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Abstract. IP* sets and central sets are subsets of N which arise out of applications
of topological dynamics to number theory and are known to have rich combinatorial
structure. Spectra of numbers are often studied ([3], [15], [16], [30], [31], [32]) sets of
the form {[nα+ γ] : n ∈ N}. Iterated spectra are similarly defined with n coming from
another spectrum. Using elementary, dynamical, and algebraic approaches we show that
iterated spectra have significantly richer combinatorial structure than was previously
known. For example we show that if α > 0 and 0 < γ < 1, then {[nα + γ] : n ∈ N} is
an IP* set and consequently contains an infinite sequence together with all finite sums
and products of terms from that sequence without repetition.

1. Introduction.

A ∆ set is a subset of the set N of positive integers which contains an infinite

difference set, that is a set of the form {x − y : x, y ∈ A and y < x} for some infinite

A ⊆ N. An IP set is a set containing FS(〈xn〉
∞

n=1) for some infinite sequence 〈xn〉
∞

n=1 in

N (where the set of finite sums of the sequence 〈xn〉
∞

n=1, FS(〈xn〉
∞

n=1) = {Σn∈Fxn : F

is a finite nonempty subset of N}). (The terminology in both cases differs from [12] in

that for us both notions are closed under supersets. They are notions of combinatorial

richness, so bigger ought to be better.)

Our third basic notion of combinatorial richness, namely the notion of central sets,

was introduced in [12] with a definition in terms of topological dynamics. This definition

can be found in Section 3. An alternate, algebraic, characterization of “central” was

shown in [5] to be equivalent: A subset A of N is central if and only if there is a minimal

idempotent p of (βN,+) with A ∈ p. (Here βN is the Stone-Čech compactification of

N and + denotes the extension of ordinary addition to βN which makes (βN,+) a left

topological semigroup with N contained in its center.) An element p of βN is a minimal

idempotent provided p = p + p and p is a member of some minimal right ideal of βN.

(A right ideal R satisfies R+ βN ⊆ βN.) We will describe this structure in more detail

later in this introduction.
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Each central set is an IP set, and in fact has very intricate combinatorial structure

including arbitrarily long arithmetic progressions ([12, Proposition 8.21] or see [5]). To

see that each IP set is a ∆ set let FS(〈xn〉
∞

n=1) ⊆ A and consider the differences from

{Σn
k=1xk : n ∈ N}.

Given any class B of subsets of N, there is a corresponding class B* defined by:

A ∈ B* if and only if for each B ∈ B, A ∩ B 6= ∅. Obviously then if B ⊆ C one has

C∗ ⊆ B*. Further, if N ∈ B and B is partition regular (meaning that whenever the

union of finitely many sets is in B, some one of them is), then B∗ ⊆ B. (To see this let

A ∈ B*. Then either A or N\A is in B and A ∩ (N\A) = ∅ so A ∈ B.) Since the notion

of “central” is partition regular we have ∆∗ ⊆ IP ∗ ⊆ central∗ ⊆ central ⊆ IP ⊆ ∆.

(According to [12, p. 178 and p. 186] all of these inclusions are proper.)

Since central sets are partition regular, explicit examples of central sets are plentiful.

That is, define any finite partition of N. At least one cell is guaranteed to be central. For

example, partition N according to the rightmost nonzero ternary digit of each x ∈ N.

(So A1 = {3k(3m + 1) : k,m ∈ N ∪ {0}} and A2 =
{

3k(3m + 2) : k,m ∈ N ∪ {0}
}

.)

Then either A1 or A2 must be central. But it is easy to see that if B is central so is

2 · B. (See for instance Lemma 3.8(b).) So we must have that both A1 and A2 are

central. Many more explicit examples are produced in this paper.

Further, it is possible to partition N into infinitely many parts, each of which is

central [5, Corollary 5.9].

Consider on the other hand, ∆* sets and IP* sets. (The structure of IP* sets is

known to be very rich – see [6].) It is easy to see that for any n ∈ N, the set Nn of

multiples of n is a ∆*-set, and hence an IP* set. (Given any infinite set some 2 elements

are congruent mod n and their difference is divisible by n.) It is also known for example

[12, Proposition 9.4] that if (X, T ) is a minimal compact metric dynamical system (that

is no proper nonempty closed subset of X is invariant under T ), ℓ ∈ N, and U is a

nonempty open subset of X , then {n ∈ N : U ∩ T−nU ∩ . . .∩ T−ℓnU 6= ∅} is an IP* set.

Other explicit examples of IP* sets are deducible from [13]. However, there would seem

to be a shortage of simply described ∆* sets and IP* sets. It is in this context that we

are interested in the spectra of numbers.

Given an irrational number α > 1 and δ = α/(α − 1) (so that 1/α + 1/δ = 1) it

is “an often rediscovered result” [27, p. 45] that {[nα] : n ∈ N} and {[nδ] : n ∈ N} are

complementary sets. This result may be due originally to J.W. Strutt (Lord Rayleigh)

[31]. See [28] for an interesting discussion of the context of this discovery and additional

references. Further, Uspensky showed [32] that one cannot partition N into 3 parts
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with such sets. (The proof was simplified by Graham in [15], and again by Fraenkel

in [11]. In fact there is an even simpler proof that if α1, α2, α3 are positive, then

{[nα1] : n ∈ N}, {[nα2] : n ∈ N}, and {[nα3] : n ∈ N} cannot be pairwise disjoint. To

see this one utilizes the well known fact [17, Theorem 201] that any set of numbers may

be simultaneously brought close to zero mod 1. Let ǫ = 1
2(α1+α2+α3)

and pick n,m1, m2,

and m3 in N with |n · 1
αi

−mi| < ǫ for each i. Then |n−mi · αi| < ǫ · αi < 1/2 for each

i, so for each i, [miαi] = n or [miαi] = n− 1.)

Numerous results about the sets {[nα] : n ∈ N} were derived by Skolem [29] and

Bang [3] and are nicely presented in [27]. In [30] Skolem introduced the more general

sets {[nα+ γ] : n ∈ N}, determining for example when two such sets can be disjoint.

In terminology introduced by Graham, Lin, and Lin [16], the set {[nα+γ] : n ∈ N}

is called the γ–nonhomogeneous spectrum of α. (See also [8].) We shall restrict our

attention to such spectra for 0 ≤ γ ≤ 1. We determine for example that if 0 < γ < 1,

then {[nα+γ] : n ∈ N} is a ∆* set, and consequently enjoys the combinatorial structure

guaranteed to such sets. In fact we show much more. For example, we have as a

consequence of Corollary 2.6 that if A is any ∆* set (for instance another spectrum)

then {[nα + γ] : n ∈ A} is again a ∆* set. In particular if α1, α2 are positive and

0 < γ1 < 1 and 0 < γ2 < 1, then {
[

[nα1 + γ1]α2 + γ2
]

: n ∈ N} is a ∆* set. We

also show for example as a consequence of Theorem 6.3 that if α is irrational then both

{[nα + 0] : n ∈ N} and {[nα + 1] : n ∈ N} are central. If α > 2 these sets are disjoint

and since each contains FS(〈xn〉
∞

n=1) for some sequence, neither is IP*. We determine

precisely in Theorem 6.7 when the composition of two such sets yields a central set.

Most of the results which we present were first obtained using algebraic methods

in βN. Subsequently [25] elementary and dynamical proofs of several of these results

were obtained, as well as proofs of some additional results. We present our results by

the methods we feel best suited for their proofs. In Section 2 we present the results

for which we have elementary proofs. (The proofs are elementary both in the intuitive

sense and in the fact that they avoid the axiom of choice.) In Section 3 we present

the required background material in Topological Dynamics and in Section 4 present

some results on spectra for which we have dynamical proofs. In Section 5 we present

the required algebraic background material and present in Section 6 algebraic proofs of

several results, concentrating on results about iterated spectra.

We use the semigroup (βN,+) where βN is the Stone-Čech compactification of N

and + denotes the extension of ordinary addition to βN which makes (βN,+) a left

topological semigroup with N contained in its center. An element p of βN is a minimal
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idempotent provided p = p + p and p is a member of some minimal right ideal of βN.

(A right ideal R satisfies R + βN ⊆ βN.)

We take the points of βN to be the ultrafilters on N, the principal ultrafilters

being identified with the points of N. Given A ⊆ N, A = {p ∈ βN : A ∈ p}. The

set {A : A ⊆ N} is a basis for the open sets (as well as a basis for the closed sets)

of βN. When we say (βN,+) is a left topological semigroup we mean that for each

p ∈ βN the function λp : βN −→ βN, defined by λp(q) = p + q, is continuous. The

operation + on βN is characterized as follows: Given A ⊆ N, A ∈ p + q if and only if

{x ∈ N : A − x ∈ p} ∈ q where A − x = {y ∈ N : y + x ∈ A}. See [22] for a detailed

construction of βN and derivations of some of the basic algebraic facts.

2. Elementary Results.

We take the circle group T = R/Z to be represented either as [0, 1) or [−1
2 ,

1
2 ),

whichever is more convenient.

2.1 Definition. Let α > 0 and let hα(n) = [nα+ 1
2 ], the nearest integer to nα. Define

fα : Z −→ T by fα(n) = nα− [nα].

In Definition 2.1 we viewed T as [0,1), so that fα(n) is the fractional part of nα. If

we view T as [−1
2 ,

1
2 ), we have fα(n) = nα− hα(n).

We say that a set B of subsets of N is “partition regular” provided that whenever

F is a finite set of subsets of N with
⋃

F ∈ B one has some A ∈ F ∩ B.

2.2 Lemma. Let B be a set of subsets of N such that:

(1) B is partition regular.

(2) For each A ∈ B, there exists x, y ∈ A with x+ y ∈ A.

Then for each α > 0, each ǫ > 0, and each A ∈ B, there exists B ∈ B such that

B ⊆ A and for all n ∈ B, fα(n) ∈ (−ǫ, ǫ), that is −ǫ < nα− hα(n) < ǫ.

Proof. Let α > 0, ǫ > 0, and A ∈ B be given. Pick m ∈ N such that 1
2m < ǫ and

m > 2. Let A1 = {n ∈ A : − 1
2m ≤ nα− hα(n) <

1
2m} and for i ∈ {2, 3, . . . , 2m− 1} let

Ai = {n ∈ A : i−1
2m

≤ nα− [nα] < 1
2m

}.

Then A =
⋃2m−1

i=1 Ai so some Ai ∈ B by (1). Let x and y be elements of Ai.

If 2 ≤ i ≤ m − 1 then x + y ∈ A2i−1 ∪ A2i. If i = m, then x + y ∈ A2m−1 ∪ A1.

If m + 1 ≤ i ≤ 2m − 1, then x + y ∈ A2(i−m)−1 ∪ A2(i−m). In any of these cases

x + y /∈ Ai and hence by condition (2) we must have i = 1. Since 1
2m < ǫ we have for

all n ∈ A1, fα(n) ∈ (−ǫ, ǫ) as required.
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We observe that the classes of central sets, IP sets, and ∆ sets all satisfy the

hypotheses of Lemma 2.2. Indeed given a ∆ set A and x, y, and z with y−x, z−x, and

z − y in A one has (z − y) + (y − x) = z − x ∈ A so condition (2) holds for ∆ sets and

hence for central sets and IP sets. Further each of the classes is known by elementary

means to be partition regular. The original proof that IP sets are partition regular [18],

while the most complicated of the proofs now in existence, is elementary. The proof

that ∆ sets are partition regular is a simple application of Ramsey’s Theorem for two

element sets, and the standard proofs of Ramsey’s Theorem are elementary. The fact

that central sets are partition regular is immediate from the algebraic characterization

(since if the union of finitely many sets is a member of an ultrafilter, some one of them

is a member).

2.3 Theorem. Let α > 0, let 0 < γ < 1, and let A ⊆ N.

(a) If A is a ∆ set, then {[nα+ γ] : n ∈ A} is a ∆ set.

(b) If A is an IP set, then {[nα+ γ] : n ∈ A} is an IP set.

Proof. Both proofs are similar, we present the proof of (b). Let ǫ = min{γ/2, (1−γ)/2}.

Pick by Lemma 2.2 some IP set B ⊆ A with fα(n) ∈ (−ǫ, ǫ) for all n ∈ B. Observe that

for any n ∈ B one has hα(n) = [nα + γ]. Indeed −γ < −ǫ < nα − hα(n) < ǫ < 1 − γ

so hα(n) < nα + γ < hα(n) + 1. Observe also that for n,m ∈ B one has hα(n +m) =

hα(n) + hα(m) since ǫ ≤ 1/4.

Pick a sequence 〈xn〉
∞

n=1 with FS(〈xn〉
∞

n=1) ⊆ B. We show by induction on |F |

that for a finite subset F of N, Σn∈Fhα(xn) = hα(Σn∈Fxn). Since hα(Σn∈Fxn) =

[(Σn∈Fxn)α+ γ] this will establish that FS(〈hα(xn)〉
∞

n=1) ⊆ {[mα+ γ] : m ∈ A}.

If |F | = 1, the conclusion is trivial so assume |F | > 1, pick m ∈ F , and let

G = F\{m}. Then Σn∈Fhα(xn) = hα(xm) + Σn∈Ghα(xn) = hα(xm) + hα(Σn∈Gxn) =

hα(xm +Σn∈Gxn) since xm and Σn∈Gxn are in B.

2.4 Theorem. Let α > 0 with α ∈ Q and let A ⊆ N.

(a) If A is a ∆ set, then {[nα] : n ∈ A} is a ∆ set.

(b) If A is an IP set, then {[nα] : n ∈ A} is an IP set.

Proof. Assume α = p/q with p, q ∈ N. We again present only the proof of (b).

Pick 〈xn〉
∞

n=1 with FS(〈xn〉
∞

n=1) ⊆ A. By the pigeon hole principle one may presume

xn ≡ xm(modq) for all n,m ∈ N. Letting yn = Σnq
t=(n−1)·q+1xn one has q divides each

yn, so each yn · α ∈ N. We claim FS(〈yn · α〉∞n=1) ⊆ {[nα] : n ∈ A}. Let F be a finite

nonempty subset of N. Then Σn∈F yn · α = [(Σn∈F yn) · α] and Σn∈F yn ∈ A.

2.5 Theorem. Let B ⊆ P(N) (where P(N) = {A : A ⊆ N}) and assume
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(1) B is partition regular;

(2) whenever α > 0, 0 < γ < 1, and A ∈ B, one has {[nα+ γ] : n ∈ A} ∈ B; and

(3) for each A ∈ B there exists x, y ∈ A with x+ y ∈ A.

Then whenever α > 0, 0 < γ < 1, and A ∈ B* one has {[nα+ γ] : n ∈ A} ∈ B*.

Proof. Let α > 0, 0 < γ < 1, and A ∈ B* be given. Let B = {[nα + γ] : n ∈ A}. Let

C ∈ B. We need to show that C∩B 6= ∅. Let ǫ = min{1/2, γ/α, (1−γ)/α}. By Lemma

2.2 (with 1/α replacing α ) pick D ∈ B with D ⊆ C and f1/α(k) ∈ (−ǫ, ǫ) whenever

k ∈ D. Let E = {[k/α+ ǫ] : k ∈ D}. Then by hypothesis (2) with 1/α replacing α and

ǫ replacing γ we have E ∈ B. Therefore E ∩ A 6= ∅ so pick n ∈ E ∩ A and pick k ∈ D

such that n = [k/α+ ǫ]. We show that k = [nα+ γ] so that k ∈ B ∩C as required. Let

ℓ = h1/α(k). Since k ∈ D we have ℓ − ǫ < k/α < ℓ + ǫ. Also n ≤ k/α + ǫ < n + 1 so

n ≤ k/α + ǫ < ℓ + 2ǫ ≤ ℓ + 1 so n ≥ ℓ. Also ℓ < k/α + ǫ < n + 1 so ℓ ≤ n and hence

ℓ = n. Therefore n− ǫ < k/α < n+ ǫ so nα− 1+ γ ≤ nα− ǫα < k < nα+ ǫα ≤ nα+ γ

and hence k < nα+ γ < k + 1 as required.

As a consequence of the following corollary we see for example that if α1, α2 > 0,

and 0 < γ1 < 1, and 0 < γ2 < 1, then {
[

[nα1 + γ1]α2 + γ2
]

: n ∈ N} is a ∆* set.

2.6 Corollary. Let α > 0, let 0 < γ < 1, and let A ⊆ N.

(a) If A is a ∆* set, then {[nα+ γ] : n ∈ A} is a ∆* set.

(b) If A is an IP* set, then {[nα+ γ] : n ∈ A} is an IP* set.

Proof. Theorems 2.3 and 2.5.

Again we see that with α rational one can allow γ = 0. (See Theorem 6.3 for a

proof that one cannot allow γ = 0 with α irrational.)

2.7 Theorem. Let B ⊆ P(N) and assume

(1) for each A ∈ B and each n ∈ N, A ∩ Nn ∈ B and

(2) for each α > 0 with α ∈ Q and each A ∈ B one has {[nα] : n ∈ A} ∈ B.

Then for each α > 0 with α ∈ Q and each A ∈ B* one has {[nα] : n ∈ A} ∈ B*.

Proof. Let α > 0 with α ∈ Q and A ∈ B* be given. Pick p, q ∈ N with α = p/q. Let

B = {[nα] : n ∈ A} and let C ∈ B. We show B∩C 6= ∅. Now C∩Np ∈ B by assumption

(1) so D = {[k/α] : k ∈ C ∩ Np} ∈ B by assumption (2). Pick n ∈ D ∩ A and pick

k ∈ C ∩ Np such that n = [k/α]. Since p divides k we have n = k/α so k = nα = [nα]

so k ∈ B ∩ C.

2.8 Corollary. Let α > 0 with α ∈ Q and let A ⊆ N.
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(a) If A is a ∆* set, then {[nα] : n ∈ A} is a ∆* set.

(b) If A is an IP* set, then {[nα] : n ∈ A} is an IP* set.

Proof. By Theorem 2.4 the classes ∆ and IP satisfy hypothesis (2) of Theorem 2.7. As

in the proof of Theorem 2.4 one sees that the classes ∆ and IP satisfy hypothesis (1) of

Theorem 2.7.

3. Dynamical Preliminaries.

In this section we collect some definitions and results from topological dynamics

which are pertinent to our presentation.

Given a compact metric space (X, d) and a continuous T : X −→ X , a point y of

X is uniformly recurrent for (X, T ) if and only if whenever U is a neighborhood of y,

the set {n ∈ N : Tn(y) ∈ U} is syndetic, that is has bounded gaps. Also points x and y

are proximal if and only if for each ǫ > 0 there is some n ∈ N with d
(

Tn(x), Tn(y)
)

< ǫ.

The notion of “central” was introduced by Furstenberg [12].

3.1 Definition. Let A ⊆ N. We say A is central via (X, T, x, y, U) to mean that X is

a compact metric space, T is a continuous function from X to X, x and y are proximal

in X, y is uniformly recurrent, U is a neighborhood of y and A = {n ∈ N : Tnx ∈ U}. A

subset A of N is central if and only if there exist X, T, x, y, and U such that A is central

via (X, T, x, y, U).

We now show that if A is central via (X, T, x, y, U) one may assume that T is onto

X.

3.2 Lemma. Let A ⊆ N be central. There exist X, T, x, y, and U such that T maps X

onto X and A is central via (X, T, x, y, U).

Proof. Pick Y, S, a, b, and V such that A is central via (Y, S, a, b, V ). Let Z = {0} ∪

{1/n : n ∈ N} with the ordinary Euclidean metric. Let X = Z × Y , and for c ∈ Y and

n ∈ N define T (0, c) = (0, c), T (1, c) =
(

1, S(c)
)

, and T (1/(n + 1), c) = (1/n, c). Let

x = (1, a), y = (1, b), and U = {1} × V . Then T maps X onto X and A is central via

(X, T, x, y, U).

The following lemma is well known, and we omit its

Proof.
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3.3 Lemma. Let (Y, d) be a compact metric space and let X = Y Z, the set of functions

from Z to Y . For f, g ∈ X define D(f, g) = sup{
(

1/(|n|+ 1)
)

· d
(

f(n), g(n)
)

: n ∈ Z}.

Then D is a metric on X and the metric and product topologies agree.

The proof of the following theorem is sketched in [12, pp. 169, 170]. We strengthen

the conclusion of Lemma 3.2 to obtain a homeomorphism.

3.4 Theorem. Let A ⊆ N be central. There exist X, T, x, y, and U such that T is a

homeomorphism from X onto X and A is central via (X, T, x, y, U).

Proof. Pick by Lemma 3.2, Y, S, a, b, and V such that S maps Y onto Y and A is central

via (Y, S, a, b, V ). Let X = {f ∈ Y Z : for all n ∈ Z, f(n + 1) = S
(

f(n)
)

}. Then X is

closed in Y Z. Indeed if f ∈ Y Z\X pick n ∈ Z and disjoint neighborhoods U1 and W of

f(n + 1) and S
(

f(n)
)

respectively. Pick a neighborhood U2 of f(n) with S[U2] ⊆ W .

Then π−1
n+1[U1] ∩ π−1

n [U2] is a neighborhood of f missing X . Thus by Lemma 3.3, X is

a (compact) metric space.

Define T : X −→ X as the restriction of the shift. That is T (f)(n) = f(n + 1).

Then T is easily seen to be a homeomorphism of X onto X.

Now we observe that

(*) if n ∈ N, i ∈ Z, n+ i ≥ 0, and f ∈ X , then Tn(f)(i) = Sn+i
(

f(0)
)

.

This fact is easily established by induction on (n+ i).

We also observe that

(**) if c ∈ Y then π−1
0 [{c}] ∩X 6= ∅.

(That is there exists f ∈ X with f(0) = c.) To see this for n ≥ 0 let f(n) = Sn(c) and

inductively for n ≤ 0 pick f(n − 1) such that S
(

f(n − 1)
)

= f(n), which one can do

since S is onto Y.

Now let W = cℓY {S
n(b) : n ∈ N}. Since b is uniformly recurrent W is minimal

closed S invariant [12, Theorem 1.17]. Then π−1
0 [W ] ∩X is closed and T invariant so

(by Zorn’s Lemma) pick Z ⊆ π−1
0 [W ] ∩X which is minimal closed T invariant.

Then π0[Z] is a closed S invariant subset of W and hence π0[Z] = W . Pick y ∈ Z

such that π0(y) = b. Since Z is minimal closed T invariant y is uniformly recurrent in

(X, T )[12, Theorem 1.15].

By (**) pick some x ∈ X such that π0(x) = a. We show now that x and y are

proximal. First observe that since Y is compact, S is uniformly continuous so for each
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ǫ > 0 pick h(ǫ) > 0 (with h(ǫ) ≤ ǫ) so that for all u, v ∈ Y , if d(u, v) < h(ǫ) then

d
(

S(u), S(v)
)

< ǫ. Now let ǫ > 0 be given. We need to produce some n ∈ N such that

D(Tnx, Tny) < ǫ, where D is as in Lemma 3.3. Let M = sup{d(u, v) : u, v ∈ Y } and

pick k ∈ N such that 1/(k + 1) < ǫ/(2M). Let δ = h2k(ǫ/2) and pick m ∈ N such that

d
(

Sm(a), Sm(b)
)

< δ. Then given t ∈ {0, 1, . . . , 2k} we have d
(

Sm+t(a), Sm+t(b)
)

<

h2k−t(ǫ/2) ≤ ǫ/2. Let n = m+k. Then one easily verifies that D(Tnx, Tny) ≤ ǫ/2 < ǫ.

Finally let U = π−1
0 [V ]. Then using (*) we have for n ∈ N that

Tn(x) ∈ U ⇐⇒ Tn(x)(0) ∈ V
⇐⇒ Sn

(

x(0)
)

∈ V
⇐⇒ n ∈ A .

3.5 Lemma. Let X be a compact metric space, let T be a homeomorphism from X

onto X, and let y ∈ X. If y is uniformly recurrent for (X, T ), then y+ is uniformly

recurrent for (X, T−1).

Proof. Let W = cℓ{Tny : n ∈ N}. Since y is uniformly recurrent W is minimal closed T

invariant. But then W is T−1 invariant. (To see this let x ∈ W and suppose T−1x /∈ W .

Pick an open neighborhood U of T−1x missing W . Then W\T [U ] is a proper closed

subset of W so some z ∈ W\T [U ] has Tz /∈ W\T [U ]. Then Tz ∈ T [U ], so z ∈ U ∩W ,

a contradiction.) Pick a minimal closed T−1 invariant subset A of W . By the above

argument A is T invariant so A = W . Since y is a member of a minimal closed T−1

invariant set, y is uniformly recurrent for (X, T−1).

We omit the proof of the following well known result.

3.6 Lemma. Let X be a compact metric space and let T be a homeomorphism from X

to X. In X× [0, 1] identify (x, 1) and (Tx, 0) for all x ∈ X and let Y = X × [0, 1) have

the quotient topology resulting from this identification. Then Y is a compact metriz-

able space and for each s ∈ (0, 1) the function Fs : Y −→ Y defined by Fs(x, t) =

(T [s+t]x, s+ t− [s+ t]) is continuous.

3.7 Lemma. Let X, T, Y and Fs (for 0 < s < 1) be as in Lemma 3.6. Let y ∈ X. If y

is uniformly recurrent for (X, T ) then there exists τ ∈ (0, 1) such that (y, τ) is uniformly

recurrent for (Y, Fs).

Proof. Let W = cℓX{Tny : n ∈ N}. Since y is uniformly recurrent, W is minimal

closed T invariant. Then W × [0, 1) is a closed Fs invariant subset of Y . (To see that

W × [0, 1) is closed observe that if x ∈ Y \W and U is a neighborhood of x missing W
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then T−1U also misses W so that
(

U × [0, 1)
)

∪
(

T−1[U ]× [0, 1)
)

is a neighborhood of

(x, 0) missing W × [0, 1).) Pick Z, a minimal closed Fs invariant subset of W × [0, 1).

Consider P : Y −→ X , the projection onto the first coordinate. (Be cautioned that Y

does not have the product topology so P need not be continuous.)

We claim first P [Z] is T invariant. Indeed, given (x, t) ∈ Z pick the least positive

integer n such that t+ sn > 1. Then Fn
s (x, t) = (Tx, t+ sn− 1) ∈ Z.

Now we claim P [Z] is closed. Let x ∈ X\P [Z]. For each t ∈ (0, 1) pick ǫt > 0 with

ǫt ≤ min(t, 1− t) and pick Ut a neighborhood of x such that (Ut × Vt) ∩ Z = ∅ where

Vt = (t−ǫt, t+ǫt). Likewise pick U0 a neighborhood of x and ǫ0 > 0 with (U0×V0)∩Z = ∅

where V0 = [0, ǫ0). Now Fs[Z] is closed and Fs invariant so Fs[Z] = Z. Thus if we had

(Tx, 0) ∈ Z we would have (x, 1− s) ∈ Z and hence x ∈ P [Z]. Therefore (Tx, 0) /∈ Z

so we may pick a neighborhood U1 of x and ǫ1 > 0 with (U1 × V1) ∩ Z = ∅ where

V1 = (1 − ǫ1, 1). Pick finite F ⊆ [0, 1] with [0, 1) ⊆
⋃

t∈F Vt. Let U =
⋂

t∈F Ut. Then

U ∩ P [Z] = ∅ as required.

Now, P [Z] is a closed T invariant subset ofW so P [Z] = W so we may pick t ∈ [0, 1)

with (y, t) ∈ Z. If t > 0, let τ = t. If t = 0, let τ = t + s so that (y, τ) = Fs(y, t). In

either case (y, τ) ∈ Z and is hence uniformly recurrent for (Y, Fs).

3.8 Lemma. Let A ⊆ N be central and let n ∈ N.

(a) A/n = {m ∈ N : mn ∈ A} is central.

(b) An is central.

Proof. (a) This is [12, Lemma 8.24]. (If A is central, via T , A/n is central via Tn).

(b) Pick Y, S, a, b, and V such that A is central via (Y, S, a, b, V ). Let X =

Y × {1, 2, 3, . . . , n}, where {1, 2, 3, . . . , n} is discrete, and define T : X −→ X by

T (y, k) = (y, k + 1) for k < n and T (y, n) = (Sy, 1). Then T kn(y, 1) = (Sky, 1) for

all k ∈ N. Let x = (a, 1), y = (b, 1), and U = V × {1}. Then An is central via

(X, T, x, y, U).

4. Dynamical Results.

We begin by establishing the analogue of Theorem 2.3 for central sets.

4.1 Theorem. Let α > 0, let 0 < γ < 1 and let A ⊆ N. If A is central then {[nα+ γ] :

n ∈ A} is central.

Proof. Let δ = min{γ, 1 − γ} and let B = {k ∈ N : for some n ∈ A, |k − nα| < δ}.

Then B ⊆ {[nα + γ] : n ∈ A}. Indeed, if |k − nα| < δ, then γ − 1 < k − nα < γ so
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k = [nα + γ]. Thus it suffices to show that B contains a central set. Pick m ∈ N such

that 1/(mα) < 1 and let s = 1/(mα). Let µ = min{s, 1− s}. Now by Lemma 3.8(a),

A/m = {n ∈ N : nm ∈ A} contains a central set. Pick by Theorem 3.4 a compact metric

space X , a homeomorphism T of X onto X , a uniformly recurrent point y of X , a point

x proximal to y, and a neighborhood U of y such that {n ∈ N : Tnx ∈ U} ⊆ A/m. Let

Y and Fs be as in Lemma 3.6 and pick by Lemma 3.7 some τ ∈ (0, 1) such that (y, τ)

is uniformly recurrent for (Y, Fs).

We now claim that (x, τ) and (y, τ) are proximal. Choose a sequence 〈n(k)〉∞k=1 in

N such that lim
k→∞

d(tn(k)x, Tn(k)y) = 0. Passing to a subsequence we may presume we

have a ∈ X such that a = lim
k→∞

Tn(k)y = lim
k→∞

Tn(k)x. For each k ∈ N choose r(k) ∈ N

such that [s · r(k) + τ ] = n(k) and n(k) + µ/2 ≤ s · r(k) + τ < n(k) + 1 − µ/2, and

let t(k) = s · r(k) + τ − n(k). Then F
r(k)
s (x, τ) =

(

Tn(k)x, t(k)
)

and F
r(k)
s (y, τ) =

(

Tn(k)y, t(k)
)

. Let ℓ be a cluster point of 〈t(k)〉∞k=1 and note ℓ ∈ [µ/2, 1 − µ/2]. Let

b = (a, ℓ). Then given any neighborhood W of b one has some k with F
r(k)
s (x, τ) ∈ W

and F
r(k)
s (y, τ) ∈ W and hence (x, τ) and (y, τ) are proximal as claimed.

Now let ǫ = min{τ, 1 − τ, δ/mα} and let V = U × (τ − ǫ, τ + ǫ). Then V is a

neighborhood of (y, τ). Let C = {k ∈ N : F k
s (x, τ) ∈ V }. Then C is central. We

claim C ⊆ B. To this end let k ∈ C. Let n = [ks + τ ] = [k/(mα) + τ ]. Then

(Tnx, k/(mα) + τ − n) = F k
s (x, τ) ∈ V . Since Tnx ∈ U we have n ∈ A/m so nm ∈ A.

Also τ − ǫ < k/(mα) + τ − n < τ + ǫ so −δ ≤ −ǫmα < k − nmα < ǫmα ≤ δ so

|k − nmα| < δ and hence k ∈ B.

4.2 Lemma. Let α > 0 with α ∈ Q and let A ⊆ N. If A is a central set then {[nα] :

n ∈ A} is a central set.

Proof. Let α = p/q with p, q ∈ N. By Lemma 3.8(b) Ap is central and hence by Lemma

3.8(a) (Ap)/q is central and (Ap)/q ⊆ {[nα] : n ∈ A}.

4.3 Theorem. Let α > 0 and let 0 ≤ γ < 1 with γ > 0 if α /∈ Q and let A ⊆ N. If A

is central*, then {[nα+ γ] : n ∈ A} is central*.

Proof. For the case γ > 0 let B = {B ⊆ N : B contains a central set}. (We know

algebraically that B is exactly the class of central sets.) In any event A ∈ B* if and only

if A is a central* set so Theorems 2.5, and 4.1 together with the fact from [5, Corollary

6.12] that central sets are partition regular, yield the desired conclusion. For the case

γ = 0 and α ∈ Q we can apply Theorem 2.7 and Lemma 4.2 once we have shown that
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given a central set A and n ∈ N one has that A∩Nn is central. Since A∩Nn = (A/n)n,

this follows from Lemma 3.8.

The following result is of independent interest because, at least from the point of

view of the algebraic characterization of central, it is quite surprising.

(From that point of view one finds more natural the fact that {m ∈ N : A −m is

central} is central, which follows immediately from the algebraic definition.)

4.4 Theorem. Let A ⊆ N be central and let B = {m ∈ N : A+m is central}. Then B

is a central set.

Proof. Pick by Theorem 3.4 X, T, x, y, and U such that T is a homeomorphism from

X onto X and A is central via (X, T, x, y, U). By Lemma 3.5 y is uniformly recurrent

for T−1 so C = {m ∈ N : T−my ∈ U} is central via (X, T−1, y, y, U). We show that

C ⊆ B. Let m ∈ C. Then y ∈ Tm[U ] which is open since T is a homeomorphism. Then

A+m = {n ∈ N : Tnx ∈ Tm[U ]} so A+m is central.

5. Algebraic Preliminaries.

In [5] it was shown that the dynamical definition of “central” given in Section 3 is

equivalent to the following simple algebraic characterization: A subset A of N is central if

and only if A is a member of some minimal idempotent of (βN,+) where an idempotent

is minimal if and only if it is a member of some minimal right ideal. (Equivalently

an idempotent is minimal if and only if it is minimal with respect to the ordering of

idempotents wherein p ≤ q if and only if p = p+ q = q + p. See [5, Lemma 3.2].) (One

can also verify that an idempotent p is minimal if and only if the dynamical system

(X, T ) is minimal where X = p+ βN and T (q) = q + 1.) From this characterization of

central it is immediate that a set A is central* if and only if A is a member of every

minimal idempotent.

It is a well known result of Galvin (see [20, Theorem 2.3(b) and Theorem 2.5])

that a set A is an IP set if and only if A is a member of some idempotent of (βN,+).

Consequently A is an IP* set if and only if A is a member of every idempotent.

We now establish an algebraic characterization of ∆ sets and ∆* sets. We expand

our horizons temporarily to work with the semigroup (βZ,+). Strictly speaking βN is

not a subset of βZ since an ultrafilter on N is not an ultrafilter on Z. However, given

p ∈ βN, the family {A ⊆ Z : A ∩ N ∈ p} is an ultrafilter on Z, so we may reasonably

pretend that βN ⊆ βZ (just as we pretend all along that N ⊆ βN).
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Given p ∈ βN, −p = {A ⊆ Z : −A ∩ N ∈ p} is an ultrafilter on Z. One should

be cautioned that p − p = p + (−p) 6= 0 unless p ∈ N. Since βN\N is a right ideal of

(βZ,+) one has p − p ∈ βN\N whenever p ∈ βN\N. (However (−p) + p /∈ βN, it is in

−βN.)

5.1 Theorem. Let A ⊆ N.

(a) A is a ∆ set if and only if there exists p ∈ βN\N such that A ∈ p− p.

(b) A is a ∆* set if and only if for every p ∈ βN\N, A ∈ p− p.

Proof. (a) Assume A is a ∆ set and pick an infinite increasing sequence 〈xn〉
∞

n=1 in N

with {xm − xn : n < m} ⊆ A. Pick p ∈ βN\N with {xn : n ∈ N} ∈ p. To see that

A ∈ p−p we show {−xn : n ∈ N} ⊆ {y ∈ Z : A−y ∈ p}. To this end let n ∈ N be given.

Then since p is non-principal, {xm : m > n} ∈ p and {xm : m > n} ⊆ A − (−xn), so

A− (−xn) ∈ p as required.

Now assume we have some p ∈ βN\N with A ∈ p−p. Let B = {x ∈ Z : A−x ∈ p}.

Then B ∈ −p so (−B) ∩ N ∈ p. Let C1 = A ∩ (−B) and pick x1 ∈ C1. Then −x1 ∈ B

so A + x1 ∈ p. Inductively let Cn+1 = Cn ∩ (−B) ∩ (A + xn). Then Cn+1 ∈ p so pick

xn+1 ∈ Cn+1 with xn+1 > xn. Then given m > n we have xm ∈ Cm ⊆ Cn+1 ⊆ A + xn

so xm − xn ∈ A.

(b) Given that A is a ∆* set one can’t have N\A ∈ p− p for any p ∈ βN\N since

A ∩ (N\A) = ∅ so A ∈ p− p. Likewise given an A ∈ p− p for all p ∈ βN\N and given a

∆ set B we have B ∈ p+ (−p) for some p ∈ βN\N so A ∩B 6= ∅.

Recall that for α > 0 we have defined fα : N −→ T and hα : N −→ N in Definition

2.1. One has hα(n) is the nearest integer to nα and fα(n) is the fractional part of nα.

5.2 Definition. Let α > 0, γ > 0. Define gα,γ : N −→ N ∪ {0} by gα,γ(n) = [nα+ γ].

(Then hα = gα,1/2.)

Since T is compact, fα has a continuous extension to βN which we also denote by

fα. Likewise gα,γ : N −→ N ∪ {0} ⊆ β(N ∪ {0}) = βN ∪ {0} so gα,γ has a continuous

extension to βN which we also denote by gα,γ. Similarly, we denote the continuous

extension of hα again by hα.

It is easy to see that, since fα is a homomorphism on (N,+), the extension to

(βN,+) is also a homomorphism. On the other hand, gα,γ is usually not a homomor-

phism. We shall see however in Theorem 5.10 below, that the restriction to certain

special subsets is often a homomorphism.

For points x, y, and z in T, when we write x < y < z we mean y is on the

counterclockwise arc from x to z.
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5.3 Definition. Let α ∈ R with α > 0.

(a) Uα = {p ∈ βN : {n ∈ N : fα(p) < fα(n) < fα(p) + 1/2} ∈ p}.

(b) Dα = {p ∈ βN : {n ∈ N : fα(p)− 1/2 < fα(n) < fα(p)} ∈ p}.

(c) Zα = {p ∈ βN : fα(p) = 0}.

(d) Xα = Uα ∩ Zα.

(e) Yα = Dα ∩ Zα .

The sets Uα and Dα consists of those points of βN for which fα approaches its

value from above and from below respectively. We shall see in Theorems 5.5 and 5.6

below that these are interesting algebraic objects.

5.4 Lemma. If α > 0 is irrational then Uα ∪ Dα = βN\N and for each ǫ > 0 and

each p ∈ Uα and each q ∈ Dα, {n ∈ N : fα(p) < fα(n) < fα(p) + ǫ} ∈ p and

{n ∈ N : fα(q)− ǫ < fα(n) < fα(q)} ∈ q. If α > 0 is rational then Uα ∪Dα = ∅.

Proof. First assume α is irrational. Given n ∈ N, {m ∈ N : fα(m) = fα(n)}

is a member of the principal ultrafilter generated by n (which you will recall we have

identified with n). Thus Uα ∪ Dα ⊆ βN\N. Now given p ∈ βN\N we have

|{n ∈ N : fα(n) = fα(p)}| ≤ 1 so either {n ∈ N : fα(p) − 1/2 < fα(n) < fα(p)} ∈ p or

{n ∈ N : fα(p) < fα(n) < fα(p) + 1/2} ∈ p.

Now given ǫ > 0 (which we may presume is less than 1/2), p ∈ Uα, and q ∈ Dα

observe that by the continuity of fα, {n ∈ N : fα(p) − ǫ < fα(n) < fα(p) + ǫ} ∈ p and

{n ∈ N : fα(q)− ǫ < fα(n) < fα(q) + ǫ} ∈ q so the conclusion follows.

Now, if α is rational one has {fα(n) : n ∈ N} is finite so for any p ∈ βN, {n ∈ N :

fα(n) = fα(p)} ∈ p.

The following result (done explicitly in the case α = 1
2π

with essentially the same

proof which we use) is due to Baker and Milnes [2]. Recall that for a, b, c ∈ T we write

a < b < c to mean that b is on the counter clockwise arc from a to c. It is an exercise

to verify that if a < b < c, d < e < f , 0 < c − a ≤ 1/2, 0 < f − d ≤ 1/2 and one of

c− a < 1/2 or f − d < 1/2, then a− f < b− e < c− d.

5.5 Theorem. Let α > 0 be irrational. Then Uα and Dα are left ideals of (βN,+).

Proof. We prove the statement for Uα, the other case being nearly identical. Let

p ∈ Uα and let q ∈ βN. Let x = fα(p), y = fα(q), and let r = q + p. Since fα is a

homomorphism we have x+ y = fα(r). Suppose r /∈ Uα.

Since βN\N is an ideal of (βN,+) we have r ∈ βN\N so by Lemma 5.4, r ∈ Dα.

For each k ∈ N let Ak = {n ∈ N : x < fα(n) < x+ 1/k}, Bk = {n ∈ N : x+ y − 1/k <
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fα(n) < x + y} and Ck = {n ∈ N : Bk − n ∈ q}. Since p ∈ Uα we have each Ak ∈ p.

Since r ∈ Dα we have each Bk ∈ r. Since r = q + p, we have each Ck ∈ p. Pick

n ∈ A2 ∩C2. Now x < fα(n) < x+ 1/2 so pick k ∈ N with x+ 2/k < fα(n) < x+ 1/2.

Pick m ∈ Ak ∩ Ck. Now x < fα(m) < x + 1/k so 1/k < fα(n) − fα(m) < 1/2. Since

n ∈ C2 and m ∈ Ck we have (B2 − n) ∩ (Bk −m) ∈ q so pick t ∈ (B2 − n) ∩ (Bk −m).

Then x + y − 1/2 < fα(t + n) < x + y and x + y − 1/k < fα(t + m) < x + y.

Since fα(t + n) = fα(t) + fα(n) and fα(t + m) = fα(t) + fα(m) we conclude that

−1/2 < fα(n)− fα(m) < 1/k, a contradiction.

There is a similar multiplicative result.

5.6 Theorem. Let α > 0 be irrational. Then Xα and Yα are right ideals of (βN, ·).

Proof. We establish the statement for Yα. Let p ∈ Yα and let q ∈ βN. To show that

p · q ∈ Yα it suffices to show that for every ǫ > 0, {n ∈ N : −ǫ < fα(n) < 0} ∈ p · q

(for this then forces fα(p · q) = 0 and p · q ∈ Dα). To this end let ǫ > 0 be given (with

ǫ < 1) and let A = {n ∈ N : −ǫ < fα(n) < 0}. We show that for all n ∈ N, A/n ∈ p,

and hence that A ∈ p · q. To this end let n ∈ N. Let B = {m ∈ N : −ǫ/n < fα(m) < 0}.

Then B ∈ p and so it suffices to show that B ⊆ A/n. Let m ∈ B and let k = [mα].

Then k + 1− ǫ/n < mα < k+ 1 so kn+ n− ǫ < nmα < kn+ n so [nmα] = kn+ n− 1

and −ǫ < fα(nm) < 0 so that nm ∈ A as required.

Observe that fα is not a homomorphism on (N, ·). The above proof however utilizes

the fact that it is nearly a homomorphism around 0.

5.7 Lemma. For any α > 0, Zα is a compact subsemigroup of (βN,+). If α is irrational

Xα and Yα are subsemigroups of (βN,+). If α = m/n where m and n are relatively

prime natural numbers, then Zα = Nn.

Proof. For the first assertion observe that Zα is the kernel of a continuous homomor-

phism. The second assertion follows from the first assertion and Theorem 5.5. For the

last assertion observe that the range of fα is finite and that for k ∈ N, fα(k) = 0 if and

only if k ∈ Nn.

We see in the next two results that we are really only concerned with three functions

from βN to βN, namely gα,0, gα,1, and hα.

5.8 Theorem. Let α > 0, let 0 < γ < 1 and let p ∈ Zα. Then gα,γ(p) = hα(p). If

α ∈ Q, then gα,0(p) = hα(p).
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Proof. Let ǫ = min{γ, 1− γ} and let B = {n ∈ N : −ǫ < fα(n) < ǫ}. Since fα(p) = 0

we have B ∈ p. We show that gα,γ and hα agree on B. Let m = hα(n).

Then m − ǫ < αn < m + ǫ so m ≤ m − ǫ + γ < αn + γ < m + ǫ + γ ≤ m + 1 so

m = [αn+ γ] = gα,γ(n).

If α = m/n in lowest terms we have by Lemma 5.7 that Zα = Nn. Since gα,0 and

hα agree on Nn we have gα,0(p) = hα(p).

5.9 Lemma. Let α > 0 be irrational and let p ∈ Xα and q ∈ Yα. Then gα,0(p) = hα(p)

and gα,1(q) = hα(q).

Proof. We establish the result for q. Let B = {n ∈ N : −1/2 < fα(n) < 0}. Since

q ∈ Yα we have B ∈ q. We show hα and gα,1 agree on B. Let n ∈ B and let

m = hα(n). Then m − 1/2 < αn < m so m + 1/2 < αn + 1 < m + 1 and therefore

m = [αn+ 1] = gα,1(n).

5.10 Theorem. Let α > 0. Then hα is an isomorphism and a homeomorphism from

Zα onto Z1/α with inverse h1/α. If α is irrational, hα takes Xα onto Y1/α and takes Yα

onto X1/α.

Proof. We show

(1) if p ∈ Zα, then hα(p) ∈ Z1/α,

(2) if p, q ∈ Zα, then hα(p+ q) = hα(p) + hα(q),

(3) if p ∈ Zα, then h1/α

(

hα(p)
)

= p.

(4) if p ∈ Xα, then hα(p) ∈ Y1/α, and

(5) if p ∈ Yα, then hα(p) ∈ X1/α.

Using the fact that these same assertions are valid for 1/α replacing α then estab-

lishes the theorem.

To verify (1), let ǫ > 0 be given, with ǫ < 1/2, and let B = {n ∈ N : −ǫ <

f1/α(n) < ǫ}. We need to show B ∈ hα(p). Pick δ > 0 such that δ < ǫ · α and

δ < 1/2. Let C = {n ∈ N : −δ < fα(n) < δ}. We show hα[C] ⊆ B. Let n ∈ C and

let m = hα(n) so that m − δ < αn < m + δ. Then m/α − δ/α < n < m/α + δ/α so

n− ǫ < n− δ/α < m/α < n+ δ/α < n+ ǫ. This says m ∈ B as required.

To verify (2), let p, q ∈ Zα. Let A = {n ∈ N : −1/4 < fα(n) < 1/4} and observe

that A ∈ p and A ∈ q. Suppose that hα(p + q) 6= hα(p) + hα(q) and let U and V be

disjoint open neighborhoods of hα(p+ q) and hα(p)+hα(q) respectively. Pick B ∈ p+ q

with hα[B] ⊆ U . Pick W , a neighborhood of hα(q), with hα(p) + W ⊆ V and pick

C ∈ q with hα[C] ⊆ W . Then A ∩ {n ∈ N : B − n ∈ p} ∩ C ∈ q so pick n in this
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intersection. Now hα(n) ∈ N, and hα(p) + hα(n) ∈ V so pick a neighborhood R of

hα(p) with R + hα(n) ⊆ V . Pick D ∈ p with hα[D] ⊆ R. Then A ∩D ∩ (B − n) ∈ p

so pick m ∈ A ∩D ∩ B − n. Then hα(m) + hα(n) ∈ V and hα(m + n) ∈ U . We show

that hα(m) + hα(n) = hα(m+ n), obtaining the desired contradiction. Let k = hα(m)

and ℓ = hα(n). Then k − 1/4 < αm < k + 1/4 and ℓ − 1/4 < αn < ℓ + 1/4 so

k + ℓ− 1/2 < α(m+ n) < k + ℓ+ 1/2 so that hα(m+ n) = k + ℓ = hα(m) + hα(n).

To verify (3), let ǫ > 0 be given with ǫ < 1 and ǫ < α/2. Let B = {n ∈ N :

−ǫ < fα(n) < ǫ}. Then B ∈ p so it suffices to show that h1/α ◦ hα agrees with the

identity on B. Let n ∈ B be given and let m = hα(n). Then m − ǫ < nα < m + ǫ so

m/α− 1/2 < m/α− ǫ/α < n < m/α+ ǫ/α < m/α+ 1/2 so n− 1/2 < m/α < n+ 1/2.

Thus h1/α(m) = n as required.

To verify (4), let ǫ > 0 be given with ǫ < 1/2, and let B = {n ∈ N : −ǫ <

f1/α(n) < 0}. We need to show B ∈ hα(p). Pick δ > 0 with δ < ǫ · α and δ < 1/2. Let

C = {n ∈ N : 0 < fα(n) < δ}. We show hα[C] ⊆ B. Let n ∈ C and let m = hα(n) so

that m < αn < m + δ. Then m/α < n < m/α + δ/α < m/α + ǫ so n − ǫ < m/α < n

and hence m ∈ B as required.

The proof of (5) is essentially the same as that of (4).

For our next algebraic preliminary we deal with the notion of the smallest ideal of

a compact left topological semigroup.

5.11 Definition. Let S be a semigroup. Then K(S) =
⋃

{R : R is a minimal right

ideal of S}.

It is a fact that if S is a compact left topological semigroup, then K(S) is the

smallest two sided ideal of S and in fact K(S) =
⋃

{L : L is a minimal left ideal of

S}. (See for example [7], in particular Theorem 1.3.11.) Observe that p is a minimal

idempotent of S if and only if p is an idempotent and p ∈ K(S). See the above reference

also for unfamiliar algebraic facts cited in the proofs below.

5.12 Lemma. Let (S,+) be a compact left topological semigroup and let T be a compact

subsemigroup of S such that whenever p ∈ T , q ∈ S, and p+ q ∈ T one has q ∈ T .

(a) If R is a minimal right ideal of S and R ∩ T 6= ∅,

then R ∩ T is a minimal right ideal of T .

(b) If K(S) ∩ T 6= ∅, then K(T ) = K(S) ∩ T.

Proof. (a) R ∩ T is a right ideal of T so pick a minimal right ideal R* of T with

R∗ ⊆ R ∩ T . Pick p ∈ R*. Then R∗ = p + T (since p + T is a right ideal of T ) and
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R = p+ S. To see that R ∩ T ⊆ R* let r ∈ R ∩ T and pick q ∈ S with r = p+ q. Then

by assumption q ∈ T so r ∈ p+ T = R ∗ .

(b) Since K(S) ∩ T 6= ∅ we have K(S) ∩ T is an ideal of T so K(T ) ⊆ K(S) ∩ T .

To see that K(S) ∩ T ⊆ K(T ), let p ∈ K(S) ∩ T and pick a minimal right ideal R of S

with p ∈ R. Then R ∩ T is a minimal right ideal of T so p ∈ K(T ).

5.13 Theorem. Let α > 0. Then K(Zα) = K(βN) ∩ Zα.

Proof. All idempotents are in Zα so K(βN) ∩ Zα 6= ∅. Given p ∈ Zα and q ∈ βN with

p+ q ∈ Zα we have 0 = fα(p+ q) = fα(p) + fα(q) = 0+ fα(q) so q ∈ Zα. Thus Lemma

5.12 applies.

6. Algebraic results – iterated spectra.

We begin by accumulating the main results from Sections 2 and 4. (These results

all do have algebraic proofs as well.)

6.1 Theorem. Let α > 0, let 0 ≤ γ < 1 with γ > 0 if α is irrational, and let A ⊆ N.

(a) If A is a ∆* set, then gα,γ[A] = {[nα+ γ] : n ∈ A} is a ∆* set.

(b) If A is an IP* set, then gα,γ[A] is an IP* set.

(c) If A is a central* set, then gα,γ[A] is a central* set.

(d) If A is a central set, then gα,γ[A] is a central set.

(e) If A is an IP set, then gα,γ[A] is an IP set.

(f) If A is a ∆ set, then gα,γ[A] is a ∆ set.

Proof. Theorems 2.3, 2.4, 4.1 and 4.3, Lemma 4.2, and Corollaries 2.6 and 2.8.

Theorem 6.1 together with Theorems 2.4 and 2.6 of [6] show that spectra and even

iterated spectra are combinatorially rich. Given α > 0 and γ with 0 ≤ γ < 1 (and γ > 0

if α /∈ Q) one has for example that {[nα+ γ] : n ∈ N} is an IP* set.

Theorem 2.6 of [6] tells us that given any sequence 〈xn〉
∞

n=1 and any IP*-set A,

there is a sequence 〈yn〉
∞

n=1 with FS(〈yn〉
∞

n=1) ⊆ FS(〈xn〉
∞

n=1) and FS(〈yn〉
∞

n=1) ∪

FP (〈yn〉
∞

n=1) ⊆ A. Since IP* sets are central* sets, {[nα + γ] : n ∈ N} also con-

tains solutions to any partition regular system of homogeneous linear equations. Now

given α′ > 0 and γ′ with 0 ≤ γ′ < 1 (and γ′ > 0 if α′ /∈ Q) one has {
[

[nα+ γ]α′ + γ′
]

:

n ∈ N} = gα′,γ′ ◦ gα,γ[N] and so is an IP* set and hence satisfies the same conclusions.

The iteration can clearly continue any finite number of times.

It is a fact that for α > 0 and 0 < γ < 1 the sets {[nα+γ] : n ∈ N} = gα,γ[N] contain

dynamical IP* sets (that is sets of the form {n ∈ N : µ(A∩T−nA) > 0} where µ(A) > 0).
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On the other hand (see [6]) there exist IP* sets which do not contain dynamical IP*

sets. Given any such set A, Theorem 6.1(a) tells us that {[nα + γ] : n ∈ A} is still an

IP* set. We restrict our attention to 0 ≤ γ ≤ 1 for the following simple reasons. If

α > 2 and say 1 < γ < 2 we have gα,γ[N]∩ gα,γ−1[N] = ∅. Since the latter set is an IP*

set, the former is not an IP set. Likewise if α > 2 is rational we have since gα,0[N] is an

IP* set that gα,1[N] is not an IP set. We shall see now that the sets gα,0[N] and gα,1[N]

are both combinatorally rich if α is irrational. (And hence if α > 2, neither is an IP*

set or even a central set.)

6.2 Theorem. Let α > 0 be irrational. There are minimal idempotents p and q of

(βN, ·) such that every member of p and every member of q is additively central and

such that gα,0[N] ∈ p and gα,1[N] ∈ q.

Proof. Let δ = 1/α. We prove the assertion about gα,0[N]. The corresponding assertion

about gα,1[N] uses Uδ and Xδ in place of Dδ and Yδ.

Let M = cℓ{p : p is minimal idempotent of (βN,+)}. We first show that Yδ ⊆

gα,0[N]. Indeed let p ∈ Yδ and let ǫ = min{1/2, 1/α}. Let B = {n ∈ N : −ǫ <

fδ(n) < 0}. Then B ∈ p. We show B ⊆ gα,0[N]. Given n ∈ B, let m = hδ(n) so that

m − ǫ < δn < m. Then mα − ǫα < n < mα so n < mα < n + ǫα ≤ n + 1 and hence

n = [mα]. It thus suffices to show that there is a minimal idempotent p of (βN, ·) with

p ∈ M ∩ Yδ.

By Theorem 5.6, Yδ is a right ideal of (βN, ·). By [5, Theorem 5.4] M is a right

ideal of (βN, ·). It thus suffices to show that Yδ ∩ M 6= ∅, for then Yδ ∩ M is a right

ideal of (βN, ·) which thus contains an idempotent p minimal in (βN, ·).

By Theorem 5.5, Dδ is a left ideal of (βN,+). Thus (see [7, Theorem 1.3.11]) Dδ

contains an idempotent r which is minimal in (βN,+). Then immediately r ∈ M . Also

fδ(r) = 0 since r + r = r, so r ∈ Yδ, as required.

If α > 2 it is an easy exercise to show gα,0[N] ∩ gα,1[N] = ∅. Consequently if α is

also irrational one has by Theorem 6.2 that there is an IP* set (namely N) such that

gα,0[N] and gα,1[N] are not central*. In fact if α > 1 and irrational one can show as in

the proof of Theorem 6.2 that gα,0[N] ∩X1/α = ∅ and gα,1[N] ∩ Y1/α = ∅. (If ǫ < α−1
α

and p ∈ X1/α, then {n ∈ N : 0 < f1/α(n) < ǫ} ∈ p and {n ∈ N : 0 < f1/α(n) <

ǫ} ∩ gα,0[N] = ∅.) Since U1/α and D1/α are left ideals of (βN,+) they contain minimal

left ideals which then contain minimal idempotents which are then in X1/α and Y1/α

respectively. (These facts are not as easy as the corresponding facts about right ideals,

but see [7].) Consequently gα,0[N] and gα,1[N] are not central* sets. Of course if α < 1
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we have gα,0[N] = gα,1[N] = N. Even then we shall see in Corollary 6.8 that there exists

an IP* set A with gα,0[A] and gα,1[A] not central*.

6.3 Theorem. Let α > 0 be irrational and let A ⊆ N. If A is a central* set then gα,0[A]

and gα,1[A] are central sets.

Proof. We show that gα,1[A] is central. By Theorem 5.5 Dα is a left ideal of (βN,+) so

by [7, Theorem 1.3.11] Dα contains a minimal idempotent p. Since p is an idempotent

fα(p) = 0 so p ∈ Yα. Now p ∈ K(Zα) so by Theorem 5.10 hα(p) ∈ K(Z1/α). By

Theorem 5.1, K(Z1/α) = K(βN) ∩ Z1/α and hence hα(p) is a minimal idempotent.

By Lemma 5.9 hα(p) = gα,1(p). Since A is central*, A ∈ p so gα,1[A] ∈ gα,1(p) and

consequently gα,1[A] is central.

We will return to this topic in Corollary 6.8.

Because of the reduction in combinatorial strength from input to output in Theorem

6.3 we cannot simply iterate spectra with γ = 0 or γ = 1 at will.

For the remainder of this paper we consider spectra formed by a single iteration,

namely sets of the form gα2,γ2
◦ gα1,γ1

[A] = {
[

[nα1 + γ1]α2 + γ2
]

: n ∈ A}. The case of

a single iteration seems to be significantly simpler than that of multiple iterations. In

fact we are able to solve this case in a rather complete fashion. Compare the following

result with Theorem 6.3.

6.4 Lemma. Let α > 0 be rational. If α > 1 then gα,1[N] is not an IP set. If α ≤ 1

then there is some a ∈ N so that gα,1[Na] is not an IP set.

Proof. Assume α = m/n where m and n are relatively prime integers. Assume first

that α > 1, so m > n. We claim gα,1[N] ∩ Nm = ∅ which suffices for the first assertion

since Nm is an IP* set. Indeed suppose we have k, r ∈ N with gα,1(r) = km. Then

km ≤ r · (m/n) + 1 < km + 1 so kn ≤ r + n/m < kn + n/m. Since r < kn we have

kn− 1 ≥ r ≥ kn− n/m > kn− 1, a contradiction. For the second assertion let a = 2n.

Then gα,1[Na] ∩ N2 = ∅.

We are precisely interested in gα2,γ2
◦ gα1,γ1

[A] where α1 and α2 are irrational and

γ1, γ2 ∈ {0, 1}. (Theorems 6.1 and 6.3 and Lemma 6.4 allow us to handle the other

possibilities.) We obtain a necessary and sufficient condition for the image to be central

which turns on the intersection of the sets Xα and Yδ.

6.5 Lemma. Let α and δ be positive irrational numbers. The following statements are

equivalent.
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(a) Yδ ∩Xα 6= ∅

(b) Yα ∩Xδ 6= ∅

(c) Either

(1) 1, α, δ are linearly independent over Q or

(2) there exist positive integers m, r, and s with mα + rδ = s.

Proof. We show (a) ⇐⇒ (c), from which (b) ⇐⇒ (c) follows by interchanging α and δ.

(a) =⇒ (c). Assume (1) and (2) fail. Since (1) fails pick integers m, r, and s, not all

0, with mα+rδ = s. Since α /∈ Q, r 6= 0 and since δ /∈ Q, m 6= 0. We may presume that

m > 0. Since (2) fails we must then have r < 0 and so m − r > 0. Let ǫ = 1/(m− r).

We have some p ∈ Yδ ∩ Xα so {n ∈ Q : −ǫ < fδ(n) < 0 and 0 < fα(n) < ǫ} ∈ p.

Pick n with −ǫ < fδ(n) < 0 and 0 < fα(n) < ǫ. Let k = hδ(n) and t = hα(n). Then

k − ǫ < nδ < k and t < αn < t+ ǫ. Now m > 0 and r < 0 so kr < nrδ < kr − ǫr and

mt < αnm < mt+ ǫm. Since mα + rδ = s we thus have mt < n(s− rδ) < mt+ ǫm so

that mt + kr < ns < mt + kr + ǫ(m − r) = mt + kr + 1. Since m, t, k, r, n and s are

integers this is a contradiction.

(c) =⇒ (a) For each ǫ > 0 let Aǫ = {n ∈ N : 0 < fα(n) < ǫ and −ǫ < fδ(n) < 0}.

It suffices to show each Aǫ 6= ∅.

For then pick p ∈ βN with {Aǫ : ǫ > 0} ⊆ p. One has p ∈ Yδ ∩Xα.

Let ǫ > 0 be given. If (1) holds apply Kronecker’s Theorem [17, Theorem 442]

to directly produce n ∈ Aǫ. Therefore we assume (2) holds and pick positive integers

m, r, and s with mα + rδ = s. Since α /∈ Q pick by Kronecker’s Theorem n and k

in N with k < nα < k + ǫ/(m + r). Then kr < nrα < kr + ǫr/(m + r) < kr + ǫ

so 0 < fα(nr) < ǫ. Also km < nmα = ns − nrδ < km + ǫm/(m + r) < km + ǫ so

ns− km− ǫ < nrδ < ns− km and hence −ǫ < fδ(nr) < 0. Therefore nr ∈ Aǫ.

Note that condition (c) (2) of the following lemma includes the possibility that

s = 0, that is that α/δ is rational.

6.6 Lemma. Let α and δ be positive irrational numbers. The following statements are

equivalent.

(a) Xα ∩Xδ 6= ∅.

(b) Yα ∩ Yδ 6= ∅.

(c) Either

(1) 1, α, δ are linearly independent over Q or

(2) there exist integers m, r, and s with m > 0, r < 0, and mα+ rδ = s.
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Proof. The proofs that (a) ⇐⇒ (c) and that (b) ⇐⇒ (c) are nearly identical to the

proof that (a) ⇐⇒ (c) in Lemma 6.5.

The following theorem determines precisely when a single iteration of spectra results

in a combinatorially rich set. Recall that for any a ∈ N, Na is an IP* set. Note that by

Lemmas 6.5 and 6.6 the conditions of Theorem 6.7 can be phrased as purely algebraic

conditions on α1 and α2. Recall that a subset A of N is an IP set if and only if there is

some idempotent p of βN with A ∈ p.

6.7 Theorem. Let α1 and α2 be positive irrationals and let γ1, γ2 ∈ {0, 1}. Consider

statements (a), (b), and (c).

(a) γ1 = γ2 and Y1/α1
∩Xα2

6= ∅

(b) γ1 6= γ2 and X1/α1
∩Xα2

6= ∅

(c) γ1 6= γ2 and α2 < 1.

If any of (a), (b), or (c) holds and A ⊆ N is a central* set, then gα2,γ2
◦gα1,γ1

[A] is

central. If none of (a), (b) or (c) holds, there is some a ∈ N such that gα2,γ2
◦gα1,γ1

[Na]

is not an IP set.

Proof. Assume (a) or (b) holds. There are four cases involved depending on the values

of γ1 and γ2. We do the case γ1 = γ2 = 1, the others being very similar. Since

Y1/α1
∩Xα2

6= ∅ we have by Lemma 6.5 that X1/α1
∩ Yα2

6= ∅. Let W2 = X1/α1
∩ Yα2

and let V2 = Z1/α1
∩ Zα2

. Then W2 = U1/α1
∩Dα2

∩ V2.

Since by assumption W2 6= ∅ this saysW2 is a left ideal of V2. Let W1 = h1/α1
[W2]

and V1 = h1/α1
[V2]. Then W1 is a left ideal of V1 and V1 contains all idempotents of

βN. Consequently V1 ∩ K(βN) 6= ∅. Pick a minimal left ideal L of V1 with L ⊆ W1.

Then L ⊆ K(V1) ⊆ V1 ∩ K(βN). Pick an idempotent p ∈ L. Now hα1
(p) ∈ K(V2) ⊆

K(Z1/α1
) = K(βN) ∩ Z1/α1

by Theorem 5.13, so hα1
(p) ∈ K(βN) ∩ Zα2

= K(Zα2
)

so hα2
◦ hα1

(p) ∈ K(Z1/α2
) ⊆ K(βN) so hα2

◦ hα1
(p) is a minimal idempotent. Now

p is a minimal idempotent and A is a central* set so A ∈ p so gα2,γ2
◦ gα1,γ1

[A] ∈

gα2,γ2
◦ gα1,γ1

(p). It thus suffices to show that gα2,γ2
◦ gα1,γ1

(p) = hα2
◦ hα1

(p). Now

p ∈ W1 = h1/α1
[W2] ⊆ h1/α1

[X1/α1
] = Yα1

. Therefore hα1
(p) = gα1,1(p). Also hα1

(p) ∈

W2 ⊆ Yα2
so hα2

(

hα1
(p)

)

= gα2,1

(

hα1
(p)

)

= gα2,1

(

gα1,1(p)
)

as required.

Now assume that (c) holds. We may further assume that (b) does not hold so that

X1/α1
∩Xα2

= ∅. There are two nearly identical cases. We do the case γ1 = 0 and γ2 = 1.

We know Yα2
is a compact subsemigroup of βN which thus has idempotents. By Lemma

6.6 we have Yα2
∩ Y1/α1

= ∅ so Yα2
∩X1/α1

6= ∅. Thus we may proceed exactly as in

the first case of this proof obtaining a minimal idempotent p ∈ V1 = h1/α1
[X1/α1

∩ Yα2
]
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and concluding as there that hα2
◦ hα1

(p) is a minimal idempotent. Now let B = {n ∈

N : −1/2 < fα1
(n) < 0}. Since p ∈ h1/α1

[X1/α1
] = Yα1

we have B ∈ p. Let ǫ = 1− α2

(which is positive by assumption) and let E = {n ∈ N : −ǫ < fα2
(n) < 0}. Since

hα1
(p) ∈ Yα2

we have E ∈ hα1
(p). Pick D ∈ p with hα1

[D] ⊆ E. Since p is a minimal

idempotent we have A ∈ p. Thus hα2
◦hα1

[A∩B∩D] ∈ hα2
◦hα1

(p) so it suffices to show

that hα2
◦ hα1

[A ∩B ∩D] ⊆ gα2,1 ◦ gα1,0[A]. To this end let w ∈ hα2
◦ hα1

[A ∩B ∩D].

Pick x ∈ A ∩ B ∩ D with w = hα2

(

hα1
(x)

)

and let m = hα1
(x). Now x ∈ B so

m − 1/2 < α1x < m so gα1,0(x) = m − 1. We show that w = gα2,1(m − 1) so that

w ∈ gα2,1 ◦ gα1,0[A]. Now x ∈ D so m ∈ E so (since w = hα2
(m) ) w − ǫ < α2m < w.

Since ǫ < 1− α2 we have w − 1 < α2(m− 1) < w so w = gα2,1(m− 1) as required.

Now assume none of (a), (b), or (c) holds. Assume first that γ1 = γ2. The two cases

are nearly identical. We do the case γ1 = γ2 = 0. Pick a ∈ N with a > 2/α1+2/(α1α2).

Let C = gα2,0 ◦ gα1,0[Na] and suppose we have an idempotent p with C ∈ p. Let

q = h1/α2
(p) and let r = h1/α1

(q). Then q and r are idempotents and therefore Na ∈ r.

Consider first the possibility that q ∈ Yα2
. By Lemma 6.5 q /∈ X1/α1

so q ∈ Y1/α1
.

Then r ∈ Xα1
, so q = hα1

(r) = gα1,0(r) so gα1,0[Na] ∈ q. Also p = hα2
(q) = gα2,1(q) so

gα2,1◦gα1,0[Na] ∈ p. By assumption C ∈ p so pick w ∈ gα2,1◦gα1,0[Na]∩gα2,0◦gα1,0[Na]

and pick x, y ∈ Na with w = gα2,1

(

gα1,0(y)
)

= gα2,0

(

gα1,0(x)
)

. Let k = gα1,0(x) and

m = gα1,0(y). Then k < α1x < k+1 and m < α1y < m+1 so α2k < α1α2x < α2k+α2

and α2m < α1α2y < α2m + α2. Also w = gα2,1(m) = gα2,0(k) so w − 1 < α2m < w

and w < α2k < w+ 1. Thus α1α2y < α2m+ α2 < w + α2 < α2k+ α2 < α1α2x+ α2 <

α2k+2α2 < w+1+2α2 < α2m+2+2α2 < α1α2y+2+2α2. Thus −α2 < α1α2x−α1α2y <

2+α2 so −a < −1/α1 < x− y < 2/(α1α2)+ 1/α1 < a. Since x, y ∈ Na this says x = y.

Then k = m while w < α2k = α2m < w, a contradiction.

Now we assume q /∈ Yα2
from which we conclude q ∈ Xα2

. Since Xα2
∩Y1/α1

= ∅ we

have q ∈ X1/α1
. Then r ∈ Yα1

so q = gα1,1(r) so gα1,1[Na] ∈ q. Let ǫ = min{α2, 1/2}

and let D = {n ∈ N : 0 < fα2
(n) < ǫ}. Since q ∈ Xα2

we have D ∈ q. Also

p = gα2,0(q) so gα2,0[gα1,1[Na] ∩D] ∈ p. Since by assumption C ∈ p, pick w ∈ gα2,0 ◦

gα1,0[Na] ∩ gα2,0[gα1,1[Na] ∩ D]. Pick k ∈ gα1,0[Na] and m ∈ gα1,1[Na] ∩ D with w =

gα2,0(m) = gα2,0(k). Then w < α2m < w + 1 and w < α2k < w + 1. Pick x, y ∈ Na

with k = gα1,0(x) and m = gα1,1(y). Then k < α1x < k + 1 and m − 1 < α1y < m so

α2k < α1α2x < α2k+α2 and α2m−α2 < α1α2y < α2m. Thus α1α2y < α2m < w+1 <

α2k+ 1 < α1α2x+ 1 < α2k+ 1+ α2 < w+ 2+ α2 < α2m+ 2+ α2 < α1α2y+ 2+ 2α2.

Thus as above we conclude x = y. Since k < α1x < k+1 and m−1 < α1y < m we have

k = m− 1. Now m ∈ D so w < α2m < w + ǫ. Now also w < α2k = α2(m− 1) < w + 1
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so w + α2 < α2m < w + ǫ so α2 < ǫ, a contradiction.

Finally assume that γ1 6= γ2 and neither (b) nor (c) holds. We shall do the case

γ1 = 0 and γ2 = 1. In this case, since (b) does not hold we have X1/α1
∩Xα2

= ∅ and

by Lemma 6.6 Y1/α1
∩ Yα2

= ∅. Pick a ∈ N such that a > 2/α1 + 2/(α1α2). We let

C = gα2,1 ◦ gα1,0[Na] and show C supports no idempotents. Suppose instead we have

an idempotent p with C ∈ p. Let q = h1/α2
(p) and let r = h1/α1

(q). Then q and r are

idempotents and therefore Na ∈ r.

Consider first the possibility that q ∈ Xα2
. Then q /∈ X1/α1

while q ∈ Z1/α1
, so

q ∈ Y1/α1
. Therefore r ∈ Xα1

and so q = hα1
(r) = gα1,0(r) so gα1,0[Na] ∈ q. Since

q ∈ Xα2
we have p = gα2,0(q) and therefore gα2,0 ◦ gα1,0[Na] ∈ p. By assumption

C ∈ p so pick w ∈ gα2,1 ◦ gα1,0[Na] ∩ gα2,0 ◦ gα1,0[Na]. Pick x and y in Na such that

w = gα2,1

(

gα1,0(y)
)

= gα2,0

(

gα1,0(x)
)

. Let k = gα1,0(x) and m = gα1,0(y). Then k <

α1x < k+1 and m < α1y < m+ 1. Also w = gα2,1(m) = gα2,0(k) so w− 1 < α2m < w

and w < α2k < w + 1. But these 8 inequalities were shown to yield a contradiction

during the treatment of the case γ1 = γ2 = 0 and q ∈ Yα2
.

Now we assume q /∈ Xα2
. Since q ∈ Zα2

we have q ∈ Yα2
. Therefore q /∈ Y1/α1

,

and consequently q ∈ X1/α1
. Therefore r ∈ Yα1

so q = hα1
(r) = gα1,1(r), and therefore

gα1,1[Na] ∈ q. Since q ∈ Yα2
we have p = gα2,1(q) so gα2,1[gα1,1[Na]] ∈ p. By assumption

C ∈ p so pick w ∈ gα2,1 ◦ gα1,1[Na] ∩ gα2,1 ◦ gα1,0[Na]. Pick x and y in Na with

w = gα2,1

(

gα1,0(x)
)

= gα2,1

(

gα1,1(y)
)

and let k = gα1,0(x) and m = gα1,1(y). As

above we conclude that x = y and hence k = m − 1. But now w − 1 < α2k < w and

w − 1 < α2m < w so α2 = α2(m− k) < 1, a contradiction.

We saw in Theorem 6.3 that if α is irrational and A is a central* set that gα,0[A]

and gα,1[A] are central sets. We show now that, even for α < 1, the conclusion cannot

be strengthened to central*, even if the hypothesis is strengthened to IP*, and the

hypothesis cannot be weakened to central.

6.8 Corollary. Let α > 0 be irrational. There is an IP* set A such that neither gα,0[A]

nor gα,1[A] is central*. There are central sets B and C such that neither gα,1[B] nor

gα,0[C] is an IP set.

Proof. Let α1 = α and let α2 = 1/α. Then Y1/α1
∩Xα2

= ∅. Note that in the proof

of the second half of Theorem 6.7, only the fact that a was sufficiently large was used.

Pick a sufficiently large so that neither gα2,1 ◦ gα1,1[Na] nor gα2,0 ◦ gα1,0[Na] is an IP

set and let A = Na. If one had say that gα1,0[A] were central*, Theorem 6.3 would

guarantee that gα2,0 ◦ gα1,0[A] is central.
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Likewise one can get a ∈ N so that gα1,1 ◦ gα2,1[Na] and gα1,0 ◦ gα2,0[Na] do not

support idempotents. Let B = gα2,1[Na] and C = gα2,0[Na]. By Theorem 6.3 B and C

are central.

We conclude by showing in Theorem 6.10 that if both α2 and α1 are bigger than 1

we get an even stronger result than in the second half of Theorem 6.7.

6.9 Lemma. If α > 1 then gα,1[N] ∩ gα,0[N] is not an IP set.

Proof. Suppose we have an idempotent p with gα,1[N]∩gα,0[N] ∈ p. Let ǫ = 1−1/α and

let B = {n ∈ N : −ǫ < f1/α(n) < ǫ}. Then B ∈ p so pick n ∈ gα,1[N]∩ gα,0[N]∩B. Pick

k,m ∈ N such that n = gα,1(k) = gα,0(m). Then n− 1 ≤ αk < n and n ≤ αm < n+ 1.

Then k < n/α ≤ k+1/α < k+1 and m−1 < m−1/α < n/α ≤ m so k = m−1. Since

n ∈ B we have either k < n/α < k+ ǫ or k+1− ǫ < n/α < k+1. But n/α ≤ k+1/α =

k+1−ǫ so the latter case cannot hold. Then m−1 < n/α < m−1+ǫ = m−1/α < n/α,

again a contradiction.

6.10 Theorem. Let α1 and α2 be irrationals each bigger than 1 and let γ1, γ2 ∈ {0, 1}.

If either

(a) γ1 = γ2 and Y1/α1
∩Xα2

= ∅ or

(b) γ1 6= γ2 and X1/α1
∩Xα2

= ∅,

then gα2,γ2
◦ gα1,γ1

[N] is not an IP set.

Proof. Again there are four cases. This time we will do the case γ1 = 1 and γ2 = 0. We

have X1/α1
∩Xα2

= ∅. Suppose we have an idempotent p with gα2,0 ◦ gα1,1[N] ∈ p and

let q = h1/α2
(p). Assume first that q ∈ Yα2

. Then p = hα2
(q) = gα2,1(q) so gα2,1[N] ∈ p

while gα2,0 ◦ gα1,1[N] ⊆ gα2,0[N] so gα2,0[N] ∈ p. This contradicts Lemma 6.9.

Thus q /∈ Yα2
. Then q ∈ Xα2

and since Xα2
∩ X1/α1

= ∅, q ∈ Y1/α1
. Let

r = h1/α1
(q). Then r ∈ Xα1

so q = hα1
(r) = gα1,0(r) and hence gα1,0[N] ∈ q. By Lemma

6.12 we have gα1,1[N] /∈ q so A = N\gα1,1[N] ∈ q. Since q ∈ Xα2
, p = hα2

(q) = gα2,0(q)

so gα2,0[A] ∈ p. Also by assumption gα2,0 ◦ gα1,1[N] ∈ p. But α2 > 1 so gα2,0 is

one-to-one so gα2,0[A] ∩ gα2,0 ◦ gα1,1[N] = ∅, a contradiction.
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