ(x) = ν(x) for x ∈ ∂D. It is clear that
g ∈ C(R+,D).

(a) We first show that
{
lnT

}
is uniformly bounded. Note first thatln increases

only whengnt ∈ ∂Dn. If n is sufficiently large ands lies in the support of the
measure on [0, T ] determined byln, thenψ(gs) · νn(gns ) ≥ 1/2. Sinceψ(gt ) is
continuous int , there exists a positiveγ such thatψ(gt )·νn(gns ) ≥ 1

3 if s, t ∈ [0, T ]
and|t − s| ≤ γ . Fix anN ≥ T/γ and lettl = lT /N . Then for sufficiently largen,

lnT =
N−1∑
l=0

∫ tl+1

tl

dlnu

≤ 3
N−1∑
l=0

∫ tl+1

tl

ψ(gtl ) · νn(gnu)dlnu

= 3
N−1∑
l=0

ψ(gtl ) ·
∫ tl+1

tl

νn(gnu)dl
n
u

= 6
N−1∑
l=0

ψ(gtl ) · {
hn(tl+1)− hn(tl)

}

→ 6
N−1∑
l=0

ψ(gtl ) · {h(tl+1)− h(tl)} .

It follows that
{
lnT

}
is uniformly bounded.

(b) Next we show that{ln} converges to a nondecreasing, continuous function
which increases only whengt ∈ ∂D. By definition,

hnt = 1

2

∫ t

0
νn(gnu)dl

n
u .
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Hence
{
hnt ,0 ≤ t ≤ T

}
is a sequence of functions with uniformly bounded vari-

ations
{
lnT

}
which at the same time converges uniformly on [0, T ] to h. Because

t 7→ ψ(gt ) is uniformly continuous on [0, T ], the limit

2
∫ t

0
ψ(gu) · dhnu → 2

∫ t

0
ψ(gu)dhu = lt (3)

exists for each fixedt ≤ T and defines a functionl on [0, T ].
We claim thatlnt converges tolt . This is clear from

2
∫ t

0
ψ(gu) · dhnu = lnt +

∫ t

0

{
ψ(gu)− νn(gnu)

} · νn(gnu)dlnu

because the second term on the right-hand side converges to zero asn → ∞ and{
lnt

}
is uniformly bounded.

It is clear from (3) thatl increases only whengt ∈ suppψ . From ln → l we
know thatl is independent of the choice ofψ . We can chooseψ to be supported
in an arbitrarily narrow neighborhood of∂D. It follows thatl increases only when
gt ∈ ∂D.

The continuity ofl can be proved as follows. We note that

∫ t

s

ψ(gu) · dhnu = ψ(gs) · {
hnt − hns

} +
∫ t

s

{ψ(gu)− ψ(gs)} · dhnu .

Hence ∣∣∣∣
∫ t

s

ψ(gu)dh
n
u

∣∣∣∣ ≤ ‖ψ‖∞|hnt − hns | + ωT (|s − t |;ψ ◦ g)lnT .

Taking the limit asn → ∞, we have

lt − ls ≤ 2‖ψ‖∞|ht − hs | + ωT (|s − t |;ψ ◦ g)lT .

Thusl is continuous.
(c) Finally we show that the pair(g, l) satisfies the Skorokhod equation. We

have

gnt − ft = 1

2

∫ t

0
νn(gns )dl

n
s = 1

2

∫ t

0
ψ(gs)dl

n
s + 1

2

∫ t

0

{
νn(gns )− ψ(gs)

}
dlns .

The second term goes to zero becauseνn(gns ) → ν(gs) uniformly on [0, T ] and{
lnT

}
is uniformly bounded. Hence

gt − ft = 1

2

∫ t

0
ψλ(gs)dls = 1

2

∫ t

0
ν(gs)dls .

The last equality holds becausel increases only whengt ∈ ∂D andψ(x) = ν(x)

for x ∈ ∂D. ut
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3. Existence of strong solutions

We will use the method of measurable selection to show the existence of a strong
solution to the Skorokhod equation forC1 domains. Let us state some general facts
concerning this method.

Let Y be a separable metric space andK(Y) the space of compact subsets of
Y . ThenK(Y) is a separable metric space with a distance function defined by

d(C1, C2) = inf
{
ε > 0 : C1 ⊆ Cε2, C2 ⊆ Cε1

}
,

whereCε denotes theε-neighborhood ofC. The proof of the following result can
be found in Stroock and Varadhan[14], Section 12.1.

Proposition 3.1. Suppose thatX andY are separable metric spaces andC : X →
K(Y) a measurable map. Then there is a measurable mapψ : X → Y such that
ψ(x) ∈ C(x) for everyx ∈ X.

The following result gives a simple way of producing a measurable map from
X toK(Y).

Lemma 3.2. Suppose thatφn : X → Y is a sequence of continuous maps such
that for eachx ∈ X, the set{φn(x)} is precompact. LetC(x) be the set of the
accumulation points of the sequence{φn(x)}. Then the mapC : X → K(Y) given
byx 7→ C(x) is measurable.

Proof. First of all, it is clear thatC(x) is compact for everyx. We will useK(A)
to denote the collection of compact subsets ofA ⊆ Y . It is known thatK(F) is
closed for each closedF ⊆ Y and the class{K(F) : F closed inY } generates the
Borelσ -field ofK(Y). Hence it is enough to show that for each closedF ⊆ Y , the
set

C−1[K(F)] = {x ∈ X : C(x) ⊆ F }
is measurable inX.

LetGN be the 1/N -neighborhood ofF . ThenGN is open andGN ↓ F . It is
easy to verify thatK(GN) ↓ K(F) and

C−1[K(F)] =
∞⋂
N=1

∞⋃
n=1

∞⋂
k=n

{x ∈ X : φk(x) ∈ GN } .

Note that for the above relation to hold we need the condition that{φn(x)} is pre-
compact for eachx ∈ X. The set{x ∈ X : φn(x) ∈ GN } is open becauseGN is
open andφn is continuous. HenceC−1[K(F)] is measurable. ut

We now apply the above lemma to our situation.

Proposition 3.3. There exists a measurable mapF : CD(R+,Rd) → C(R+,D)×
C0(R+,R+) with the following property: For eachf ∈ CD(R+,Rd), we have
F(f ) = (g, l), wherel is a continuous nondecreasing function which increases
only whengt ∈ ∂D and

gt = ft + 1

2

∫ t

0
ν(gs)dls .
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Proof. Let (gn, ln) as defined in the previous section. By Theorem 2.3 the mapφn :
f 7→ (gn, ln) is a continuous map fromCD(R+,Rd) toC(R+,D1)×C0(R+,R+).
By Theorems 2.5 and 2.6 the conditions of Lemma 3.2 are satisfied. The existence
of aF with the desired properties follows immediately from Lemma 3.2 and Prop-
osition 3.1. ut

It is now easy to obtain a strong solution for the stochastic Skorokhod equation:

Xt = X0 + Bt + 1

2

∫ t

0
ν(Xs)dLs, ∀t ≥ 0 . (4)

We make a formal definition. For a probability measureµ onD, we usePµ to
denote the law ofd-dimensional Brownian motion with initial distributionµ.

Definition 3.4. We say that a Borel measurable map

F : CD(R+,Rd) → C(R+,D)× C(R+,R+)

is a strong solution to the Skorokhod equation if it satisfies the following condition:
wheneverB is a Brownian motion defined on a probability space,X0 anD-valued
random variable independent ofB andF(B + X0) = (X,L), then the nonde-
creasing processL increases only whenXt ∈ ∂D and the Skorokhod equation (4)
holds. We say that the equation has a unique strong solution if for any other strong
solutionG we haveF(ω) = G(ω), Pµ-almost surely onCD(R+,Rd) for every
probability measureµ onD.

Theorem 3.5. LetD be a boundedC1 domain inD. There exists a strong solution
to the Skorokhod equation inD.

Proof. TakeF to be the one defined in Proposition 3.3. ut
The uniqueness of the strong solution will be proved in Section 5.

4. Weak uniqueness

In this section we show how the arguments in Bass[1] can be modified to prove the
weak uniqueness for the Skorokhod equation on boundedC1,α domains.

We will occasionally use polar coordinates:x = (r, θ), wherer = |x| and
θ = x/|x| ∈ ∂B(0,1), the boundary ofB(0,1). We write σ(dx) for surface
measure on∂D. We use∂if and∂ij f to denote∂f/∂xi and∂2f/∂xi∂xj , respec-
tively. A C1,α domainD is star-like (relative to 0) if there exists aC1,α function
γ : ∂B(0,1) → (0,∞) such thatD = {(r, θ) : 0 ≤ r < γ (θ)}.

Let us suppose for the moment that the dimensiond is greater than or equal
to 3. LetD be a star-likeC1,α domain withK = B(0, ρ), whereρ < inf γ /4. In
Bass and Hsu[3] a strong Markov process(Qx,Xt ), x ∈ D, was constructed that
represents reflecting Brownian motion inD with absorption atK. We recall a few
properties; see Bass and Hsu[3] for details. Let

TA = T (A) = inf {t > 0 :Xt ∈ A}
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be the first hitting time of a setA. Reflecting Brownian motion inD with absorption
in K has a Green functiong(x, y) that is symmetric inx andy for x, y ∈ D −K,
harmonic iny in D −K − {x}, harmonic inx in D −K − {y}, vanishes asx or y
tends to the boundary ofK, and there existsc1 such that

g(x, y) ≤ c1|x − y|2−d . (5)

The constantc1 depends only onρ, ‖∇γ ‖∞, inf γ , and supγ . In particular, for
eachρ′ > 0, g(x, ·) is bounded inD −K − B(x, ρ′).

A consequence of (5) is that

ExTK =
∫
D−K

g(x, y) dy ≤ c2, x ∈ D .

In Bass and Hsu[3] it is proved that there exists a continuous additive functional
Lt corresponding to the measureσ(dy):

ExLTK =
∫
∂D

g(x, y) σ (dy), x ∈ D ,

andLt increases only whenXt is in the support ofσ , namely∂D. It follows from
(5) thatExLTK ≤ c3, x ∈ D, wherec3 depends onρ, ‖∇γ ‖∞, inf γ , and supγ .

We now suppose thatd ≥ 2 and thatD is an arbitary boundedC1,α domain. In
Bass and Hsu[4] and Fukushima, Oshima, and Takeda[7], Ex. 5.2.2, it was shown
that the(Qx,Xt ) constructed in Bass and Hsu[3] satisfies the Skorokhod equation:
there exists ad-dimensional Brownian motionWt such that

Xt = X0 +Wt + 1

2

∫ t

0
ν(Xt ) dLt . (6)

We want to show that the solution to (6) is unique in law. In the following definition,
we useX to denote the coordinate process onC(R+,D), namely,Xt(ω) = ωt for
ω ∈ C(R+,D).

Definition 4.1. LetD be a boundedC1,α domain inRd with d ≥ 2. For x0 ∈ D,
letM(x0) be the collection of probability measuresP onC(R+,D) such that

(a) P(X0 = x0) = 1,
(b) there exists a continuous nondecreasing processLt which increases only when

Xt ∈ ∂D, and
(c) there exists a continuous processW which underP is ad-dimensional Brownian

motion adapted to the filtration ofX such that

Xt = X0 +Wt + 1

2

∫ t

0
ν(Xs) dLs .

An element ofM(x0) is called a (weak) solution of the Skorokhod equation.
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By our discussion so far there exists at least one element ofM(x0), namelyQx0.
Saying thatWt is a Brownian motion adapted to the filtration generated byXmeans
thatWt −Ws has the same distribution as that of a normal random variable with
mean 0 and variancet − s andWt −Ws is independent ofσ {Xr ; r ≤ s} whenever
s < t .

The main result of this section is the following.

Theorem 4.2. If D is a boundedC1,α domain inRd , d ≥ 2, then there is exactly
one weak solution to the Skorokhod equation.

The condition (b) in Definition 4.1 is slightly weaker than the one given in
Bass[1], which essentially requires that the local timeLt be an additive functional
corresponding to surface measure on the boundary.

We will need the following proposition. Letθt be shift operators so thatXs◦θt =
Xs+t . By Bass[2], Section I.2, we may always suppose suchθt exist.

Proposition 4.3. LetP ∈ M(x0), andS a finite stopping time, and letPS(ω, dω
′)

be a regular conditional probability for the law ofX· ◦ θS underP[· | FS ]. Then
P-almost surely,PS ∈ M(XS(ω)).

Proof. This is the strong Markov property forP. See Bass[1], Proposition 2.3.ut
We will need the following.

Proposition 4.4. Let us suppose thatd ≥ 3 andD is aC1,α domain that is star-
like. Leth be aC∞ function with support inD − K. Letu be the solution to the
problem:1u = −2h in D − K, u = 0 on ∂K, and∂u/∂ν = 0 on ∂D. Suppose
γ ∈ C2. Thenu is C1,α in a neighborhood of∂D with C1,α norm that depends
only on theC1,α norm ofγ , ‖h‖∞, and the distance from the support ofh to ∂D
(and not on any further smoothness ofγ ).

Proof. This follows from Lieberman[12], Theorem VI.6.46 on p. 141. ut
Proposition 4.5. LetD,h, andK be as above. Supposex0 ∈ D. There exists a
sequence ofC2 functionsun onD such thatun(x0) converges,1un = −2h in D,
un = 0 onK, and∂un/∂ν converges to 0 uniformly on∂D.

Proof. LetDn be a sequence ofC2 domains, all star-like with respect to the same
point, such that theDn decrease toD and the closure ofD is contained inDn for
eachn. Moreover, let us arrange matters such that ifDn = {(r, θ) : 0 ≤ r < γn(θ)},
thenγn converges toγ in C1,α norm. Letun be the solution to the problem

1un = −2h in Dn −K,

un = 0 on K,
∂un

∂νn
= 0 on ∂Dn .

Hereνn is the unit normal vector on∂Dn. By Theorem 4.4 there exists a subse-
quencenj such thatunj and∇unj converge uniformly onD. By relabeling, we
may assume the full sequenceun converges. Since∂un/∂νn = 0 on∂Dn and the
γn converge toγ in C1,α norm, it follows that∂un/∂ν → 0 uniformly on∂D. ut
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For the next proposition let us suppose thatP ∈ M(x0), wherex0 ∈ ∂D.
We need to showP(TD = 0) = 1, that is, starting at the boundary, we leave the
boundary immediately.

Proposition 4.6. SupposeD is a boundedC1,α domain inRd , d ≥ 2. Suppose
x0 ∈ ∂D andP ∈ M(x0). ThenP(TD = 0) = 1.

Proof. Choose a coordinate system such thatx0 = 0 and the hyperplane{yd = 0}
is tangent toD atx0. Letβ = 2/(2 + α) and let

V = {y ∈ D : |(y1, . . . , yd−1)| < εβ, yd < ε}.
ThusV is the intersection of a right circular cylinder andD. SetU = {y ∈ ∂V :
yd = ε} (the top base) andS = ∂V − ∂D−U (the side surface). Forε sufficiently
small,U ⊆ D.

Let t0 = ε(4+α)/(2+α), R = inf {t : Lt > εβ/2},
A1 = A1(ε) = {sup

s≤t0
Wd
s < ε},

A2 = A2(ε) = {sup
s≤t0

|(W1
s , . . . ,W

d−1
s )| > εβ/2},

A3 = A3(ε) = {sup
s≤t0

|Wd
s | > εβ/8} .

By the scaling property of Brownian motion,P(A1(ε)),P(A2(ε)), andP(A3(ε))

all tend to 0 asε → 0.
Write ν = (ν1, . . . , νd). If δ is sufficiently small,νd ≥ 1/2 and|ν1|2 + · · · +

|νd−1|2 ≤ 1/(4d) in ∂D ∩ {|(y1, . . . , yd−1)| < δ}. Let us restrict attention toε
such thatεβ < δ. As ε → 0, thent0 → 0, so by the continuity of the paths ofXt
we see thatP(A4(ε)) → 0 asε → 0, where

A4 = A4(ε) = {sup
s≤t0

|Xs − x0| > δ} .

Note that on the setAc4

Xds = Wd
s +

∫ s

0
νd(Xr)dLr ≥ Wd

s .

So onAc1 ∩ Ac4 we have sups≤t0 X
d
s ≥ ε.

Consider the setAc1 ∩ Ac2 ∩ Ac3 ∩ Ac4. Observe that fori ≤ d − 1,

sup
s≤t0

|Xis | ≤ sup
s≤t0

|Wi
s | +

(
1

4d

)
Lt0 .

So if R > t0, thenTU < TS andTU < t0. HenceTD < t0. On the other hand, on
the setAc1 ∩ Ac2 ∩ Ac3 ∩ Ac4, if R ≤ t0, then∣∣∣(W1

R, . . . ,W
d−1
R )

∣∣∣ < εβ/2



Pathwise uniqueness for reflecting Brownian motion in Euclidean domains 197

and ∣∣∣∣
(∫ R

0
ν1(Xr)dLr, . . . ,

∫ R

0
νd−1(Xr)dLr

)∣∣∣∣ ≤ 1

4
LR ≤ εβ/2 .

Also, |Wd
R| < εβ/8 and

∫ R

0
νd(Xr)dLr ≥ 1

2
LR ≥ εβ/4 .

SoXdR ≥ εβ/8 ≥ ε, and henceTU ≤ R ≤ t0, and againTD ≤ t0. Now lettingε →
0 shows lim infε→0 P(TD ≤ ε(4+α)/(2+α)) ≥ 1, which impliesP(TD = 0) = 1.

ut
We obtain the following corollary.

Corollary 4.7. Suppose thatx0 ∈ ∂D and P ∈ M(x0). For eachn there exists
a stopping timeξn such thatsups≤ξn |Xs − x0| ≤ 1/n, ξn ≤ 1/n, andP(Xξn ∈
∂D) ≤ 1/n.

Proof. Fix n. Letζ1 = inf {t : |Xt−x0| ≥ 1/n}∧1/n. By the continuity of paths of
Xt , we haveζ1 > 0, a.s. Choosem large so that ifζ2(m) = inf {t : dist(Xt , ∂D) ≥
1/m}, thenP(ζ2(m) > ζ1) ≤ 1/n; this is possible by Proposition 4.6. Now let
ξn = ζ1 ∧ ζ2(m). ut

We now turn to the proof of Theorem 4.2, the main result of this section. Sup-
pose first thatD is a star-likeC1,α domain,K is as above, andx0 ∈ D −K. As in
the proof of Proposition 4.1 of Bass[1] and the discussion immediately preceding
that proposition, we may restrict attention to probability measuresP ∈ M(x0) such
thatEPLTK < ∞ andEPTK < ∞.

We apply It̂o’s formula to the processXt and the functionsun defined in Prop-
osition 4.5. We obtain

un(XTK )− un(X0) =
∫ TK

0
∇un(Xs) · dWs +

∫ TK

0
∇un(Xs) · ν(Xs)dLs

+1

2

∫ TK

0
1un(Xs)ds .

Taking the expectation with respect toP we have

−un(x0) = EP

∫ TK

0

∂un

∂ν
(Xs)dLs − EP

∫ TK

0
h(Xs)ds .

Lettingn → ∞ and using the facts that∂un/∂ν → 0 uniformly and thatEPLK <

∞, we obtain

lim
n→∞ un(x0) = EP

∫ TK

0
h(Xs)ds .

Hence the value ofEP

∫ TK
0 h(Xs)ds does not depend onP.
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SinceQx0 is also inM(x0), then

EP

∫ TK

0
h(Xs)ds = Ex0

∫ TK

0
h(Xs)ds . (7)

This is the analog of Corollary 4.6 of Bass[1].
Using Corollary 4.7 and following the proof of Proposition 4.7 of Bass[1], we

see (7) holds whenx0 ∈ ∂D as well. We now can follow the proof of Bass[1] (from
Proposition 4.8 to the end of Section 4) almost exactly. (Part of that proof involves
removing the restriction thatD be star-like and thatd be larger than 2.) ut

5. Pathwise uniqueness

Theorem 5.1. LetD be a boundedC1,α domain andW a d-dimensional Brown-
ian motion. LetX0 be aD-valued random variable independent ofW . Any two
solutions to the Skorokhod equation

Xt = X0 +Wt + 1

2

∫ t

0
ν(Xs) dLs

agree pathwise, a.s.

Proof. By Theorem 3.5 there is a strong solution(Y,H) = F(X0 +W), so

Yt = X0 +Wt + 1

2

∫ t

0
ν(Ys) dHs .

LetXt be another solution to the SDE. We have

Wt = Yt −X0 − 1

2

∫ t

0
ν(Ys) dHs, Wt = Xt −X0 − 1

2

∫ t

0
ν(Xs) dLs . (8)

The processesY andX have the same law because of the uniqueness in law (The-
orem 4.2). By Bass and Hsu[3],Y does not spend time on the boundary, namely,

E

∫ ∞

0
1∂D(Ys)ds = Ex0

∫ ∞

0
1∂D(Ys)ds = 0 .

Let ζn be a sequence of continuous functions with compact support mappingRd to
Rd such thatζn(x) decreases boundedly and pointwise toν(x)1∂D(x). SinceWt is
a Brownian motion andYt spends zero time in∂D, then

∫ t
0 1∂D(Ys)dWs = 0, a.s.

Hence ∫ t

0
ζn(Ys)dYs =

∫ t

0
ζn(Ys) · dWs + 1

2

∫ t

0
ζn(Ys) · ν(Ys)dHs

→
∫ t

0
ν(Ys) · ν(Ys)dHs

= Ht .
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It now follows easily from this and (8) that there exists a measurable mapG :
C(R+,D) → C0(R+,Rd) × C0(R+,R+) such that(W,H) = G(Y). The same
proof shows that(W,L) = G(X). Therefore the law of the triple(Y,H,W) is
equal to the law of the triple(X,L,W). Since(Y,H) = F(W), it follows that
(X,L) = F(W), a.s., and we then conclude that(X,L) = F(W) = (Y,H), a.s.

ut
Corollary 5.2. LetD be a boundedC1,α domain. Then there is a unique strong
solutionF : CD(R+,R) → C(R+,D)× C0(R+,R+) to the Skorokhod equation

Xt = X0 +Wt + 1

2

∫ t

0
ν(Xs)dLs .

FurthermoreF is progressively measurable, i.e., for allt ≥ 0,

F(X0 +W)t = (Xt , Lt ) ∈ σ {X0 +Ws, s ≤ t} .

Proof. The corollary follows essentially from the following general fact: weak ex-
istence for each initial distribution and pathwise uniqueness together imply the
existence and uniqueness of a strong solution which isautomaticallyprogressively
measurable; see Ikeda and Watanabe[10], Theorem 1.1 on p. 163 and its proof. The
two conditions are satisfied in our situation: the measure

Qµ =
∫
D

Qx µ(dx)

is the (unique) weak solution by Theorem 4.2, and pathwise uniqueness is guaran-
teed by Theorem 5.1. ut
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