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Abstract. We study the L2-convergence of two types of ergodic averages.
The first is the average of a product of functions evaluated at return times along
arithmetic progressions, such as the expressions appearing in Furstenberg’s
proof of Szemerédi’s Theorem. The second average is taken along cubes whose
sizes tend to +∞. For each average, we show that it is sufficient to prove
the convergence for special systems, the characteristic factors. We build these
factors in a general way, independent of the type of the average. To each of
these factors we associate a natural group of transformations and give them
the structure of a nilmanifold. From the second convergence result we derive a
combinatorial interpretation for the arithmetic structure inside a set of integers
of positive upper density.

1. Introduction

1.1. The averages. A beautiful result in combinatorial number theory is Sze-
merédi’s Theorem, which states that a set of integers with positive upper density
contains arithmetic progressions of arbitrary length. Furstenberg [F77] proved Sze-
merédi’s theorem via an ergodic theorem:

Theorem (Furstenberg). Let (X,X , µ, T ) be a measure preserving probability sys-
tem and let A ∈ X be a set of positive measure. Then for every integer k ≥ 1,

lim inf
N→∞

1

N

N∑

n=1

µ
(
A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA

)
> 0 .

It is natural to ask about the convergence of these averages, and more generally
about the convergence in L2(µ) of the averages of products of bounded functions
along an arithmetic progression of length k for an arbitrary integer k ≥ 1. We
prove:

Theorem 1.1. Let (X,X , µ, T ) be an invertible measure preserving probability sys-
tem, k ≥ 1 be an integer, and let fj, 1 ≤ j ≤ k, be k bounded measurable functions
on X. Then

(1) lim
N→∞

1

N

N−1∑

n=0

f1(Tnx)f2(T 2nx) . . . fk(T knx)

exists in L2(X).

The case k = 1 is the standard ergodic theorem of von Neumann. Fursten-
berg [F77] proved this for k = 2 by reducing to the case where X is an ergodic
rotation and using the Fourier transform to prove convergence. The existence of
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limits for k = 3 with an added hypothesis that the system is totally ergodic was
shown by Conze and Lesigne in a series of papers ([CL84], [CL87] and [CL88])
and in the general case by Host and Kra [HK01]. Ziegler [Zie02b] has shown the
existence in a special case when k = 4.

If one assumes that T is weakly mixing, Furstenberg [F77] proved that for every
k the limit (1) exists and is constant. However, without the assumption of weak
mixing one can easily show that the limit need not be constant and proving conver-
gence becomes much more difficult. Nonconventional averages are those for which
even if the system is ergodic, the limit is not necessarily constant. This is the case
for k ≥ 3 in Equation (1).

Some related convergence problems have also been studied by Bourgain [Bo89]
and Furstenberg and Weiss [FW96].

We also study the related average of the product of 2k − 1 functions taken
along combinatorial cubes whose sizes tend to +∞. The general formulation of the
theorem is a bit intricate and so for clarity we begin by stating a particular case,
which was proven in [HK04].

Theorem. Let (X,X , µ, T ) be an invertible measure preserving probability system
and let fj, 1 ≤ j ≤ 7, be 7 bounded measurable functions on X. Then the averages
over (m,n, p) ∈ [M,M ′]× [N,N ′]× [P, P ′] of

f1(Tmx)f2(Tnx)f3(Tm+nx)f4(T px)f5(Tm+px)f6(Tn+px)f7(Tm+n+px)

converge in L2(µ) as M ′ −M,N ′ −N and P ′ − P tend to +∞.

Notation. For an integer k > 0, let Vk = {0, 1}k. The elements of Vk are written
without commas or parentheses. For ε = ε1ε2 . . . εk ∈ Vk and n = (n1, n2, . . . , nk) ∈
Zk, we write

ε · n = ε1n1 + ε2n2 + · · ·+ εknk .

We use 0 to denote the element 00 . . . 0 of Vk and set V ∗k = Vk \ {0}.
We generalize the above theorem to higher dimensions and show:

Theorem 1.2. Let (X,X , µ, T ) be an invertible measure preserving probability sys-
tem, k ≥ 1 be an integer, and let fε, ε ∈ V ∗k , be 2k − 1 bounded functions on X.
Then the averages

(2)

k∏

i=1

1

Ni−Mi

·
∑

n∈[M1,N1)×···×[Mk,Nk)

∏

ε∈V ∗k

fε(T
ε·nx)

converge in L2(X) as N1 −M1, N2 −M2, . . . , Nk −Mk tend to +∞.

When restricting Theorem 1.2 to the indicator function of a measurable set, we
have the following lower bound for these averages:

Theorem 1.3. Let (X,X , µ, T ) be an invertible measure preserving probability sys-
tem and let A ∈ X . Then the limit of the averages

k∏

i=1

1

Ni−Mi

·
∑

n∈[M1,N1)×···×[Mk,Nk)

µ
( ⋂

ε∈Vk
T ε·nA

)

exists and is greater than or equal to µ(A)2k when N1−M1, N2−M2, . . . , Nk−Mk

tend to +∞.
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For k = 1, Khintchine [K34] proved the existence of the limit along with the
associated lower bound, for k = 2 this was proven by Bergelson [Be00], and for
k = 3 by the authors in [HK04].

1.2. Combinatorial Interpretation. We recall that the upper density d(A) of a
set A ⊂ N is defined to be

d(A) = lim sup
N→∞

1

N
|A ∩ {1, 2, . . . , N}| .

Furstenberg’s Theorem as well as Theorem 1.3 have combinatorial interpretations
for subsets of N with positive upper density. Furstenberg’s Theorem is equiva-
lent to Szemerédi’s Theorem. In order to state the combinatorial counterpart of
Theorem 1.3 we recall the definition of a syndetic set.

Definition 1.4. Let Γ be an abelian group. A subset E of Γ is syndetic if there
exists a finite subset D of Γ such that E +D = Γ.

When Γ = Zd, this definition becomes:
A subset E of Zd is syndetic if there exist an integer N > 0 such that

E ∩
(
[M1,M1 +N ]× [M2,M2 +N ]× · · · × [Mk,Mk +N ]

)
6= ∅

for every M1,M2, . . . ,Mk ∈ Z.

When A is a subset of Z and m is an integer, we let A + m denote the set
{a+m : a ∈ A}. From Theorem 1.3 we have:

Theorem 1.5. Let A ⊂ Z with d(A) > δ > 0 and let k ≥ 1 be an integer. The set
of n = (n1, n2, . . . , nk) ∈ Zk so that

d
( ⋂

ε∈Vk
(A+ ε · n)

)
≥ δ2k

is syndetic.

Both the averages along arithmetic progressions and along cubes are concerned
with demonstrating the existence of some arithmetic structure inside a set of posi-
tive upper density. Moreover, an arithmetic progression can be seen inside a cube
with all indices nj equal. However, the end result is rather different. In Theo-
rem 1.5, we have an explicit lower bound that is optimal, but it is impossible to
have any control over the size of the syndetic constant, as can be seen with elemen-
tary examples such as rotations. This means that this result does not have a finite
version. On the other hand, Szemerédi’s Theorem can be expressed in purely finite
terms, but the problem of finding the optimal lower bound is open.

1.3. Characteristic factors. The method of characteristic factors is classical
since Furstenberg’s work [F77], even though this term only appeared explicitly more
recently [FW96]. For the problems we consider, this method consists in finding an
appropriate factor of the given system, referred to as the characteristic factor, so
that the limit behavior of the averages remains unchanged when each function is
replaced by its conditional expectation on this factor. Then it suffices to prove
the convergence when this factor is substituted for the original system, which is
facilitated when the factor has a “simple” description.

We follow this general strategy, with the difference that we focus more on the
procedure of building characteristic factors than on the particular type of average
currently under study. A standard method for finding characteristic factors is an
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iterated use of the van der Corput Lemma, with the number of steps increasing
with the complexity of the averages. For each system and each integer k, we build
a factor in a way that reflects k successive uses of the van der Corput Lemma. This
factor is almost automatically characteristic for averages of the same “complexity”.
For example, the k-dimensional average along cubes has the same characteristic
factor as the average along arithmetic progressions of length k−1. Our construction
involves the definition of a “cubic structure” of order k on the system (see Section 3),
meaning a measure on its 2kth Cartesian power. Roughly speaking, the factor we
build is the smallest possible factor with this structure (see Section 4).

The bulk of the paper (Sections 5–10), and also the most technical portion,
is devoted to the description of these factors. The initial idea is natural: For
each of these factors we associate the group of transformations which preserve
the natural cubic structure alluded to above (Section 5). This group is nilpotent.
We then conclude (Theorems 10.3 and 10.5) that for a sufficiently large (for our
purposes) class of systems, this group is a Lie group and acts transitively on the
space. Therefore, the constructed system is a nilsystem. In Section 11, we show
that the cubic structure alluded to above has a simple description for these systems.

Given this construction, we return to the original average along arithmetic pro-
gressions in Section 12 and along cubes in Section 13 and show that the charac-
teristic factors of these averages are exactly those which we have constructed. A
posteriori, the role played by the nilpotent structure is not surprising: for a k-step
nilsystem, the (k + 1)st term T kx of an arithmetic progression is constrained by
the first k terms x, Tx, . . . , T k−1x. A similar property holds for the combinatorial
structure considered in Theorem 1.2.

Convergence then follows easily from general properties of nilmanifolds. Finally,
we derive a combinatorial result from the convergence theorems.

1.4. Open questions. There are at least two possible generalizations of Theo-
rem 1.1. The first one consists in substituting integer valued polynomials p1(n),
p2(n), . . . , pk(n) for the linear terms n, 2n, . . . , kn in the averages (1). With an
added hypothesis, either that the system is totally ergodic or that all the polynomi-
als have degree > 1, we prove convergence of these polynomial averages in [HK02].
The case that the system is not totally ergodic and at least one polynomial is of
degree one and some other has higher degree remains open.

Another more ambitious generalization is to consider commuting transformations
T1, T2, . . . , Tk instead of T, T 2, . . . , T k. Characteristic factors for this problem are
unknown.

The question of convergence almost everywhere is completely different and can
not be addressed by the methods of this paper.

1.5. About the organization of the paper. We begin (Section 2) by introducing
the notation relative to 2k-Cartesian powers. We have postponed to four appendices
some definitions and results needed, which do not have a natural place in the
main text. Appendix A deals with properties of Polish groups and Lie groups,
Appendix B with nilsystems, Appendix C with cocycles and Appendix D with the
van der Corput Lemma. Most of the results presented in these Appendices are
classical.

2. General notation
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2.1. Cubes. Throughout, we use 2k-Cartesian powers of spaces for an integer k > 0
and need some shorthand notation.

Let X be a set. For an integer k ≥ 0, we write X [k] = X2k . For k > 0, we
use the sets Vk introduced above to index the coordinates of elements of this space,
which are written x = (xε : ε ∈ Vk).

When fε, ε ∈ Vk, are 2k real or complex valued functions on the set X , we define
a function

⊗
ε∈Vk fε on X [k] by

⊗

ε∈Vk
fε(x) =

∏

ε∈Vk
fε(xε) .

When φ : X → Y is a map, we write φ[k] : X [k] → Y [k] for the map given by(
φ[k](x)

)
ε

= φ(xε) for ε ∈ Vk .

We often identify X [k+1] with X [k]×X [k]. In this case, we write x = (x′,x′′) for
a point of X [k+1], where x′,x′′ ∈ X [k] are defined by

x′ε = xε0 and x′′ε = xε1

for ε ∈ Vk and ε0 and ε1 are the elements of Vk+1 given by

(ε0)j = (ε1)j = εj for 1 ≤ j ≤ k ; (ε0)k+1 = 0 and (ε1)k+1 = 1 .

The maps x 7→ x′ and x 7→ x′′ are called the projections on the first and second
side, respectively.

It is convenient to view Vk as indexing the set of vertices of the cube of dimension
k, making the use of the geometric words ‘side’, ‘face’, and ‘edge’ for particular
subsets of Vk natural. More precisely, for 0 ≤ ` ≤ k, J a subset of {1, . . . , k} with
cardinality k − ` and η ∈ {0, 1}J , the subset

α = {ε ∈ Vk : εj = ηj for every j ∈ J}
of Vk is called a face of dimension ` of Vk , or more succinctly, an `-face. Thus Vk
has one face of dimension k, namely Vk itself. It has 2k faces of dimension k − 1,
called the sides, and has k2k−1 faces of dimension 1, called edges. It has 2k sides
of dimension 0, each consisting in one element of Vk and called a vertex. We often
identify the vertex {ε} with the element ε of Vk .

Let α be an `-face of Vk. Enumerating the elements of α and of V` in lexicographic
order gives a natural bijection between α and V`. This bijection maps the faces
of Vk included in α to the faces of V`. Moreover, for every set X , it induces a

map from X [k] onto X [`]. We denote this map by ξ
[k]
X,α, or ξ

[k]
α when there is no

ambiguity about the space X . When α is any face, we call it a face projection and
when α is a side, we call it a a side projection. This is a natural generalization of
the projections on the first and second sides.

The symmetries of the cube Vk play an important role in the sequel. We write
Sk for the group of bijections of Vk onto itself which maps every face to a face
(of the same dimension, of course). This group is isomorphic to the group of the
‘geometric cube’ of dimension k, meaning the group of isometries of Rk preserving
the unit cube. It is spanned by digit permutations and reflections, which we now
define.

Definition 2.1. Let τ be a permutation of {1, . . . , k}. The permutation σ of Vk
given for ε ∈ Vk by (

σ(ε)
)
j

= ετ(j) for 1 ≤ j ≤ k
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is called a digit permutation.
Let i ∈ {1, . . . k}. The permutation σ of Vk given for ε ∈ Vk by

(
σ(ε)

)
j

= εj when j 6= i and
(
σ(ε)

)
i

= 1− εi

is called a reflection.

For any set X , the group Sk acts on X [k] by permuting the coordinates: for
σ ∈ Sk , we write σ∗ : X [k] → X [k] for the map given by

(
σ∗(x)

)
ε

= xσ(ε) for every ε ∈ Vk .

When σ is a digit permutation (respectively, a reflection) we also call the associated
map σ∗ a digit permutation (respectively, a reflection).

2.2. Probability spaces. In general, we write (X,µ) for a probability space, omit-
ting the σ-algebra. When needed, the σ-algebra of the probability space (X,µ) is
written X . By a system, we mean a probability space (X,µ) endowed with an
invertible, bi-measurable, measure preserving transformation T : X → X and we
write the system as (X,µ, T ).

For a system (X,µ, T ), we use the word factor with two different meanings: it
is either a T -invariant sub-σ-algebra Y of X or a system (Y, ν, S) and a measurable
map π : X → Y such that πµ = ν and S◦π = π◦T . We often identify the σ-algebra
Y of Y with the invariant sub-σ-algebra π−1(Y) of X .

All locally compact groups are implicitly assumed to be metrizable and endowed
with their Borel σ-algebras. Every compact group G is endowed with its Haar
measure, denoted by mG.

We write T = R/Z. We call a compact abelian group isomorphic to Td for some
integer d ≥ 0 a torus, with the convention that T0 is the trivial group.

Let G be a locally compact abelian group. By a character of G we mean a
continuous group homomorphism from G to either the torus T or the circle group

S1. The characters of G form a group Ĝ called the dual group of G. We use either

additive or multiplicative notation for Ĝ.
For a compact abelian group Z and t ∈ Z, we write (Z, t) for the probability

space (Z,mZ), endowed with the transformation given by z 7→ tz. A system of this
kind is called a rotation.

3. Construction of the measures

Throughout this section, (X,µ, T ) denotes an ergodic system.

3.1. Definition of the measures. We define by induction a T [k]-invariant mea-
sure µ[k] on X [k] for every integer k ≥ 0.

Set X [0] = X , T [0] = T and µ[0] = µ. Assume that µ[k] is defined. Let I [k] denote
the T [k] invariant σ-algebra of (X [k], µ[k], T [k]). Identifying X [k+1] with X [k]×X [k]

as explained above, we define the system (X [k+1], µ[k+1], T [k+1]) to be the relatively
independent joining of two copies of (X [k], µ[k], T [k]) over I [k].
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This means that when fε, ε ∈ Vk+1, are bounded functions on X ,

(3)

∫

X[k+1]

⊗

ε∈Vk+1

fε dµ
[k+1]

=

∫

X[k]

E
(⊗

η∈Vk
fη0

∣∣I [k]
)
E
(⊗

η∈Vk
fη1

∣∣I [k]
)
dµ[k] .

Since (X,µ, T ) is ergodic, I [1] is the trivial σ-algebra and µ[1] = µ × µ. If

(X,µ, T ) is weakly mixing, then by induction µ[k] is the 2k Cartesian power µ⊗2k

of µ for k ≥ 1.
We now give an equivalent formulation of the definition of these measures.

Notation. For an integer k ≥ 1, let

(4) µ[k] =

∫

Ωk

µ[k]
ω dPk(ω)

denote the ergodic decomposition of µ[k] under T [k].

Then by definition

(5) µ[k+1] =

∫

Ωk

µ[k]
ω × µ[k]

ω dPk(ω) .

We generalize this formula. For k, ` ≥ 1, the concatenation of an element α of
Vk with an element β of V` is the element αβ of Vk+`. This defines a bijection of
Vk × V` onto Vk+` and gives the identification

(
X [k]

)[`]
= X [k+`] .

Lemma 3.1. Let k, ` ≥ 1 be integers and for ω ∈ Ωk, let (µ[k]
ω )[`] be the measure

built from the ergodic system (X [k], µ[k]
ω , T

[k]) in the same way that µ
[k]
ω was built

from (X,µ, T ). Then

µ[k+`] =

∫

Ωk

(µ[k]
ω )[`] dPk(ω) .

Proof. By definition, µ
[k]
ω is a measure on X [k] and so (µ

[k]
ω )[`] is a measure on

(X [k])[`], which we identify with X [k+`]. For ` = 1 the formula is Equation (5).
By induction assume that it holds for some ` ≥ 1. Let Jω denote the invariant

σ-algebra of the system
(
(X [k])[`], (µ

[k]
ω )[`], (T [k])[`]

)
= (X [k+`], (µ

[k]
ω )[`], T [k+`]).

Let f and g be two bounded functions onX [k+`]. By the Pointwise Ergodic Theo-

rem, applied for both the system (X [k+`], µ[k+`], T [k+`]) and (X [k+`], (µ
[k]
ω )[`], T [k+`]),

for almost every ω the conditional expectation of f on I [k+`] (for µ[k+`]) is equal

(µ
[k]
ω )[`]-almost everywhere to the conditional expectation of f on Jω (for (µ

[k]
ω )[`]).
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As the same holds for g, we have

∫
f ⊗ g dµ[k+`+1]

=

∫

X[k+`]

E(f | I [k+`]) · E(g | I [k+`]) dµ[k+`]

=

∫

Ωk

(∫

X[k+`]

E(f | I [k+`]) · E(g | I [k+`]) d(µ[k]
ω )[`]

)
dPk(ω)

=

∫

Ωk

(∫

X[k+`]

E(f | Jω) · E(g | Jω) d(µ[k]
ω )[`]

)
dPk(ω)

=

∫

Ωk

(∫

X[k+`+1]

f ⊗ g d(µ[k]
ω )[`+1]

)
dPk(ω) ,

where the last identity uses the definition of (µ
[k]
ω )[`+1]. This means that µ[k+`+1] =∫

Ω

(µ[k]
ω )[`+1] dPk(ω). �

3.2. The case k = 1. By using the well known ergodic decomposition of µ[1] =
µ × µ, these formulas can be written more explicitly for k = 1. The Kronecker
factor of the ergodic system (X,µ, T ) is an ergodic rotation and we denote it by
(Z1(X), t1), or more simply (Z1, t1). Let µ1 denote the Haar measure of Z1, and
πX,1 or π1, denote the factor map X → Z1. For s ∈ Z1, let µ1,s denote the image
of the measure µ1 under the map z 7→ (z, sz) from Z1 to Z2

1 . This measure is
invariant under T [1] = T × T and is a self-joining of the rotation (Z1, t1). Let
µs denote the relatively independent joining of µ over µ1,s. This means that for
bounded functions f and g on X ,

(6)

∫

Z×Z
f(x0)g(x1) dµs(x0, x1) =

∫

Z

E(f | Z1)(z)E(g | Z1)(sz) dµ1(z)

where we view the conditional expectations relative to Z1 as functions defined on
Z1.

It is a classical result that the invariant σ-algebra I [1] of (X ×X,µ× µ, T × T )
consists in the sets of the form

{
(x, y) ∈ X ×X : π1(x)− π1(y) ∈ A

}
,

whereA ⊂ Z1. From this, it is not difficult to deduce that the ergodic decomposition
of µ× µ under T × T can be written as

(7) µ× µ =

∫

Z1

µs dµ1(s) .

In particular, for µ1-almost every s, the measure µs is ergodic for T × T . By
Lemma 3.1, for an integer ` > 0 we have

(8) µ[`+1] =

∫

Z1

(µs)
[`] dµ1(s) .

Formula (5) becomes

µ[2] =

∫

Z1

µs × µs dµ1(s) .
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When fε, ε ∈ V2, are 4 bounded functions on X , writing f̃ε = E(fε | Z1) and
viewing these functions as defined on Z1, by Equation (6) we have

(9)

∫

X4

⊗

ε∈V2

fε dµ
[2]

=

∫∫∫

Z3
1

f̃00(z)f̃10(z + s1)f̃01(z + s2)f̃11(z + s1 + s2) dµ1(z) dµ1(s1) dµ1(s2) .

The projection under π
[2]
1 of µ[2] on Z

[2]
1 is the Haar measure µ

[2]
1 of the closed

subgroup
{(z, z + s1, z + s2, z + s1 + s2) : z, s1, s2 ∈ Z1}

of Z
[2]
1 = Z4

1 . We can reinterpret Formula (9): the system (X [2], µ[2], T [2]) is a
joining of 4 copies of (X,µ, T ), which is relatively independent with respect to the

corresponding 4-joining µ
[2]
1 of Z1.

3.3. The side transformations.

Definition 3.2. If α is a face of Vk with k ≥ 1, let T
[k]
α denote the transformation

of X [k] given by

(T [k]
α x)ε =

{
T (xε) for ε ∈ α
xε otherwise

and we call this transformation a face transformation. When α is a side of Vk, we

call T
[k]
α a side transformation.

The sides are faces of dimension k − 1 and we denote the group spanned by the

side transformations by T [k]
k−1. The subgroup spanned by those T

[k]
α where α is a

side not containing 0 is denoted by T [k]
∗ .

We note that T [k]
k−1 contains T [k] and is spanned by T [k] and T [k]

∗ .

Lemma 3.3. For an integer k ≥ 1, the measure µ[k] is invariant under the group

T [k]
k−1 of side transformations.

Proof. We proceed by induction. For k = 1 there are only two transformations,
Id×T and T × Id, and µ[1] = µ× µ is invariant under both.

Assume that the result holds for some k ≥ 1. We consider first the side α =
{ε ∈ Vk+1 : εk+1 = 0}. Identifying X [k+1] with the Cartesian square of X [k],

we have T
[k+1]
α = T [k] × Id[k]. Since T [k] leaves each set in I [k] invariant, by the

definition (3) of µ[k+1], this measure is invariant under T
[k]
α . The same method

gives the invariance under T
[k]
α′ , where α′ is the side opposite from α.

Any other side β of Vk+1 can be written as γ × {0, 1} for some side γ of Vk.

Under the identification of X [k+1] with X [k] ×X [k], we have T
[k+1]
β = T

[k]
γ × T [k]

γ .

By the inductive hypothesis, the transformation T
[k]
γ leaves the measure µ[k] invari-

ant. Furthermore, it commutes with T [k] and so commutes with the conditional
expectation on I [k]. By the definition (3) of µ[k+1], this measure is invariant under

T
[k+1]
β . �

Notation. Let J [k](X) = J [k] denote the σ-algebra of sets on X [k] that are in-

variant under the group T [k]
∗ .
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Proposition 3.4. On (X [k], µ[k]), the σ-algebra J [k] coincides with the σ-algebra
of sets depending only on the coordinate 0.

Proof. If α is a side not containing 0, then (T
[k]
α x)0 = x0 for every x ∈ X [k]. Thus

a subset of X [k] depending only on the coordinate 0 is obviously invariant under

the group T [k]
∗ and so belongs to J [k].

We prove the converse inclusion by induction. For k = 1, X [1] = X2, the group

T [k]
∗ contains Id×T and the result is obvious.

Assume the result holds for some k ≥ 1. Let F be a bounded function on X [k+1]

that is measurable with respect to the σ-algebra J [k+1]. Write x = (x′,x′′) for a
point of X [k+1], where x′,x′′ ∈ X [k]. Since (X [k+1], µ[k+1], T [k+1]) is a self joining
of (X [k], µ[k], T [k]), the function F (x) = F (x′,x′′) on X [k+1] can be approximated
in L2(µ[k+1]) by finite sums of the form

∑

i

Fi(x
′)Gi(x

′′) ,

where Fi and Gi are bounded functions on X [k]. Since T
[k+1]
k+1 = Id[k]×T [k] is

one of the side transformations of X [k+1], it leaves F invariant and by passing to
ergodic averages, we can assume that each of the functions Gi is invariant under
T [k]. Thus, by the construction of µ[k+1], for all i, Gi(x

′) = Gi(x
′′) for µ[k+1]-

almost every (x′,x′′). Therefore the above sum is equal µ[k+1]-almost everywhere
to a function depending only on x′. Passing to the limit, there exists a bounded
function H on X [k] such that F (x) = H(x′) µ[k+1]-almost everywhere.

Under the natural embedding of Vk in Vk+1 given by the first side, each side of

Vk is the intersection of a side of Vk+1 with Vk . Since F is invariant under T [k+1]
∗ ,

H is also invariant under T [k]
∗ and thus is measurable with respect to J [k]. By the

induction hypothesis, H depends only on the 0 coordinate. �

Corollary 3.5. (X [k], µ[k]) is ergodic for the group of side transformations T [k]
k−1.

Proof. A subset A of X [k] invariant under the group T [k]
k−1 is also invariant under

the group T [k]
∗ . Thus its characteristic function is equal almost everywhere to a

function depending only on the 0 coordinate. Since A is invariant under T [k], this
last function is invariant under T and so is constant. �

Since the side transformations commute with T [k], they induce measure preserv-
ing transformations on the probability space (Ωk, Pk) introduced in (4), which we
denote by the same symbols. From the last Corollary, this immediately gives:

Corollary 3.6. (Ωk, Pk) is ergodic under the action of the group T [k]
∗ .

3.4. Symmetries.

Proposition 3.7. The measure µ[k] is invariant under the transformation σ∗ for
every σ ∈ Sk.

We note that σ∗ commutes with T [k] for every σ ∈ Sk.

Proof. First we show by induction that µ[k] is invariant under reflections.
For k = 1 the map (x0, x1) 7→ (x1, x0) is the unique reflection and it leaves the

measure µ[1] = µ× µ invariant.
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Assume that for some integer k ≥ 1, the measure µ[k] is invariant under all
reflections. For 1 ≤ j ≤ k + 1, let Rj be the reflection of X [k+1] corresponding to
the digit j. If j < k + 1, Rj can be written Sj × Sj , where Sj is the reflection

of X [k] for the digit j. Since µ[k] is invariant under Sj , by construction µ[k+1] is

invariant under Rj . The reflection Rk+1 simply exchanges the two sides of X [k+1]

and by construction of the measures, it leaves the measure µ[k+1] invariant.
Next we show that µ[k] is invariant under digit permutations. For k = 1 there

is no nontrivial digit permutation and so nothing to prove. For k = 2, there is one
nontrivial digit permutation, the map (x00, x01, x10, x11) 7→ (x00, x10, x01, x11). By
Formula (9), µ[2] is invariant under this map.

Assume that for some integer k ≥ 2, the measure µ[k] is invariant under all digit
permutations. The group of permutations of {1, . . . , k, k + 1} is spanned by the
permutations leaving k+ 1 fixed and the transposition (k, k+ 1) exchanging k and
k + 1.

Consider first the case of a permutation of {1, . . . , k, k + 1} leaving k + 1 fixed.
The corresponding transformation R of X [k+1] = X [k] × X [k] can be written as
S × S, where S is a digit permutation of X [k] and so leaves µ[k] invariant. By
construction, µ[k+1] is invariant under R.

Next consider the case of the transformation R of X [k+1] associated to the per-
mutation (k, k + 1). Using the ergodic decomposition of Formula (4) of µ[k−1] and

Equation (5) for k − 1 the measure (µ
[k−1]
ω )[2] (as a measure on (X [k−1])[2]) is in-

variant by the transposition of the two digits. Thus, when we consider the same
measure as a measure on X [k+1], it is invariant under R. Taking the integral, µ[k+1]

is invariant under R. Therefore µ[k+1] is invariant under all digit permutations. �

Corollary 3.8. The image of µ[k] under any side projection X [k] → X [k−1] is
µ[k−1].

Proof. By construction of µ[k], the result holds for the side projection associated
to the side {ε ∈ Vk : εk = 0} of Vk. The result for the other side projections follows
immediately from Proposition 3.7. �

3.5. Some seminorms. We define and study some seminorms on L∞(µ). When X
is Z/NZ for some integer N > 0 and is endowed with the transformation n 7→ n+1
mod N , these seminorms are the same as those used by Gowers in [G01], although
the contexts are very different.

For simplicity, we mostly consider real valued functions.
Fix k ≥ 1. For a bounded function f on X , by the definition (3) of µ[k]:

∫

X[k]

∏

ε∈Vk
f(xε) dµ

[k](x) =

∫

X[k−1]

(
E
( ∏

η∈Vk−1

f(xη) | I [k−1]
))2

dµ[k−1] ≥ 0

and so we can define
(10)

|||f |||k =
(∫ ⊗

ε∈Vk
f dµ[k]

)1/2k

=
(∫

X[k−1]

(
E
( ∏

η∈Vk−1

f(xη) | I [k−1]
))2

dµ[k−1]
)1/2k

.

Lemma 3.9. Let k ≥ 1 be an integer.
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(1) When fε, ε ∈ Vk, are bounded functions on X,

∣∣∣∣∣

∫ ⊗

ε∈Vk
fε dµ

[k]

∣∣∣∣∣ ≤
∏

ε∈Vk
|||fε|||k .

(2) ||| · |||k is a seminorm on L∞(µ).
(3) For a bounded function f , |||f |||k ≤ |||f |||k+1.

Proof. (1) Using the definition of µ[k], the Cauchy-Schwarz inequality and again
using definition of µ[k],

(∫ ⊗

ε∈Vk
fε dµ

[k]
)2

≤
∥∥∥E
( ⊗

η∈Vk−1

fη0|I [k−1]
)∥∥∥

2

L2(µ[k−1])
·
∥∥∥E
( ⊗

η∈Vk−1

fη1|I [k−1]
)∥∥∥

2

L2(µ[k−1])

=
(∫ ⊗

ε∈Vk
gε dµ

[k]
)
·
(∫ ⊗

ε∈Vk
hε dµ

[k]
)

where the functions gε and hε are defined for η ∈ Vk−1 by gη0 = gη1 = fη0 and
hη0 = hη1 = fη1. For each of these two integrals, we permute the digits k − 1

and k and then use the same method. Thus
(∫ ⊗

ε∈Vk fε dµ
[k]
)4

is bounded by the
product of 4 integrals. Iterating this procedure k times, we have the statement.
(2) The only nontrivial property is the subadditivity of ||| · |||k. Let f and g be

bounded functions on X . Expanding |||f + g|||2k , we get the sum of 2k integrals.
Using part (1) to bound each of them, we have the subadditivity.
(3) For a bounded function f on X ,

|||f |||2k+1

k+1 =
∥∥∥E
(⊗

η∈Vk
f | I [k]

)∥∥∥
2

L2(µ[k])
≥
(∫ ⊗

η∈Vk
f dµ[k]

)2

= |||f |||2k+1

k .

�

From part (1) of this Lemma, and the definition (3) of µ[k+1], we have:

Corollary 3.10. Let k ≥ 1 be an integer and let fε, ε ∈ Vk, be bounded functions
on X. Then ∥∥∥E

(⊗

ε∈Vk
fε | I [k]

)∥∥∥
L2(µ[k])

≤
∏

ε∈Vk
|||fε|||k+1 .

In a few cases we also need the seminorm for complex valued function and so
introduce notation for its definition. Write C : C → C for the conjugacy map
z 7→ z̄. Thus Cmz = z for m even and is z̄ for m odd. The definition of the
seminorm becomes

(11) |||f |||k =
(∫ ⊗

ε∈Vk
C |ε|f dµ[k]

)1/2k

.

Similar properties, with obvious modifications, hold for this seminorm.
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4. Construction of factors

4.1. The marginal (X [k]∗ , µ[k]∗). We continue to assume that (X,µ, T ) is an er-
godic system, and let k ≥ 1 be an integer.

We consider the 2k−1-dimensional marginals of µ[k]. For simplicity, we consider
first the marginal obtained by ‘omitting’ the coordinate 0. The other cases are
similar.

Recall that V ∗k = Vk \ {0}. Consider a point x ∈ X [k] as a pair (x0, x̃), with

x0 ∈ X and x̃ = (xε ; ε ∈ V ∗k ) ∈ X [k]∗ . Let µ[k]∗ denote the measure on X [k]∗ ,

which is the image of µ[k] under the natural projection x 7→ x̃ from X [k] onto X [k]∗ .
We recall that (X [k], µ[k]) is endowed with the measure preserving action of the

groups T [k]
∗ and T [k]

k−1. The first action is spanned by the transformations T
[k]
α for

α a side not containing 0 and the second action is spanned by T [k] and T [k]
∗ . By

Corollary 3.5, µ[k] is ergodic for the action of T [k]
k−1.

All the transformations belonging to T [k]
k−1 factor through the projection X [k] →

X [k]∗ and induce transformations of X [k]∗ preserving µ[k]∗ . This defines a measure

preserving action of the group T [k]
k−1 and of its subgroup T [k]

∗ on X [k]∗ . The measure

µ[k]∗ is ergodic for the action of T [k]∗

k−1 .

On the other hand, all the transformations belonging to T [k]
k−1 factor through the

projection x 7→ x0 from X [k] to X , and induce measure preserving transformations
of X . The transformation T [k] induces the transformation T on X , and each trans-

formation belonging to T [k]
∗ induces the trivial transformation on X . This defines a

measure preserving ergodic action of the group T [k]
k−1 on X , with a trivial restriction

to the subgroup T [k]
∗ .

Thus we can consider (in a second way) µ[k] as a joining between two systems.

The first system is (X [k]∗ , µ[k]∗), and the second (X,µ), both endowed with the

action of the group T [k]
k−1.

Let I [k]∗ denote the σ-algebra of T [k]-invariant sets of (X [k]∗ , µ[k]) and J [k]∗

denote the σ-algebra of subsets of X [k]∗ which are invariant under the action of

T [k]
∗ .

4.2. The definition of the factors Zk. Let A ⊂ X [k]∗ belong to the σ-algebra

J [k]∗ . A is invariant under the action of the group T [k]
∗ and thus the subset X ×A

of X [k] is invariant under T [k]
∗ . By Proposition 3.4, this set depends only on the first

coordinate. This means that there exists a subset B of X with X ×A = B×X [k]∗ ,
up to a subset of X [k] of µ[k]-measure zero. That is,

(12) 1A(x̃) = 1B(x0) for µ[k]-almost every x = (x0, x̃) ∈ X [k] .

It is immediate that if a subset A of X [k]∗ satisfies Equation (12) for some B ⊂ X ,

then it is invariant under T [k]
∗ and thus measurable with respect to J [k]∗ . Moreover,

the subsets B of X corresponding to a subset A ∈ J [k]∗ in this way form a sub-σ-
algebra of X . We define:

Definition 4.1. For an integer k ≥ 1, Zk−1(X) is the σ-algebra of subsets B of X

for which there exists a subset A of X [k]∗ so that Equation (12) is satisfied.

In the sequel, we often identify the σ-algebras Zk−1(X) and J [k]∗(X), by identi-

fying a subset B of X belonging to Zk−1(X) with the corresponding set A ∈ J [k]∗ .
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The σ-algebra Zk−1 is invariant under T and so defines a factor of (X,µ, T ) that
we write (Zk−1(X), µk, T ), or simply (Zk−1, µk, T ) or even Zk−1. The factor map
X 7→ Zk−1(X) is written πX,k−1 or πk−1.

As X [1]∗ = X , the σ-algebra J [1] is trivial and Z0(X) is the trivial factor.
We have already used the notation Z1(X) for the Kronecker factor and we check

now that the two definitions of Z1(X) coincide. For the moment, let Z denote the
Kronecker factor of X and let π : X → Z be the natural projection. By Formula (9),
we have µ[2]∗ = µ×µ×µ and J [2]∗ is the algebra of sets which are invariant under
T × Id×T and Id×T ×T . By classical arguments, J [2]∗ is measurable with respect
to Z × Z × Z , and more precisely J [2]∗ = Φ−1(Z), where the map Φ: X [2]∗ → Z
is given by Φ(x01, x10, x11) = π(x01) − π(x10) + π(x11). But µ[2] is concentrated
on the set {x : x00 = Φ(x̃)}. This is exactly the situation described above, with
Z1 = Z .

Lemma 4.2. For an integer k ≥ 1, (X [k], µ[k]) is the relatively independent joining

of (X,µ) and (X [k]∗ , µ[k]∗) over Zk−1 when identified with J [k]∗ .

Proof. Let f be a bounded function on X and g be a bounded function on X [k]∗ .

Since µ[k] is invariant under the group T [k]
k−1, for integers n1, n2, . . . , nk we have

∫
f(x0)g(x̃) dµ[k](x) =

∫
f(x0)g

(
(T

[k]
1 )n1(T

[k]
2 )n2 . . . (T

[k]
k )nk x̃

)
dµ[k](x) ,

where T
[k]
1 , T

[k]
2 , . . . , T

[k]
k denote the k generators of T [k]

∗ . Thus, by averaging and
taking the limit

∫
f(x0)g(x̃) dµ[k](x) =

∫
f(x0)E(g | J [k]∗)(x̃) dµ[k](x)(13)

=

∫
E(f | Zk−1)(x0)E(g | J [k]∗)(x̃) dµ[k](x) .

�

Lemma 4.3. Let f be a bounded function on X. Then

E(f | Zk−1) = 0⇐⇒ |||f |||k = 0 .

Proof. Assume that E(f | Zk−1) = 0. By Equation (13) applied with g(x̃) =∏

ε∈V ∗k

f(xε), we have |||f |||k = 0 by definition (10) of the seminorm.

Conversely, assume that |||f |||k = 0. By Lemma 3.9, for every choice of fε, ε ∈ V ∗k ,
∫

X[k]

f(x0)
∏

ε∈V ∗k

fε(xε) dµ
[k](x) = 0 .

By density, the function x 7→ f(x0) is orthogonal in L2(µ[k]) to every function
defined on X [k]∗ , and in particular to every function measurable with respect to
J [k]∗ . But this means that f is orthogonal in L2(µ) to every Zk−1-measurable
function and so E(f | Zk−1) = 0. �

Corollary 4.4. The factors Zk(X), k ≥ 1, form an increasing sequence of factors
of X.



NONCONVENTIONAL ERGODIC AVERAGES AND NILMANIFOLDS 15

4.3. Taking factors. Let p : (X,X , µ, T ) → (Y,Y , ν, T ) be a factor map. We can
associate to Y the space Y [k] and the measure ν[k] in the same way that X [k] and
µ[k] are associated to X in Section 3. This induces a natural map p[k] : X [k] → Y [k],

commuting with the transformations T [k] and the group T [k]
k−1.

Lemma 4.5. Let p : (X,µ, T ) → (Y, ν, T ) be a factor map and let k ≥ 1 be an
integer.

(1) The map p[k] : (X [k], µ[k], T [k])→ (Y [k], ν[k], T [k]) is a factor map.
(2) For a bounded function f on Y , |||f |||k = |||f ◦ p|||k, where the first seminorm

is associated to Y and the second one to X.

Proof. (1) Clearly p[k] commutes with the transformation T [k] and so it suffices to
show that the image of µ[k] under p[k] is ν[k]. We prove this statement by induction.
The result is obvious for k = 0 and so assume it holds for some k ≥ 0. Let fε,
ε ∈ Vk, be bounded functions on Y . Since p[k] is a factor map, it commutes with
the operators of conditional expectation on the invariant σ-algebras and we have

E
((⊗

ε∈Vk
fε
)
◦ p[k]

∣∣I [k](X)
)

= E
(⊗

ε∈Vk
fε
∣∣I [k](X)

)
◦ p[k] .

The statement for k + 1 follows from the definitions of the measures µ[k+1] and
ν[k+1].

(2) This follows immediately from the first part and the definitions of the semi-
norms. �

Proposition 4.6. Let p : (X,µ, T )→ (Y, ν, T ) be a factor map and let k ≥ 1 be an
integer. Then p−1(Zk−1(Y )) = Zk−1(X) ∩ p−1(Y).

Using the identification of the σ-algebras Y and p−1(Y), this formula is then
written

Zk−1(Y ) = Zk−1(X) ∩ Y .

Proof. For k = 1 there is nothing to prove. Let k ≥ 2 and let p[k]∗ : X [k]∗ → Y [k]∗

denote the natural map. By Lemma 4.5, it is a factor map. Let f be a bounded
function on X that is measurable with respect to p−1(Zk−1(Y )). Then f = g ◦p for
some function g on Y which is measurable with respect to Zk−1(Y ). There exists
a function F on Y [k]∗ , measurable with respect to J [k]∗ , so that g(y0) = F (ỹ) for

ν[k]-almost every y = (y0, ỹ) ∈ Y [k]. Thus g ◦ p(x0) = F ◦ p[k]∗(x̃) for µ[k]-almost
every x = (x0, x̃) ∈ X [k] and the function f = g ◦ p is measurable with respect to
Zk−1(X). We have p−1(Zk−1(Y )) ⊂ Zk−1(X) ∩ p−1(Y).

Conversely, assume that f is a bounded function on X , measurable with respect
to Zk−1(X) ∩ p−1(Y). Then f = g ◦ p for some g on Y . Write g = g′ + g′′, where
g′ is measurable with respect to Zk−1(Y ) and E(g′′ | Zk−1(Y )) = 0. By the first
part, g′ ◦ p is measurable with respect to Zk−1(X). Using Lemma 4.3 and Part (2)
of Lemma 4.5, |||g′′|||k = 0 and so |||g′′ ◦ p|||k = 0 and E(g′′ ◦ p | Zk−1(X)) = 0. Since
f = g′ ◦p+ g′′ ◦p is measurable with respect to Zk−1(X), we have g′′ ◦p = 0. Thus
g′′ = 0 and g is measurable with respect to Zk−1(Y ). �

4.4. The factor Z
[k]
` of X [k]. We apply this to the factors Z` = Z`(X) of X .

For integers k, ` ≥ 1, (Z
[k]
` , µ

[k]
` , T

[k]) is the 2k-dimensional system associated to

(Z`, µ`, T ) in the same way that (X [k], µ[k], T [k]) is associated to (X,µ, T ). The
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map π
[k]
` : X [k] → Z

[k]
` is a factor map. We have Zk(Z`(X)) = Zk(X) ∩ Z`(X).

Since the sequence {Zk} is increasing, we have

(14) Zk(Z`(X)) =

{
Zk(X) if k ≤ `
Z`(x) otherwise .

Proposition 4.7. Let k ≥ 1 be an integer.

(1) As a joining of 2k copies of (X,µ), (X [k], µ[k]) is relatively independent

over the joining (Z
[k]
k−1, µ

[k]
k−1) of 2k copies of (Zk−1, µk−1).

(2) Zk is the smallest factor Y of X so that the σ-algebra I [k] is measurable
with respect to Y [k].

Proof. (1) The statement is equivalent to showing whenever fε, ε ∈ Vk , are bounded
functions on X ,

(15)

∫

X[k]

⊗

ε∈Vk
fε dµ

[k] =

∫

Z
[k]
k−1

⊗

ε∈Vk
E(fε | Zk−1) dµ

[k]
k−1 .

It suffices to show that

(16)

∫

X[k]

⊗

ε∈Vk
fε dµ

[k] = 0

whenever E(fη | Zk−1) = 0 for some η ∈ Vk. By Lemma 4.3, if E(fη | Zk−1) = 0,
we have that |||fη |||k = 0. Lemma 3.9 implies equality (16).

(2) Let fε, ε ∈ Vk, be bounded functions on X . We claim that

(17) E
(⊗

ε∈Vk
fε | I [k]

)
= E

(⊗

ε∈Vk
E(fε | Zk) | I [k]

)
.

As above, it suffices to show this holds when E(fη | Zk) = 0 for some η ∈ Vk. By
Lemma 4.3, this condition implies that |||fη |||k+1 = 0. By Corollary 3.10, the left
hand side of Equation (17) is equal to zero and the claim follows.

Every bounded function on X [k] which is measurable with respect to I [k] can be
approximated in L2(µ[k]) by finite sums of functions of the form E(

⊗
ε∈Vk fε | I [k])

where fε, ε ∈ Vk, are bounded functions on X . By Equation (17), one can assume
that these functions are measurable with respect to Zk. In this case,

⊗
ε∈Vk fε is

measurable with respect to Z [k]
k (recall that π

[k]
k : X [k] → Z

[k]
k is a factor map by

Part (1) of Lemma 4.5). Since this σ-algebra is invariant under T [k], E(
⊗

ε∈Vk fε |
I [k]) is also measurable with respect to Z [k]

k . Therefore I [k] is measurable with

respect to Z [k]
k .

We use induction to show that Zk is the smallest factor of X with this property.
For k = 0, I [0] and Z0 are both the trivial factor of X and there is nothing to
prove. Let k ≥ 1 and assume that the result holds for k − 1.

Let Y be a factor of X so that I [k] is measurable with respect to Y [k]. For any
bounded function f on X with E(f | Y) = 0, we have to show that E(f | Zk) = 0.

By projecting on the first 2k−1 coordinates, I [k−1] is measurable with respect
to Y [k−1]. By the induction hypothesis, Y ⊃ Zk−1. Since µ[k] is a relatively

independent joining over Z
[k]
k−1, it is a relatively independent joining over Y [k].
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This implies that when fε, ε ∈ Vk, are bounded functions on X , we have

E(
⊗

ε∈Vk
fε | Y [k]) =

⊗

ε∈Vk
E(fε | Y) .

We apply this with fε = f for all ε. The function x 7→ ∏
ε∈Vk f(xε) has zero

conditional expectation with respect to Y [k]. By hypothesis, it has zero conditional
expectation with respect to I [k]. By the definition (10) of the seminorm, |||f |||k+1 = 0
and by Lemma 4.3, E(f | Zk) = 0. �

4.5. More about the marginal µ[k]∗. The results of this Subsection are used
only in Section 13, in the study of the second kind of averages.

Lemma 4.8. Let k ≥ 2 and fε, ε ∈ Vk, be 2k bounded functions on X. If there
exists η ∈ Vk so that fη is measurable with respect to Zk−2 and if there exists ζ ∈ Vk
so that E(fζ | Zk−2) = 0, then

∫ ⊗
ε∈Vk fε dµ

[k] = 0.

Proof. If η = ζ, then fη = fζ = 0 and the result is obvious.
Consider first the case that (η, ζ) is an edge of Vk. Without loss of generality,

we can assume that for some j, ηj = 0 and ζj = 1 and that ηi = ζi for i 6= j.
We proceed as in the proof of Lemma 3.9, but stop the iteration of the Cauchy-

Schwarz inequality one step earlier. This gives a bound of (
∫ ⊗

ε∈Vk fε dµ
[k])2k−1

by a product of 2k−1 integrals, with one of them being
∫ ∏

ε∈Vk
εj=0

fη(xε) ·
∏

ε∈Vk
εj=1

fζ(xε) dµ
[k](x)

=

∫
E(

⊗

ε∈Vk−1

fη | I [k−1]) · E(
⊗

ε∈Vk−1

fζ | I [k−1]) dµ[k−1] .

The conditional expectation with respect to I [k−1] commutes with the conditional

expectation with respect to Z [k−1]
k−2 . The function

⊗
ε∈Vk−1

fη is measurable with

respect to Z [k−1]
k−2 and thus the first conditional expectation in the above integral is

measurable with respect to this factor. Since µ[k−1] is relatively independent over

Z [k−1]
k−2 , we have E(

⊗
ε∈Vk−1

fζ | Z [k−1]
k−2 ) = 0 and the conditional expectation with

respect to Z [k−1]
k−2 of the second term in the integral is 0. Therefore the integral is

zero.
Now consider the general case. Choose a sequence η = η1, η2, . . . , ηm = ζ in Vk

so that (η`, η`+1) is an edge for each `. Make a series of changes in the integral∫ ⊗
ε∈Vk fε dµ

[k], substituting successively E(fη2 | Zk−2) for fη2 , E(fη3 | Zk−2)

for fη3 , . . . , and E(fηm | Zk−2) for fηm = fζ . By the previous case, each of these
substitutions leaves the value of the integral unchanged. After the last substitution,
the integral is obviously 0. �
Proposition 4.9. (1) For every integer k ≥ 2, the measure µ[k]∗ is the rela-

tively independent joining of 2k − 1 copies of µ over Z [k]∗

k−2

(2) For every integer k ≥ 1, the σ-algebra I [k]∗ is measurable with respect to

Z [k]∗

k−1

(3) For every integer k ≥ 1, the σ-algebra J [k]∗ is measurable with respect to

Z [k]∗

k−1.
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Proof. (1) Let fε, ε ∈ V ∗k , be bounded functions on X and assume that E(fζ |
Zk−2) = 0 for some ζ ∈ V ∗k . Set f0 = 1. By Lemma 4.8,

∫ ⊗

ε∈V ∗k

fε dµ
[k]∗ =

∫ ⊗

ε∈Vk
fε dµ

[k] = 0 .

(2) Let fε, ε ∈ V ∗k , be bounded functions on X and assume that E(fζ | Zk−1) = 0
for some ζ ∈ V ∗k . Define f0 = 1 and 2k functions on X by gε0 = gε1 = fε for ε ∈ Vk.
Then ∫

E(
⊗

ε∈V ∗k

fε | I [k]∗)2 dµ[k]∗ =

∫
E(
⊗

ε∈Vk
fε | I [k])2 dµ[k]

=

∫ ⊗

η∈Vk+1

gη dµ
[k+1] = 0

by Lemma 4.8, and the result follows.
(3) Let fε, ε ∈ V ∗k , be bounded functions on X and assume that E(fζ | Zk−1) = 0
for some ζ ∈ V ∗k . By definition of the factor Zk−1, there exists a bounded function
f0 on X , measurable with respect to Zk−1, with

f0(x0) = E
( ∏

ε∈V ∗k

fε(xε) | J [k]∗
)
(x̃) for µ[k] almost every x = (x0, x̃) .

As the measure µ[k] is relatively independent with respect to Zk−1 and E(fζ |
Zk−1) = 0 we have

0 =

∫ ∏

ε∈Vk
fε(xε) dµ

[k](x) =

∫
f0(x0)E

( ∏

ε∈V ∗k

fε(xε) | J [k]∗
)
(x̃) dµ[k](x0, x̃)

=

∫ ∣∣E
( ∏

ε∈V ∗k

fε(xε) | J [k]∗
)
(x̃)
∣∣2 dµ[k]∗(x̃)

and the result follows. �
4.6. Systems of order k. By Corollary 4.4, the factors Zk(X) form an increasing
sequence of factors of X .

Definition 4.10. An ergodic system (X,µ, T ) is of order k for an integer k ≥ 0 if
X = Zk(X).

A system might not be of order k for any integer k ≥ 1, but we show that any
system contains a factor of order k for any integer k ≥ 1. These factors may all be
the trivial system, for example if X is weakly mixing. By Equation (14), a system
of order k is also of order ` for any integer ` > k. Moreover, for an ergodic system
X and any integer k, the factor Zk(X) is a system of order k.

Systems of order 1 are ergodic rotations, while systems of order 2 are ergodic
quasi-affine systems (see [HK01]).

Proposition 4.11. (1) A factor of a system of order k is of order k.
(2) Let X be an ergodic system and Y be a factor of X. If Y is a system of

order k, then it is a factor of Zk(X).
(3) An inverse limit of a sequence of systems of order k is of order k.

Properties (1) and (2) make it natural to refer to Zk(X) as the maximal factor
of order k of X .



NONCONVENTIONAL ERGODIC AVERAGES AND NILMANIFOLDS 19

Proof. The first two assertions follow immediately from Proposition 4.6.
Let X = lim←−Xi be an inverse limit of a family of systems of order k and let f be

a bounded function on X . If f is measurable with respect to Xj for some j, then
(using the same notation as above) by Definition 4.1 there exists a function F on
X [k]∗ such that f(x0) = F (x̃) µ[k]-almost everywhere. By density, the same result
holds for any bounded function on X and the result follows by using Definition 4.1
once again. �

Using the characterization of Zk(X) in Lemma 4.3, we have:

Corollary 4.12. An ergodic system (X,µ, T ) is of order k if and only if |||f |||k+1 6= 0
for every non-zero bounded function f on X .

5. A group associated to each ergodic system

In this Section, we associate to each ergodic system X a group G(X) of measure
preserving transformations of X . The most interesting case will be when X is of
order k for some k. Our ultimate goal is to show that for a large class of systems
of order k, the group G(X) is a nilpotent Lie group and acts transitively on X
(Theorems 10.1 and 10.5).

Definition 5.1. Let (X,µ, T ) be an ergodic system. We write G(X) or G for the
group of measure preserving transformations x 7→ g · x of X which satisfy for every
integer ` > 0 the property:

(P`) The transformation g[`] of X [`] leaves the measure µ[`] invariant and acts
trivially on the invariant σ-algebra I [`](X).

G(X) is endowed with the topology of convergence in probability. This means
that when {gn} is a sequence in G and g ∈ G, we have gn → g if and only if
µ(gi · A ∆ g · A) → 0 for every A ⊂ X . An equivalent condition is that for every
f ∈ L2(µ), f ◦ gn → f ◦ g in L2(µ).

The last condition of P` means that the transformation g[`] leaves each set in
I [`] invariant, up to a µ[`]-null set.

We begin with a few remarks. Let (X,µ, T ) be an ergodic system.
ı) The transformation T itself belongs to G(X).
ıı) G(X) is a Polish group.
ııı) Let p : (X,µ, T ) → (Y, ν, S) be a factor map. Let g ∈ G(X) be such that g

maps Y to itself. In other words, there exists a measure preserving transformation
h : y 7→ h · y of Y , with h ◦ p = p ◦ g. For every `, the map p[`] : (X [`], µ[`], T [`]) →
(Y [`], ν[`], S[`]) is a factor map by Lemma 4.5, part (1). Thus the measure ν [`]

is invariant under h[`]. As the inverse image of the σ-algebra I [`](Y ) under p[`] is
included in I [`](X), the transformation h[`] acts trivially on I [`](Y ). Thus h ∈ G(Y ).
ıν) Let g be a measure preserving transformation of X satisfying (P`) for some

` and let k < ` be an integer. We choose a k-face f of V`, and write as usual

ξ
[`]
f : X [`] → X [k] for the associated projection. The image of µ[`] by ξ

[`]
f is µ[k] and

we have T [k] ◦ ξ[`]
f = ξ

[`]
f ◦ T [`] thus ξ

[`]
f

−1
(I [k]) ⊂ I [`]. It follows immediately that

g satisfies (Pk). Thus Property (P`) implies Property (Pk) for k < `.

5.1. General properties.
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Lemma 5.2. Let (X,µ, T ) be an ergodic system. Then for any k ≥ 0, every
g ∈ G(X) maps the σ-algebra Zk = Zk(X) to itself and thus induces a measure
preserving transformation of Zk, belonging to G(Zk).

Notation. We write pkg : x 7→ pkg·x for this transformation. The map pk : G(X)→
G(Zk) is clearly a continuous group homomorphism.

Proof. Let g ∈ G and k ≥ 0 be an integer. Let f be a bounded function on X with
E(f | Zk) = 0. By Lemma 4.3 and the definition (10) of the seminorm,

0 = |||f |||2k+1

k+1 =

∫

X[k+1]

⊗

ε∈Vk+1

f dµ[k+1] =

∫

X[k+1]

⊗

ε∈Vk+1

f ◦ g dµ[k+1] .

Since g[k+1] leaves the measure µ[k+1] invariant, we have |||f ◦g|||k+1 = 0 and E(f ◦g |
Zk) = 0. By using the same argument with g−1 substituted for g, we have that
E(f ◦ g | Zk) = 0 implies E(f | Zk) = 0. We deduce that g · Zk = Zk. Thus
g induces a transformation of Zk. By Remark ııı) above, this transformation pkg
belongs to G(Zk). �

Notation. Let G be a group. Let k ≥ 1 be an integer and let α be a face of Vk.

Analogous to the definition of the side transformations, for g ∈ G we also write g
[k]
α

for the element of G[k] given by

(
g[k]
α

)
ε

= g if ε ∈ α ;
(
g[k]
α

)
ε

= 1 otherwise.

When G acts on a space X , we write also g
[k]
α for the transformation of X [k] asso-

ciated to this element of G[k]: For x ∈ X [k],

(
g[k]
α · x

)
ε

=

{
g · xε if ε ∈ α
xε otherwise.

Lemma 5.3. Let (X,µ, T ) be an ergodic system and let 0 ≤ ` < k be integers. For
a measure preserving transformation g : x 7→ g ·x of X, the following are equivalent:

(1) For any `-face α of Vk, the transformation g
[k]
α of X [k] leaves the measure

µ[k] invariant and maps the σ-algebra I [k] to itself.

(2) For any (`+ 1)-face β of Vk+1 the transformation g
[k+1]
β leaves the measure

µ[k+1] invariant.

(3) For any (`+ 1)-face γ of Vk the transformation g
[k]
γ leaves the measure µ[k]

invariant and acts trivially on the σ-algebra I [k].

Proof. We note first that if any one of these properties holds for a face, then by
permuting the coordinates, it holds for any face of the same dimension.

(1) =⇒ (2). Let α be an `-face of Vk . The transformation g
[k]
α preserves the measure

µ[k] and the σ-algebra I [k], thus commutes with the conditional expectation on this

σ-algebra. For any bounded function F on X [k], we have E(F | I [k]) ◦ g[k]
α =
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E(F ◦ g[k]
α | I [k]). So, for bounded functions F ′, F ′′ on X [k],

∫

X[k+1]

(F ′ ⊗ F ′′) ◦ (g[k]
α × g[k]

α ) dµ[k+1]

=

∫

X[k]

E(F ′ ◦ g[k]
α | I [k]) · E(F ′′ ◦ g[k]

α | I [k]) dµ[k]

=

∫

X[k]

E(F ′ | I [k]) ◦ g[k]
α · E(F ′′ | I [k]) ◦ g[k]

α dµ[k]

=

∫

X[k]

E(F ′ | I [k]) · E(F ′′ | I [k]) dµ[k]

=

∫

X[k+1]

F ′ ⊗ F ′′ dµ[k+1]

and the measure µ[k+1] is invariant under g
[k]
α × g[k]

α . But this transformation is

g
[k+1]
β for some (`+ 1)-face β of Vk+1 and so Property (2) follows.

(2) =⇒ (3). Let γ be an (` + 1)-face of Vk. Under the bijection between Vk and
the first k-face of Vk+1, γ corresponds to an (`+ 1)-face β of Vk+1. Under the usual

identification of X [k+1] with X [k] × X [k], we have g
[k+1]
β = g

[k]
γ × Id[k]. Since the

measure µ[k+1] is invariant under g
[k+1]
β and each of its projections on X [k] is equal

to µ[k], this last measure is invariant under g
[k]
γ . For a bounded function F on X [k],

measurable with respect to I [k], we have

‖F‖2L2(µ[k]) =

∫
F ⊗ F dµ[k+1] =

∫
(F ⊗ F ) ◦ g[k+1]

β dµ[k+1]

=

∫
(F ◦ g[k]

γ )⊗ F dµ[k+1] =

∫
E(F ◦ g[k]

γ | I [k]) · F dµ[k] .

Thus E(F ◦ g[k]
γ | I [k]) = F and F ◦ g[k]

γ = F . Property (3) is proven.
(3) =⇒ (1). Let α be an `-face of Vk and let γ be an (` + 1)-face of Vk. Since

g
[k]
γ acts trivially on I [k], by using the definition of the conditional expectation we

have E(F ◦ g[k]
γ | I [k]) = E(F | I [k]) for any bounded function F on X [k]. By the

definition of the measure µ[k+1], this measure is invariant under g
[k]
γ × Id[k]. But

this transformation is equal to g
[k+1]
β for some (`+1)-face β of Vk+1. By permuting

coordinates, the measure µ[k+1] is invariant under g
[k+1]
β for every (`+ 1)-face β of

Vk+1. As the transformation g
[k]
α ×g[k]

α is a transformation of this kind, it leaves the

measure µ[k+1] invariant. By projection, the measure µ[k] is invariant under g
[k]
α .

Let F be a bounded function on X [k], measurable with respect to I [k]. Then

‖E(F ◦ g[k]
α | I [k])‖2L2(µ[k]) =

∫
(F ◦ g[k]

α )⊗ (F ◦ g[k]
α ) dµ[k+1] =

∫
(F ⊗ F )⊗ (g[k]

α × g[k]
α ) dµ[k+1]

=

∫
F ⊗ F dµ[k+1] = ‖E(F | I [k])‖2L2(µ[k]) = ‖F‖2L2(µ[k]) = ‖F ◦ g[k]

α ‖2L2(µ[k])

and this means that F ◦ g[k]
α is measurable with respect to I [k]. �
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By applying this Lemma with ` = k − 1 we get some characterizations of the
group G(X):

Corollary 5.4. Let (X,µ, T ) be an ergodic system and g : x 7→ g · x a measure
preserving transformation of X. The following are equivalent:

(1) For every integer k > 0 and every side α of Vk the measure µ[k] is invariant

under g
[k]
α .

(2) For every integer k > 0 and every side α of Vk, the measure µ[k] is invariant

under g
[k]
α and this transformation maps the σ-algebra I [k] to itself.

(3) g ∈ G(X).

By an automorphism of the system (X,µ, T ), we mean a measure preserving
transformation of X that commutes with T .

Lemma 5.5. Let (X,µ, T ) be an ergodic system. Then every automorphism of X
belongs to G(X).

Moreover, if g : x 7→ g · x is an automorphism of X acting trivially on Z`(X)
for some integer ` ≥ 0, then for every integer k > 0 the measure µ[`+k] is invariant

under g
[`+k]
α for every (k − 1)-face α of V`+k.

Proof. Let g be an automorphism of X as in the second part of the Lemma. We
use the formula (4) for µ[`+1] and the expression given by Lemma 3.1 for µ[`+k]:

µ[`+1] =

∫

Ω`+1

µ[`+1]
ω dP`+1(ω) and µ[`+k] =

∫

Ω`+1

(
µ[`+1]
ω

)[k−1]
dP`+1(ω) .

As µ[`+1] is relatively independent over Z
[`+1]
` and g acts trivially on Z`, we get

that the measure µ[`+1] is invariant under g
[`+1]
ε for any vertex ε ∈ V`+1. As

the transformation g
[`+1]
ε commutes with T [`+1], it induces a measure preserving

transformation h of Ω`+1. Moreover, for P`+1-almost every ω ∈ Ω`+1, the image of

µ
[`+1]
ω under g

[`+1]
ε is µ

[`+1]
h·ω . It follows that the measure µ[`+k] is invariant under

the transformation g
[`+1]
ε × · · · × g

[`+1]
ε (2k−1 times). But this transformation is

g
[`+k]
α , for some (k − 1)-face α of Vk+`.

The second part of the Lemma follows by permutation of coordinates. The first
part of the Lemma follows from the second part with ` = 0 and Corollary 5.4. �
5.2. Faces and commutators. We need some algebraic preliminaries.

Definition 5.6. Let G be a Polish group written with multiplicative notation. For
every integer k ≥ 0, G[k] is endowed with the product topology. For 0 ≤ ` ≤ k, we

write G
[k]
` for the closed subgroup of G[k] spanned by

(18) {g[k]
α : g ∈ G and α is an `-face of Vk} .

Thus G
[k]
0 = G[k] and G

[k]
k is the diagonal subgroup {(g, g, . . . , g) : g ∈ G} of

G[k]. We call G
[k]
k−1 the side subgroup and G

[k]
1 the edge subgroup of G[k].

For j ≥ 0, G(j) denotes the closed jth iterated commutator subgroup of G (see
Appendix A). Thus G(0) = G, G(1) = G′ is the closed commutator subgroup of G,
and so on.

Lemma 5.7. Let G be a Polish group. For integers 0 ≤ j < k, the jth iterated

commutator subgroup of G
[k]
k−1 contains (G(j))

[k]
k−j−1.
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Actually equality holds, but we omit the proof as this fact is not needed.

Proof. For g, h ∈ G and faces α, β of Vk, an immediate computation gives

(19)
[
g[k]
α ;h

[k]
β

]
= [g;h]

[k]
α∩β .

For j = 0 the statement of the Lemma is trivial. For j > 0 the statement is proved
by induction. Every (k− j − 1)-face γ of Vk can be written as the intersection of a
side α and a (k − j)-face β. By using Equation (19) we get the result. �

Corollary 5.8. Let (X,µ, T ) be an ergodic system and G = G(X). Then, for

integers 0 ≤ j < k, any g ∈ G(j) and any (k − j − 1)-face α of Vk, the map g
[k]
α

leaves the measure µ[k] invariant and maps the σ-algebra I [k] to itself.

Proof. Let k ≥ 1 and H be the subgroup of G [k] consisting of the transformations
g = (gε : ε ∈ Vk) of X [k] that leave the measure µ[k] invariant and maps the

σ-algebra I [k] to itself. By Corollary 5.4, H contains the side group G [k]
k−1. By

Lemma 5.7, H contains (G(j))
[k]
k−j−1 for 0 ≤ j < k. �

Corollary 5.9. If (X,µ, T ) is a system of order k, then the group G(X) is k-step
nilpotent.

Proof. Let g ∈ G(k). By Corollary 5.8, for any vertex ε ∈ Vk+1, the measure µ[k+1]

is invariant under g
[k+1]
ε . Let f be a bounded function on X . Then

|||f ◦ g − f |||2k+1

k+1 =

∫ ∏

ε∈Vk+1

(
f(g · xε)− f(xε)

)
dµ[k+1] .

All 2k+1 integrals obtained by expanding the right side of this equality are equal
up to sign and so this expression is zero. By Corollary 4.12, f = f ◦ g so g acts
trivially on X , thus is the identity element of G. The group G(k) is trivial. �

Corollary 5.10. Let (X,µ, T ) be a system of order k and u an automorphism of
X inducing the trivial transformation on Zk−1(X). Then u belongs to the center
of G(X).

Proof. u belongs to G(X) by Lemma 5.5. Let g ∈ G. Let ε be a vertex of Vk+1.
We choose an edge α and a side β of Vk+1 with ε = α ∩ β. By Lemma 5.5, µ[k+1]

is invariant under u
[k+1]
α . By Corollary 5.4 this measure is invariant under g

[k+1]
β .

Thus this measure is invariant under [u
[k+1]
α ; g

[k+1]
β ] = [u; g]

[k+1]
ε . We conclude as

in the proof of the preceding Corollary that [u; g] is the identity. �

6. Relations between consecutive factors

We study here the relations between the factors Zk−1(X) of a given ergodic
system (X,µ, T ). For each integer k > 1, Zk(X) is an extension of Zk−1(X). We
show first that this extension is isometric, then that it is an extension by a compact
abelian group. We then describe this extension more completely.
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6.1. Isometric extensions. We recall (see [FW96]) that an ergodic isometric ex-
tension W of a system (Y, µ, S) can be written (Y ×G/H, µ× λ, S) where:

• G is a compact (metrizable) group and H is a closed subgroup.
• λ = mG/H is the Haar measure on G/H . That is, λ is the unique prob-

ability measure on G/H which is invariant under the action of G by left
translations. It is also the image of the Haar measure mG of G under the
natural projection G 7→ G/H .

• ρ = Y → G is a cocycle and S : Y ×G/H → Y ×G/H is given by S(y, u) =
(Ty, ρ(y)u), where the left action of G on G/H is written (g, u) 7→ gu.

Without loss, we can reduce to the case that the action of G on G/H is faithful,
meaning that H does not contain any nontrivial normal subgroup of G. Moreover,
we can assume that the the cocycle ρ : Y → G is ergodic, meaning that the system
(Y ×G,µ×mG, Tρ) is ergodic. As usual, Tρ(y, g) = (Ty, ρ(y)g).

To every g ∈ G we associate a measure preserving transformation x 7→ g · x of
W by

g · (y, u) = (y, gu) .

We also denote this transformation by g.
Any factor of W = Y × G/H over Y has the form Y × G/L, for some closed

subgroup L of G containing H . In particular, the action of g ∈ G on W induces a
measure preserving transformation on this factor, written with the same notation.

Lemma 6.1. Let W = Y × G/H be an ergodic isometric extension of Y so that
the corresponding extension Y ×G is ergodic. Then, for every g ∈ G, g[1] = g × g
acts trivially on the invariant σ-algebra I [1](W ) of W ×W .

Proof. Let T denote the transformation on W . Consider the factor K of W spanned
by Y and the Kronecker factor Z1(W ) of W . Then K is an extension of Y by a
compact abelian group. Therefore, K = Y × G/L for some closed subgroup L of
G containing H and containing the commutator subgroup G′ of G. Thus, for any
g ∈ G, the action of g on K commutes with T and it induces an automorphism of
the Kronecker factor Z1(K) = Z1(W ).

But an automorphism of an ergodic rotation is itself a rotation. By the descrip-
tion in Section 3.2 of the invariant sets of W ×W , the result follows. �

6.2. Zk is an abelian group extension of Zk−1.

Lemma 6.2. Let (X,µ, T ) be an ergodic system and let k ≥ 2 an integer. Then
Zk is an isometric extension of Zk−1.

Proof. Let Y be the maximal isometric extension of Zk−1 which is a factor of X
(see [FW96]).

We consider (X [k], µ[k], T [k]) as a joining of (X,µ, T ) and (X [k]∗ , µ[k]∗ , T [k]∗) and
recall that this joining is relatively independent with respect to the common factor
Zk−1 = I [k]∗ of these two systems. It is then classical that the invariant σ-algebra
I [k] of (X [k], µ[k], T [k]) is measurable with respect to Y ⊗ X [k]∗ .

Let f be a bounded function on X with E(f | Y) = 0. Write F for the function

x 7→∏
ε∈Vk f(xε) on X [k]. Since µ[k] is relatively independent with respect to Z [k]

k−1

and Y ⊃ Zk−1, F has zero conditional expectation on the σ-algebra Y ⊗X [k]∗ and
so zero conditional expectation on I [k]. With the usual identification of X [k+1] with
the Cartesian square of X [k], we have

∫
X[k+1] F (x′)F (x′′) dµ[k+1](x′,x′′) = 0. That
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is, |||f |||k+1 = 0 by definition of this seminorm and E(f | Zk) = 0 by Lemma 4.3.
Therefore Zk ⊂ Y . �

Proposition 6.3. Let (X,µ, T ) be a system of order k ≥ 2.

(1) X is a compact abelian group extension of Zk−1, written X = Zk−1 × U ,
where U is a compact abelian group.

(2) For every u ∈ U and every edge α of Vk, the transformation u
[k]
α acts

trivially on I [k].

Proof. By Lemma 6.2, X is an isometric extension of Zk−1 and so we can write
X = Zk−1 × (G/H), where G is a compact group and H a closed subgroup. As in
Section 6.1 we write ρ : Zk−1 → G for the cocycle defining this extension and let λ
denote the Haar measure of G/H .

Since µ[k] is relatively independent with respect to Z
[k]
k−1, this measure is invariant

under the map g
[k]
ε for any g ∈ G and any ε ∈ Vk. A fortiori, it is invariant under

g
[k]
α for any g ∈ G and any edge α of Vk.

Claim: For any g ∈ G and any edge α of Vk, the transformation g
[k]
α acts trivially

on I [k].
Consider the ergodic decompositions of µ[k−1] and µ

[k−1]
k−1 as in Section 3.1. Since

I [k−1] is measurable with respect to Z [k−1]
k−1 , these decompositions can be written

as

µ[k−1] =

∫

Ωk−1

µ[k−1]
ω dPk−1(ω) and µ

[k−1]
k−1 =

∫

Ωk−1

µ
[k−1]
k−1,ω dPk−1(ω) ,

where µ
[k−1]
k−1,ω is the projection of µ

[k−1]
ω on Z

[k−1]
k−1 .

By Part (1) of Proposition 4.7, (X [k−1], µ[k−1], T [k−1]) is the relatively indepen-

dent joining of 2k−1 copies of (X,T, µ) over Z
[k−1]
k−1 . Thus we can identify X [k−1]

with Z
[k−1]
k−1 ×

(
G[k−1]/H [k−1]

)
. The measure µ[k−1] is the product of µ

[k−1]
k−1 by the

2k−1-power λ⊗[k−1] of λ, which is the Haar measure of G[k−1]/H [k−1] and X [k−1]

is the isometric extension of Z
[k−1]
k−1 given by the cocycle ρ[k−1] : Z

[k−1]
k−1 → G[k−1].

So for almost every ω ∈ Ωk−1, the system (X [k−1], µ
[k−1]
ω , T [k−1]) is an isometric

extension of (Z
[k−1]
k−1 , µ

[k−1]
k−1,ω, T

[k−1]), with fiber G[k−1]/H [k−1].

Let g ∈ G and let ε ∈ Vk−1 be a vertex. Since g
[k−1]
ε belongs to G[k−1], by

Lemma 6.1 the transformation g
[k−1]
ε ×g[k−1]

ε of X [k] = X [k−1]×X [k−1] acts trivially

on the T [k] = T [k−1] × T [k−1] invariant σ-algebra of (X [k], µ
[k−1]
ω × µ[k−1]

ω , T [k]).
We recall (see Formula 5) that

µ[k] =

∫

Ωk−1

µ[k−1]
ω × µ[k−1]

ω dP (ω) .

Thus g
[k−1]
ε × g

[k−1]
ε acts trivially on the invariant σ-algebra I [k]. But g

[k−1]
ε ×

g
[k−1]
ε is equal to g

[k]
α for some edge α of Vk . The claim follows by permuting the

coordinates.
Claim: G is abelian.

Let g, h ∈ G, and let ε be a vertex of Vk+1. Choose two edges α and β of Vk+1

with α ∩ β = ε. By Equation (19),
[
g

[k]
α ;h

[k]
β

]
= [g;h]

[k]
ε . By the first step and

Lemma 5.3, the transformations g
[k+1]
α and h

[k+1]
β preserve the measure µ[k+1], thus
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also the transformation [g;h]
[k+1]
ε . As this holds for every vertex ε, we conclude

as in the proof of Corollary 5.9 that [g;h] acts trivially on X . This means that
[g;h] = 1 and so G is abelian.

By our hypotheses the group H is trivial, and the proof is complete. �

6.3. Description of the extension.

Notation. For k ≥ 1 and ε ∈ Vk , we write

|ε| = ε1 + ε2 + · · ·+ εk and s(ε) = (−1)|ε| .

Let X be a set, U an abelian group written with additive notation and f : X → U
a map. For every k ≥ 1, we define a map ∆kf : X [k] → U by:

∆kf(x) =
∑

ε∈Vk
s(ε)f(xε) .

In particular, ∆f is the map defined on X2 by ∆f(x′, x′′) = f(x′) − f(x′′). We
have similar notation when the group is written with multiplicative notation.

Proposition 6.4. Let (X,µ, T ) be a system of order k ≥ 2. By Proposition 6.3, X
is an extension of Zk−1 by a compact abelian group U for some cocycle ρ : Zk−1 →
U . Then

(1) ∆kρ : Z
[k]
k−1 → U is a coboundary (see Appendix C.2) of the system (Z

[k]
k−1, µ

[k]
k−1, T

[k]),

meaning that there exists F : Z
[k]
k−1 → U with

(20) ∆kρ = F ◦ T [k] − F .

(2) The σ-algebra I [k](X) is spanned by the σ-algebra I [k](Zk−1) and the map
Φ: X [k] → U given by

(21) Φ(y,u) = F (y) −
∑

ε∈Vk
s(ε)uε

for y ∈ Z [k]
k−1 and u ∈ U [k] where we have identified X with Zk−1 × U and

X [k] with Z
[k]
k−1 × U [k].

Proof. Here we consider characters of U as homomorphisms from U to the circle
group S1, written with multiplicative notation.

(1) Let χ ∈ Û . Define the function ψ on X = Zk−1 ×U by ψ(y, u) = χ(u) and the

function Ψ on X [k] = Z
[k]
k−1 × U [k] by

Ψ(y,u) = χ
(∑

ε∈Vk
s(ε)uε

)
for y ∈ Y [k] and u ∈ U [k] .

Since X is of order k, |||ψ|||k+1 6= 0 by Corollary 4.12 and E(Ψ | I [k]) 6= 0 by
Lemma 4.3.

Let J be the linear map from L2(µ
[k]
k−1) to L2(µ[k]) given by

Jf(y,u) = f(y)Ψ(y,u) for f ∈ L2(µ
[k]
k−1), y ∈ Z [k]

k−1 and u ∈ U [k] .

J is an isometry and its range Hχ is a closed subspace of L2(µ[k]). Furthermore,

for f ∈ L2(µ
[k]
k−1),

J
(
χ(∆kρ) · f ◦ T [k]

)
=
(
Jf
)
◦ T [k]
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and so the space Hχ is invariant under T [k]. Since the function Ψ belongs to Hχ,

the function E(Ψ | I [k]) also belongs to this space. We get that there exists a

non-identically zero function f on Z
[k]
k−1 with

(22) χ(∆kρ) · f ◦ T [k] = f µ
[k]
k−1a.e.

Let A = {y ∈ Z [k]
k−1 : f(y) 6= 0}. Then µk−1(A) 6= 0 and A is T [k]-invariant by

Equation (22). We use the ergodic decomposition given by Formula (4), but for

the measure µ
[k]
k−1. Since A is invariant, it corresponds to a subset B of Ωk, with

Pk(B) 6= 0.
Define

C =
{
ω ∈ Ωk : χ ◦∆kρ is a coboundary of (Z

[k]
k−1, µ

[k]
k−1,ω, T

[k])
}
.

Then C is measurable in Ωk and it contains B by Equation (22) and the definition

of B. Thus Pk(C) > 0. We show now that C is invariant under the group T [k]
k−1

of side transformations. Let ω ∈ Ωk and let α be a side of Vk not containing 0 so

that T
[k]
α ω ∈ C. Let φ : Z

[k]
k−1 → T be chosen with its coboundary for T [k] equal to

χ ◦∆kρ almost everywhere for the measure µ
[k]

k−1,T
[k]
α ω

. The coboundary of φ ◦ T [k]
α

for T [k] is equal to χ ◦ (∆kρ) ◦T [k]
α almost everywhere for the measure µ

[k]
k−1,ω . But

the map (∆kρ) ◦ T [k]
α −∆kρ from Y [k] to U is the coboundary for T [k] of the map

y 7→
∑

ε∈α
s(ε)ρ(yε) .

Therefore χ ◦∆kρ is a coboundary of the system (Z
[k]
k−1, µ

[k]
k−1,ω , T

[k]) and ω ∈ C.

Thus the set C is invariant under T
[k]
α . By Corollary 3.6, the action of the group

T [k]
∗ on Ωk is ergodic. As P (C) > 0, we have P (C) = 1.

Therefore, for Pk-almost every ω ∈ Ωk, χ ◦∆kρ is a coboundary of the system

(Z
[k]
k−1, µ

[k]
k−1,ω , T

[k]). By Corollary C.4, χ◦∆kρ is a coboundary of (Z
[k]
k−1, µ

[k]
k−1, T

[k]).

As this holds for every χ ∈ Û , ∆kρ is a coboundary of this system by Lemma C.1
and the first part of the Proposition is proven.

(2) We identify the dual group of U [k] with Û [k]. For θθθ = (θε : ε ∈ Vk) ∈ Û [k] and
u = (uε : ε ∈ Vk) ∈ U [k],

θθθ(u) =
∏

ε∈Vk
θε(uε) .

Let H be the subspace of L2(µ[k]) consisting in functions invariant under T [k]. For

θθθ ∈ Û [k], we write Lθθθ for the subspace of L2(µ[k]) consisting in functions of the
form

(23) (y,u) 7→ f(y)θθθ(u)

for some f ∈ L2(µ
[k]
k−1). As above, Lθθθ is a closed subspace of L2(µ[k]), invariant

under T [k]. Since the measure µ[k] is relatively independent over µ
[k]
k−1, using the

Fourier Transform it is immediate that L2(µ[k]) is the Hilbert sum of the spaces Lθθθ
for θθθ ∈ Û [k]. Therefore, the invariant subspace H of L2(µ[k]) is the Hilbert sum of
the invariant subspaces H ∩ Lθθθ of Lθθθ.
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Let θθθ ∈ Û [k] and assume that H ∩ Lθθθ contains a non-identically zero function
φ. Let α = (ε, η) be an edge of Vk and let u ∈ U . By Equation (23) we have

φ ◦ u[k]
α = φ · θε(u)θη(u). But by Part (2) of Proposition 6.3, φ ◦ u[k]

α = φ and we
get that θε(u)θη(u) = 1. Since this holds for every u ∈ U , θεθη = 1. As it holds for

every edge α = (ε, η), there exists χ ∈ Û with θε = χs(ε) for every ε ∈ Vk. Finally,
φ is a function of the form

φ(y,u) = f(y) · χ
(∑

ε∈Vk
s(ε)uε

)

for some f ∈ L2(µ
[k]
k−1), and

φ(y,u) = χ
(
−Φ(y,u)

)
· χ(F (y))f(y)

where Φ is the map defined by Equation (21). Since Φ and φ are invariant under
T [k], the function χ ◦ F · f is also invariant under this transformation and is mea-
surable with respect to I [k](Zk−1). We conclude that φ is measurable with respect
to the σ-algebra spanned by Φ and I [k](Zk−1).

Since the invariant space H of L2(µ[k]) is the Hilbert sum of the spaces H∩ Lθθθ,
every function in H is measurable with respect to this σ-algebra and the second
part of the Proposition in proven. �

6.4. More terms. The next Proposition is used only in the proof of Corollary 6.6,
which in turn is only used in the proof of Lemma 10.6.

Proposition 6.5. Let (X,µ, T ) be a system of order k. Then for ` > k the invari-

ant σ-algebra I [`] is spanned by the σ-algebras ξ
[`]
α

−1(
I [k]
)
, where α is a k-face of

V`.

Proof. First Step. Let (X,µ, T ) be a system of order k. We use the notations of
Proposition 6.4 and the maps F and Φ defined in Equations. (20) and (21). Let
` > k.

We identify X [`] with Z
[`]
k−1×U [`]. As the projection of µ[`] on Z

[`]
k−1 is µ

[`]
k−1, for

µ
[`]
k−1-almost every y ∈ Z [`]

k−1 there exists a measure λy on U [`] such that

µ[`] =

∫

Z
[`]
k−1

δy × λy dµ
[`]
k−1(y) .

For every u ∈ U , the corresponding vertical rotation (see the definition in Subsec-
tion C.1) is an automorphism of X and acts trivially on Zk−1. By Lemma 5.5, for

every (` − k)-face β of V` the measure µ[`] is invariant under u
[`]
β . It follows that

the measure λy is invariant under this transformation for µ
[`]
k−1-almost every y. By

separability, for almost every y the measure λy is invariant under the translation

by any element of the group U
[`]
`−k.

We identify U [`] with U [`−1] × U [`−1] and we write u = (u′,u′′) for an element

of U [`]; we write also y = (y′,y′′) for a point of Z
[`]
k−1 = Z

[`−1]
k−1 × Z

[`−1]
k−1 ; and x =

(y′,u′,y′′,u′′) for a point of X [`], with y = (y′,y′′) ∈ Z [`]
k−1 and u = (u′,u′′) ∈ U [`].

Let γ be a k-face of V`−1. As the map Φk ◦ ξ[`−1]
γ : X [`−1] → U is invariant,

it follows from the construction of µ[`] that Φk ◦ ξ[`−1]
γ (x′) = Φk ◦ ξ[`−1]

γ (x′′) for
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µ
[`]
k -almost every x, that is

∑

ε∈γ
s(ε)u′ε −

∑

ε∈γ
s(ε)u′′ε = F (ξ[`−1]

γ y′)− F (ξ[`−1]
γ y′′) µ[`]-a.e.

For µ
[`]
k−1-almost every y = (y′,y′′) ∈ Z [`]

k−1, this identity is true for λy-almost every

u = (u′,u′′) ∈ U [`] and the measure λy is concentrated on a coset of the group
{

(u′,u′′) ∈ U [`] :
∑

ε∈γ
s(ε)u′ε −

∑

ε∈γ
s(ε)u′′ε = 0

}
.

We write δ for the (k + 1)-face γ × {0, 1} of V`, and we notice that this group is
equal to {

u ∈ U [`] :
∑

ε∈δ
s(ε)uε = 0

}
= ξ

[`]
δ

−1
(U

[k+1]
1 ) .

By permutation of coordinates, the same property holds for any k+ 1-face δ of V`,
and λy is concentrated on a coset of the intersection

{
u ∈ U [`] :

∑

ε∈δ
s(ε)uε = 0 for every (k + 1)-face δ of V`

}

of the corresponding subgroups of U [`]. By an elementary algebraic computation,

we see that this group is equal to U
[`]
`−k.

Finally, λy is invariant under translation by U
[`]
`−k and is concentrated on a coset

of this group. Thus this measure is the image of the Haar measure of this group by

some translation. Moreover, for almost every y ∈ Z [`]
k−1, the measure λT [`]y is the

image of the measure λy by the translation by ρ[`](y). We conclude that:

The system (X [`], µ[`], T [`]) is an extension of (Z
[`]
k−1, µ

[`]
k−1, T

[`]) by the compact

abelian group U
[`]
`−k.

Step 2. We keep the notation and hypotheses of the first step. It follows from the
description of µ[`] just above that the Hilbert space L2(µ[`]) can be decomposed

as in the proof of Proposition 6.4: L2(µ[`]) is the Hilbert sum for θθθ ∈ Û [`]
`−k of the

subspaces

Lθθθ =
{
f(u · x) = θθθ(u)f(x) µ[`]-a.e. for every u ∈ U [`]

`−k
}
.

(Here we see characters as taking values in the circle group.) Each space Lθθθ is
invariant under T [`] and thus the T [`]-invariant subspace H of L2(µ[`]) is the Hilbert
sum of the spaces Hθθθ = H ∩ Lθθθ.

On the other hand, by Lemmas 5.5 and 5.3, each function in H is invariant under

the map x 7→ u · x for any u ∈ U [`]
`−k+1. Therefore Hθθθ is trivial except if θθθ belongs

to the annihilator of U
[`]
`−k+1 in the dual group of U

[`]
`−k. By the same algebraic

computation as above, we get that

U
[`]
`−k+1 =

{
u ∈ U [`] :

∑

ε∈α
s(ε)uε = 0 for every k-face α of V`

}
.

It follows that the annihilator of U
[`]
`−k+1 in Û [`] is (Û)

[`]
k . Therefore, the subspace

H of L2(µ
[`]
k ) is the closed linear span of the family of invariant functions of the

type

φ(y,u) = ψ(y)θθθ(u) where ψ ∈ L2(µ
[`]
k−1) and θθθ ∈ Û [`]

k .
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We consider an invariant function φ of this type. As Û
[`]
k is spanned by the

elements of the form χ
[`]
α , where χ ∈ Û and α is a k-face of V`, there exist k-faces

α1, . . . , αm of V` and characters χ1, . . . , χm ∈ Û with

θθθ(u) =

m∏

j=1

∏

ε∈αj
χj(uε)

for u ∈ U [`]. For each j the function χj ◦ Φk ◦ ξ[`]
αj is invariant, and thus so is the

function

φ ·
m∏

j=1

χj ◦ Φk ◦ ξ[`]
αj .

But this function factors clearly through Z
[`]
k−1 and is measurable with respect to

I [`](Zk−1). Therefore, the function φ is measurable with respect to the σ-algebra

spanned by I [`](Zk−1) and ξ
[`]
αm

−1
(I [k](X)), 1 ≤ j ≤ m. We get:

The σ-algebra I [`](X) is spanned by the σ-algebras I [`](Zk−1) and the σ-algebras

ξ
[`]
α

−1
(I [k](X)), for α a k-face of V`.

Last step. We now prove the assertion of Proposition 6.5 by induction on k ≥ 0.
For k = 0 the system X is trivial and there is nothing to prove. We take k > 0
and assume that the assertion holds for every system of order k − 1. Let X be a
system of order k and let ` > k. We use the notation of the first two steps. By

the inductive hypothesis I [`](Zk−1) is spanned by the σ-algebras ξ
[`]
α

−1
(I [k](Zk−1))

for α a k-face of V`. But, for each α, ξ
[`]
α

−1
(I [k](Zk−1)) ⊂ ξ

[`]
α

−1
(I [k](X)) and the

result follows from the conclusion of the second step. �

Corollary 6.6. Let (X,µ, T ) be a system of order k and let x 7→ g ·x be a measure
preserving transformation of X satisfying the property (Pk) of Definition 5.1. Then
g ∈ G(X).

Proof. We have to show that the property (P`) holds for every `. For ` = k there is
nothing to prove. For ` < k, (P`) follows immediately from (Pk) by projection (see
the fourth remark after Definition 5.1). For ` > k we proceed by induction. Let
` > k and assume that P`−1 holds. By Lemma 5.3, the measure µ[`] is invariant

under g
[`]
β for any (`− 1)-face β of V` and it follows immediately that it is invariant

under g[`]. By hypothesis, g[k] acts trivially on I [k] and it follows that for every

k-face α of V` the transformation g[`] acts trivially on the σ-algebra ξ
[`]
α

−1
(I [k]). By

Proposition 6.5, g[`] acts trivially on I [`]. �

7. Cocycles of type k and systems of order k

Notation. Let (X,µ) be a probability space and U a compact abelian group. We
write C(X,U) for the group of measurable maps from X to U . We also write C(X)
instead of C(X,T).

C(X,U) is endowed with the topology of convergence in probability. It is a Polish
group.

When (X,µ, T ) is a system, an element of C(X,U) is called an U -valued cocycle.
(see Appendix C.) For the notation ∆kρ see Subsection 6.3.
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Definition 7.1. Let k ≥ 1 be an integer, (X,µ, T ) an ergodic system, U a compact
abelian group (written additively) and ρ : X → U a cocycle. We say that ρ is a
cocycle of type k if the cocycle ∆kρ : X [k] → U is a coboundary of (X [k], µ[k], T [k]).

7.1. First properties. We have shown in the preceding section that for every
ergodic system X and integer k ≥ 1, Zk(X) is an extension of Zk−1(X) associated
to a cocycle of type k.

Remark 7.2. A cocycle cohomologous to a cocycle of type k is also of type k.

By Lemma C.1 we get:

Remark 7.3. ρ : X → U is of type k if and only if χ ◦ ρ : X → T is of type k for
every character χ of U . It follows that for any closed subgroup V of U , a V -valued
cocycle is of type k if and only if it is of type k as a U -valued cocycle.

A cocycle ρ : X → U is of type 1 if and only if ρ(x) − ρ(y) is a coboundary on

X2. Equivalently, χ ◦ ρ is a quasi-coboundary for every χ ∈ Û . (See Appendix C.4
for the definition and properties.) When U is a torus, this property means simply
that ρ itself is a quasi-coboundary (see Lemma C.5).

Cocycles ρ : X → U so that ∆kρ = 0 are obviously of type k. In the sequel we
use some properties of these cocycles.

Notation. Let (X,µ, T ) be an ergodic system, k ≥ 1 be an integer, and U a
compact abelian group. Let Dk(X,U) denote the family of cocycles ρ : X → U
with ∆kρ = 0.

Lemma 7.4. Let (X,µ, T ) be an ergodic system, k ≥ 1 be an integer, and U a
compact abelian group. Then Dk(X,U) is a closed subgroup of C(X,U). Moreover,
it admits the group U of constant cocycles as an open subgroup.

Proof. The first assertion is obvious. We prove the second statement by induction
on k. By definition, a cocycle in D1(X) is constant. Assume that the assertion
holds for some k ≥ 1. We use the formula (5) for µ[k+1]. ρ belongs to Dk+1(X,U)

if and only if ∆(∆kρ) = 0, µ
[k]
ω × µ[k]

ω -almost everywhere for Pk-almost ω ∈ Ωk.
This condition means that for Pk-almost ω ∈ Ωk, ∆kρ is equal to some constant,

µ
[k]
ω -almost everywhere. Thus ∆kρ is an invariant map on X [k]. As (∆kρ) ◦ T [k] =

∆k(ρ◦T ), this condition is equivalent to ∆k(ρ◦T−ρ) = 0. Thus ρ◦T−ρ ∈ Dk(X,U).
The coboundary map ∂ : ρ 7→ ρ ◦ T − ρ is a continuous group homomorphism

from Dk+1(X,U) to Dk(X,U) and the kernel of this homomorphism is the group
U of constant cocycles. There exist only countably many constants in U which are
coboundaries of some cocycle on X and thus ∂(Dk+1(X,U)) ∩ U is countable. By
the induction hypothesis, ∂(Dk+1(X,U)) is countable and so the compact group U
has countable index in the Polish group Dk+1(X,U) and the result is proven. �

In fact, the proof shows that Dk(X,U) consists of those cocycles ρ for which the
k-iterated coboundary ∂kρ is equal to 0.

7.2. Cocycles of type k and automorphisms.

Corollary 7.5. Let (X,µ, T ) be an ergodic system, ρ : X → U a cocycle and k an
integer.

(1) If ρ is of type k ≥ 1, then for any automorphism S of X the cocycle ρ◦S−ρ
is of type k − 1.
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(2) If X is of order k ≥ 2 and ρ is of type k, then for any vertical rotation
x 7→ u · x of X over Zk−1 the cocycle ρ ◦ u− ρ is a coboundary.

(3) If X is of order k ≥ 1 and ρ is of type k+ 1, then for any vertical rotation
x 7→ u · x of X over Zk−1 the cocycle ρ ◦ u− ρ is of type 1.

For the definition of a vertical rotation, see Appendix C.1.

Proof. (1) Let F : X [k] → U be a map with F ◦ T [k] − F = ∆kρ. Let α be the

first side of Vk. By Lemma 5.5, the measure µ[k] is invariant under S
[k]
α . As this

transformation commutes with T [k], by the definition of F we have
(
∆k−1(ρ ◦ S − ρ)

)
◦ ξ[k]

α = (F ◦ S[k]
α − F ) ◦ T [k] − (F ◦ S[k]

α − F ) .

By Lemma C.7, ∆k−1(ρ ◦S− ρ) is a coboundary on X [k−1] and ρ ◦S− ρ is of type
k − 1.

(2) By Proposition 6.3, X = Zk−1 ×W for some compact abelian group W . The

measure µ[k] is conditionally independent over Z
[k]
k−1 and thus invariant under the

vertical rotation by w
[k]
ε for every ε ∈ Vk and every w ∈ W . The same computation

as above shows that (ρ ◦w− ρ) ◦ ξ[k]
ε is a coboundary on X [k] and so ρ ◦w− ρ is a

coboundary on X .

(3) Let W be as in Part (2). Let w ∈ W . For any ε ∈ Vk, the measure µ[k] is

invariant under w
[k]
ε . This transformation commutes with T [k] and thus maps the

σ-algebra I [k] to itself. By Lemma 5.5, for any edge α of Vk+1 the measure µ[k+1]

is invariant under w
[k+1]
α . We conclude as in Part (2) . �

7.3. Cocycles of type k and group extensions. Let Y be an ergodic extension
of a system X by a compact abelian group U . Then for every u ∈ U the associated
vertical rotation of Y above X is an automorphism of Y and belongs to G(Y )
by Lemma 5.5. By Lemma 5.2, for every k this transformation induces a measure
preserving transformation pku of Zk(Y ), which belongs to G(Zk(Y )) and is actually
an automorphism of Zk(Y ). (This follows also from Proposition 4.6.)

Proposition 7.6. Let (X,µ, T ) be an ergodic system, U a compact abelian group,
ρ : X → U an ergodic cocycle and (Y, ν, S) = (X × U, µ×mU , Tρ) the extension it
defines. (See Appendix C.2 for the definition.) Let k ≥ 1 be an integer. For u ∈ U ,
let pku be the automorphism of Zk(Y ) defined just above. Let W = {u ∈ U : pku =
Id}. Then

(1) W is a closed subgroup of U .

(2) The annihilator W⊥ of W in Û is the subgroup Γ = {χ ∈ Û : χ ◦
ρ is of type k}.

(3) The cocycle ρ mod W : X → U/W is of type k.
(4) Zk(Y ) is an extension of Zk(X) by the compact abelian group U/W , given

by a cocycle ρ′ : Zk(X) → U/W of type k. Moreover, the cocycle ρ′ ◦ πX,k
is cohomologous to ρ mod W : X → U/W .

Proof. (1) is obvious. For every u ∈ U , let u denote its image in U/W .
We view factors as invariant sub-σ-algebras. Then X consists in the sets in

Y which are invariant under the vertical rotation associated to any u ∈ U . By
Proposition 4.6 we have Zk(X) = Zk(Y )∩X . Thus Zk(X) consists in those sets in
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Zk(Y ) which are invariant under pku for every u ∈ U . Therefore, as an extension of
Zk(X), Zk(Y ) is isomorphic to an extension by the compact abelian group U/W .

We identify Zk(Y ) with Zk(X)×U/W and Y with X ×U and study the factor
map πY,k : X × U → Zk(X) × U/W . By construction, for (x, u) ∈ X × U , the
first coordinate of πY,k(x, u) is equal to πX,k(x). Moreover, for every v ∈ U , the
transformation pkv is given by pkv(z, u) = (z, v + u). That is, it is the vertical
rotation by v of Zk(Y ) over X . Since πY,k ◦ v = pkv ◦ πY,k, it follows that there
exists φ : X → U/W such that πY,k(x, u) =

(
πX,k(x), u+ φ(x)

)
.

Let ρ′ : Zk(X) → U/W be a cocycle defining the extension Zk(X) × U/W of
Zk(X). Since πY,k : X ×U → Zk(X)×U/W is a factor map, we get ρ′ ◦πX,k(x) =

ρ(x) + φ(Tx)− φ(x) and ρ′ ◦ πX,k is cohomologous to ρ = ρ mod W .

Let χ ∈ Û/W = W⊥. Here we consider χ as taking values in the circle group
S1. We define a map ψ on Zk(Y ) = Zk(X)×U/W by ψ(x, u) = χ(u) and define a
function Ψ on Zk(Y )[k] = Zk(X)[k] × (U/W )[k] by

Ψ(x,u) = χ
(∑

ε∈Vk
s(ε)uε

)
for x ∈ Zk(X)[k] and u ∈ (U/W )[k]

and continue exactly as in the proof of the first part of Proposition 6.4. Then χ◦ρ′
is of type k.

As this holds for every χ ∈ Û/W , the cocycle ρ′ is of type k and Part (4) of the
Proposition is proven. Part (3) follows immediately, as does the inclusion W⊥ ⊂ Γ.
We now prove the opposite inclusion.

Let χ ∈ Γ. Then χ◦ρ is a cocycle of type k. We consider χ as taking values in T.
Let F : X [k] → T be a map with F ◦ T [k] − F = ∆k(χ ◦ ρ) µ[k]-almost everywhere.
We define a map Φ from Y [k] = X [k] × U [k] to T by

Φ(x,u) = F (x) −
∑

ε∈Vk
s(ε)χ(uε) for x ∈ X [k] and u ∈ U [k] .

The projection of ν[k] on X [k] is µ[k] and each of the one-dimensional marginals
of ν[k] is ν. From these remarks and the definition of F we get that Φ ◦ S [k] = Φ
ν[k]-almost everywhere. The map Φ is measurable with respect to I(Y )[k].

Let w ∈ W and ε ∈ Vk. The measure ν[k] is relatively independent with respect
to Zk−1(Y ) and thus with respect to Zk(Y ). Since the vertical rotation w acts

trivially on Zk(Y ), the measure ν[k] is invariant under w
[k]
ε . Moreover this transfor-

mation acts trivially on Z [k]
k (Y ), thus also on I [k](Y ), and Φ ◦w[k]

ε = Φ ν[k]-almost

everywhere. But Φ ◦ w[k]
ε − Φ is equal to the constant s(ε)χ(w) and we get that

χ(w) = 1. As this holds for every w ∈ W , we have χ ∈ W⊥ and so Γ ⊂ W⊥.
Combining the two inclusions, we have the statement of Part (2). �

Corollary 7.7. Let k ≥ 1 be an integer, (X,µ, T ) a system of order k, U a compact
abelian group and ρ : X → U an ergodic cocycle. Then the extension of X associated
to ρ is of order k if and only if ρ is of type k.

Proof. We use the notation of Proposition 7.6. If Y is of order k then Zk(Y ) = Y ,

W is the trivial subgroup of U and ρ is of type k. If ρ is of type k, then Γ = Û ,
thus W is trivial, and Zk(Y ) = Y . �
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Corollary 7.8. Assume that (X,µ, T ) and (Y, ν, S) are ergodic systems and that
X is of order k for some integer k ≥ 1. Assume that π : X → Y is a factor map
and ρ : Y → U is a cocycle. Then ρ is of type k on Y if and only if ρ ◦ π is if type
k on X.

Proof. If ρ is of type k, it follows immediately from the definition that ρ ◦ π is of
type k.

Assume that ρ◦π is of type k. It suffices to show that χ◦π is of type k for every

χ ∈ Û . Since χ ◦ (ρ ◦ π) is of type k, without loss of generality we can assume that
U = T.

The set {c ∈ T : c + ρ is not ergodic } is either empty or is a coset of the
countable subgroup {c ∈ T : nc is an eigenvalue for some n 6= 0}. Therefore, there
exists c ∈ T so that ρ+ c is ergodic. Substituting ρ+ c for ρ, we can assume that
ρ is ergodic.

By Proposition 7.6, the extension of X associated to ρ ◦ π is of order k because
ρ is of type k. Furthermore, the extension of Y associated to ρ is a factor of this
and so is of order k as well. Therefore ρ is of type k. �

Corollary 7.9. Let (X,µ, T ) be an ergodic system, U a compact abelian group,
and ρ : X → U a cocycle of type k for some integer k ≥ 1. Then there exists a
cocycle ρ′ : Zk(X)→ U of type k so that ρ is cohomologous to ρ′ ◦ πk.

Proof. If ρ is ergodic, the result follows immediately from the preceding Proposition,
since by Part (2), the subgroup W is trivial.

Assume that ρ is not ergodic. There exist a closed subgroup V of U and an
ergodic cocycle σ : X → V so that ρ and σ are cohomologous as U -valued cocycles
(see [Zim76]). σ is of type k as a U -valued cocycle, thus also as a V -valued cocycle.
There exists a cocycle ρ′ : Zk(X)→ V of type k so that σ is cohomologous to ρ′◦πk,
as V -valued cocycles on Zk(X). Thus, as a U -valued cocycle, ρ′ is of type k and
ρ′ ◦ πk is cohomologous to ρ. �

Corollary 7.10. Let k ≥ 2 be an integer, (X,µ, T ) be a system of order k and
ρ : X → U a cocycle of type k. Assume that X is an extension of Zk−1 by a
compact connected abelian group. Then there exists a cocycle ρ′ : Zk−1 → U of type
k so that ρ is cohomologous to ρ′ ◦ πk−1.

Proof. Write X = Zk−1×V and assume that V is connected. By Corollary 7.5, for
every v ∈ V the cocycle ρ ◦ v − ρ is a coboundary. By Lemma C.9, there exists a
cocycle ρ′ on Zk−1 so that ρ′ ◦ πk−1 is cohomologous to ρ. By Corollary 7.8, ρ′ is
of type k. �

8. Initializing the induction: Systems of order 2

In this Section we study the systems of order 2. These systems appeared earlier
in the literature (see [CL88], [CL87] and [Ru95]) as ‘Conze-Lesigne algebras’ and
were studied with a different point of view (in [HK01] and [HK02]) under the name
of ‘quasi-affine systems’. Our purpose here is twofold. In the following sections we
establish properties of systems of order k for arbitrary k. As the proofs are a bit
intricate, we hope that the proofs in the easier case k = 2 aid in understanding
the overall plan. Moreover, we prove some technical results which are useful as the
starting points of the inductive proofs for higher k.
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8.1. Systems of order 1. We have shown that for any ergodic system X , Z1(X)
is it Kronecker factor. Thus an ergodic system is of order 1 if and only if it is an
ergodic rotation.

Let (Z, t) be an ergodic rotation. For every s ∈ Z, the rotation z 7→ sz is
an automorphism of Z and thus belongs to G(Z). Conversely, by Corollary 5.9
G(Z) is abelian. As the rotation T : z 7→ tz lies in G(Z), every element of G(Z) is
a measure preserving transformation of Z commuting with T and thus is itself a
rotation z 7→ sz for some s. Therefore, the group G(Z) is equal to Z, acting on
itself by translations.

A compact abelian group is a Lie group if and only if its dual group is finitely
generated. Thus every compact abelian group is the inverse limit of a sequence of
compact abelian Lie groups. Therefore, a system of order 1 is the inverse limit of
a sequence of ergodic rotations (Z, t) where each group Z is a compact abelian Lie
group.

In the rest of this section, we study the systems of order 2. By Proposition 6.3
and Corollary 7.7, an ergodic system is of order 2 if and only if it is an extension
of an ergodic rotation (Z, t) by a compact abelian group U , given by an ergodic
cocycle σ : Z → U of type 2. By the remark after Definition 7.1, σ : Z → U is of

type 2 if and only if χ ◦ σ : Z → T is of type 2 for every χ ∈ Û .

8.2. The Conze-Lesigne Equation and applications. Throughout this section,
(Z, t) denotes an ergodic rotation: Z is a compact abelian group, endowed with the
Haar measure m = mZ and with the ergodic transformation T : z 7→ tz, where t is
a fixed element of Z.

Lemma 8.1. Let (Z, t) be an ergodic rotation, U be a torus and ρ : Z → U a cocycle
of type 2. For every s ∈ Z, there exist f : Z → U and c ∈ U so that

(CL) ρ(sx)− ρ(x) = f(tx)− f(x) + c .

This functional equation was originally introduced by Conze and Lesigne in[CL84],
and we call it the Conze-Lesigne Equation.

Proof. For every s ∈ Z, the map z 7→ sz is an automorphism of Z. By Corollary 7.5
the cocycle z 7→ ρ(sz)− ρ(z) is of type 1. Since U is a torus, the cocycle is a quasi-
coboundary by Lemma C.5 and we obtain the functional equation. �

Lemma 8.2. Let (Z, t) be an ergodic rotation and ρ : Z → T be a cocycle of type
2 and assume that there exists an integer n 6= 0 so that nρ is a quasi-coboundary.
Then ρ is a quasi-coboundary.

Proof. Let s, f and c be as in Equation (CL). Since nρ is a quasi-coboundary, the
map z 7→ n(ρ(sz) − ρ(z)) is a coboundary. Substituting into Equation (CL), we
have that the constant nc is a coboundary, i.e. an eigenvalue of (Z, t). So for all
s, f and c satisfying Equation (CL), c belongs to the countable subgroup Γ of T,
where

Γ = {c ∈ T : nc is an eigenvalue of (X,µ, T )} .
Define

Z0 = {s ∈ Z : the cocycle x 7→ ρ(sx) − ρ(x) is a coboundary} .
Clearly, Z0 is a Borel subgroup of X . Let (s, f, c) and (s′, f ′, c′) satisfy Equa-
tion (CL). If c = c′, the map x 7→ ρ(s′x) − ρ(sx) is a coboundary. Thus so is the
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map x 7→ ρ(s′s−1x) − ρ(x) and s′s−1 ∈ Z0. As Γ is countable, Z0 has countable
index in Z. As Z0 is Borel, Z0 is an open subgroup of Z. But Z0 obviously contains
t. By density, Z0 = Z and the cocycle x 7→ ρ(sx)− ρ(x) is a coboundary for every
s ∈ Z.

In other words, the map (z0, z1) 7→ ρ(z1)− ρ(z0) is a coboundary of the system
(Z × Z,m×m,T × T ). By Lemma C.5, ρ is a quasi-coboundary. �

Lemma 8.3. Let (Z, t) be an ergodic rotation, U a torus and ρ : Z → U a cocycle
of type 2. Then there exist a closed subgroup Z0 of Z so that Z/Z0 is a compact
abelian Lie group and a cocycle ρ : Z/Z0 → U of type 2 so that ρ is cohomologous
to ρ′ ◦ π, where π : Z → Z/Z0 is the natural projection.

In this statement, we mean that Z/Z0 is endowed with the rotation by π(t).
(Z/Z0, π(t)) is an ergodic rotation and π is a factor map.

Proof. By Equation (CL), for every s ∈ Z the cocycle z 7→ ρ(sz)− ρ(z) is a quasi-
coboundary. Applying Lemma C.10 with the action of Z on itself by translations
and Corollary 7.8, we get the result. �

8.3. Systems of order 2. .

Corollary 8.4. For every ergodic system (X,µ, T ), Z2(X) is an extension of Z1(X)
by a compact connected abelian group.

Proof. By Proposition 6.3, Z2 is an extension of Z1 by a compact abelian group U
given by an ergodic cocycle σ : Z1 → U of type 2.

Assume that U is not connected. Then it admits an open subgroup U0 so that
U/U0 is isomorphic to Z/nZ for some integer n > 1. Write σ : Z1 → U/U0 for the
reduction of σ modulo U0, meaning the composition of σ with the quotient map
U 7→ U/U0. It is an ergodic cocycle of type 2. Using the isomorphism from U/U0

to Z/nZ and an embedding of Z/nZ as a finite closed subgroup of T, we get a
(non-ergodic) cocycle ρ : Z1 → T of type 2 with nρ = 0. By Lemma 8.2, ρ is a
quasi-coboundary and thus of type 1. Viewed as a cocycle with values in Z/nZ, ρ
is also of type 1 (even if it is not a quasi-coboundary) and σ is of type 1.

By Corollary 7.7 the extension Tσ associated to σ is system of order 1, meaning
it is an ergodic rotation. But this extension is obviously a factor of Z2, which is the
extension of Z1 associated to σ and thus also a factor of X . The maximal property
(Proposition 4.11) of Z1 provides a contradiction. �

Definition 8.5. A system X of order 2 is toral if its Kronecker factor Z1 is a
compact abelian Lie group and X is an extension of Z1 by a torus.

Proposition 8.6. Every system of order 2 is the inverse limit of a sequence of
toral systems of order 2.

Proof. Let X be a system of order 2. By Corollary 8.4, X is an extension of its
Kronecker factor Z1 by a compact connected abelian group U , given by a cocycle
ρ : Z1 → U . Therefore, U is an inverse limit of a sequence of tori. This means that
there exists a decreasing sequence {Vn} of closed subgroups of U , with

⋂
n Vn = {0}

so that Un = U/Vn is a torus for each n. For each n, let ρn : Z1 → Un be the
reduction of ρ modulo Vn and let Xn be the extension of Z1 by Un, associated to
the cocycle ρn. Then X is clearly the inverse limit of the sequence {Xn}.
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By Lemma 8.3, for each n there exists a subgroup Kn of Z1 such that Z1/Kn

is a compact abelian Lie group, and a cocycle ρ′n : Z1/Kn → Un so that ρn is
cohomologous to ρ′n ◦ πn, where πn = Z1 → Z1/Kn is the natural projection. We
can clearly modify the groups Kn, by induction, so that these properties remain
valid and so that the sequence {Kn}n of subgroups is decreasing and has trivial
intersection. For each n, let Yn be the extension of Z1/Kn by Un associated to the
cocycle ρ′n. Each of these systems is a factor of X and is toral. This sequence of
factors of X is increasing and its inverse limit is clearly X . �

8.4. The group of a system of order 2. In this section, we study the group
G = G(X) associated to a system (X,µ, T ) of order 2. We restrict to the case that
X is an extension of its Kronecker factor (Z1, t) by a torus U and write ρ : Z1 → U
for the cocycle defining this extension. As usual, we identify X with Z1 × U .

We use the notation of Appendices A and C. C(Z1, U) denotes the group of
measurable maps from Z1 to U , endowed with the topology of convergence in
probability. A map f : Z1 → U is said to be affine if it is the sum of a constant
and a continuous group homomorphism from Z1 to U and we write A(Z1, U) for
the group of affine maps. It is a closed group of C(Z1, U) and is the direct sum
of the compact group U of constants and the discrete group of continuous group
homomorphisms from Z1 to U .

As in Section A.1, for each s ∈ Z1 and f ∈ C(Z1, U), let Ss,f denote the measure
preserving transformation of Z1 × U given by

(24) Ss,f (z, u) = (sz, u+ f(z)) .

These transformations form the skew product of Z1 and C(Z1, U). Endowed with
the topology of convergence in probability, it is a Polish group.

Lemma 8.7. The group G consists in the transformations of X of the type given
by Equation (24), for s ∈ Z1 and f : Z1 → U satisfying Equation (CL) for some
constant c.

Proof. Let g ∈ G. By Lemma 5.2, g induces a measure preserving transformation
of Z1 belonging to G(Z1) and thus of the form z 7→ sz for some s ∈ Z1. Moreover,
by Corollary 5.10, the transformation g commutes with all vertical rotations of X
over Z1 and thus is of the form given by Equation (24) for some map f : Z1 → U .
We notice that the the commutator [g;T ] induces the trivial transformation of Z1.
As G is 2-step nilpotent, [g, T ] belongs to the center of G and thus commutes with
T . It follows that [g, T ] is a vertical rotation of X over Z1, given by some c ∈ U
(see the definition of a vertical rotation in Subsection C.1). By definition of the
commutator, s, f and c satisfy Equation (CL).

Conversely, let s ∈ Z1 and f : Z1 → U be such that Equation (CL) is satisfied
for some c ∈ U . We show that the transformation g = Ss,f belongs to G. Let α
be an edge of V2. The transformation s : z 7→ sz of Z1 induced on Z1 by g belongs

to G(Z1) and thus the transformation s
[2]
α leaves the measure µ

[2]
1 invariant and

maps the σ-algebra I(Z1)[2] to itself. We define a map F : Z
[2]
1 → U and a map

Φ: X [2] → U as in Proposition 6.4. An immediate computation shows that the

map Φ ◦ g[2]
α − Φ is invariant under T [2] and so Φ ◦ g[2]

α is also invariant under this

transformation. By Proposition 6.4, the transformation g
[2]
α maps the σ-algebra

I(X)[2] to itself. By Lemma 5.3 and Corollary 6.6, g ∈ G. �
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We recall that G is endowed with the topology of convergence in probability. The
map p : Ss,f 7→ s is a continuous group homomorphism from G to Z1 and is onto by
Lemma 8.1. The kernel of this homomorphism is the group of transformations of
the kind S1,f , where f(tz)− f(z) is constant. By ergodicity of the rotation (Z1, t),
a map f ∈ C(Z1, U) satisfies this condition if and only if it is affine. The map
f 7→ S1,f is then an algebraic and topological embedding of A(Z1, U) in G with
range ker(p). In the sequel we identify A(Z1, U) with ker(p). This identification
generalizes the preceding identification of U with the group of vertical rotations.
G is a group of the type which is studied in Appendix A. By Corollary A.2, G is
locally compact.

Lemma 8.8. Every toral system of order 2 is isomorphic to a nilsystem.

(See Section B for the meaning of a nilsystem.)

Proof. We keep the same notation as above and assume furthermore that Z1 is a
compact abelian Lie group. The kernel A(Z1, U) of p is the direct sum of the torus
U and a discrete group and thus it is a Lie group also. By Lemma A.3, G is a Lie
group. We recall that G is 2-step nilpotent.

Let Γ be the stabilizer of (1, 0) ∈ X for the action of G on this space. Then Γ
consists in the transformations associated to (1, f), where f is a continuous group
homomorphism from Z1 to U . Thus Γ is discrete. The map g 7→ g · (1, 0) induces
a bijection j from the nilmanifold G/Γ onto X . For any g ∈ G, the transformation
j−1 ◦g◦j of G/Γ is the (left) translation by g on the nilmanifold G/Γ. In particular,
j−1 ◦T ◦ j is the (left) translation x 7→ T ·x by T ∈ G. Moreover, since every g ∈ G
is a measure preserving transformation of X , the image of µ under j−1 is invariant
under the (left) action of G on G/Γ and thus is the Haar measure on this space.
The map j is the announced isomorphism. �

8.5. Countable number of cocycles. We show that the number of T-valued
cocycles of type 2 on an ergodic rotation Z, up to quasi-boundary, is countable.

Proposition 8.9. Let (Z, t) be an ergodic rotation. Up to the addition of a quasi-
coboundary, there are only countably many T-valued cocycles of type 2 on Z.

Proof. We make use of explicit distances on some groups of functions. For u ∈ T,
write

‖u‖ = | exp(2πiu)− 1| .
For f ∈ C(Z) = C(Z,T), write

‖f‖ =
(∫
‖f(z)‖2 dm(z)

)1/2
.

The distance between two cocycles f, g ∈ C(Z) is defined to be ‖f − g‖. As above,
A(Z) = A(Z,T) denotes the closed group of affine cocycles. For c, c′ ∈ T and

γ, γ′ ∈ Ẑ, we have ‖(c+ γ)− (c′ + γ′)‖ ≥
√

2 whenever γ 6= γ′.
Let Q(Z) denote the quotient group Q(Z) = C(Z)/A(Z) and write q : C(Z) →

Q(Z) for the quotient map. The quotient distance between Φ ∈ Q and 0 ∈ Q is
written |||Φ|||Q and the quotient distance between two elements Φ,Ψ of this group
is |||Φ−Ψ|||Q. Endowed with this distance, Q(Z) is a Polish group.
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We also use the group F of continuous maps from Z to Q, endowed with the
distance of uniform convergence: If s 7→ Φ(s) is an element of F , write

|||Φ|||∞ = sup
s∈Z
|||Φ(s)|||Q .

The distance between two elements Φ and Ψ ∈ F is |||Φ − Ψ|||∞. As Z is compact
and Q is a Polish group, F is also a Polish group.

First Step. Let ρ ∈ C(Z) be a weakly mixing cocycle of type 2. Let X be the
extension of Z associated to this cocycle. X is of order 2 and Z1(X) = Z. We use
the notation of Section 8.4.

Let s 7→ Ss,fs be an arbitrary cross section of the map p : G → Z. For every
s ∈ Z, fs belongs to C(Z) and satisfies Equation (CL) for some c ∈ T. Define
Φρ(s) ∈ Q(Z) to be the image of fs under q. Since the kernel of p : G → Z is A(Z),
Φρ(s) does not depend on the choice of fs. In fact, the map s 7→ Φρ(s) from Z to
Q(Z) is the reciprocal of the isomorphism G/ ker(p)→ Z and thus it is continuous.
In other words, this map is an element of F .

Second Step. We continue assuming that ρ is a weakly mixing cocycle of type 2.
Φρ is defined as above.

Lemma 8.10. If |||Φρ|||∞ < 1/20, then ρ is cohomologous to an affine map.

Proof of lemma 8.10. Define a subset K of G by

K = {Ss,f ∈ G : There exists c ∈ T with ‖c+ f‖ ≤ 1/10} .
Let s ∈ Z. By hypothesis |||Φρ(s)|||Q < 1/20 and there exists f ∈ C(Z) with

Ss,f ∈ G and ‖f‖ < 1/20, thus Ss,f ∈ K. The restriction p|K of p : G → Z to K is
therefore onto.

Claim: K is a subgroup of G.
Let Ss,f and Ss′,f ′ ∈ K. We have Ss′,f ′ ◦ Ss,f = Ss′s,f ′′ where f ′′(z) = f(s′z) +

f ′(z). Choose c, c′ ∈ T with ‖c + f‖ ≤ 1/10 and ‖c′ + f ′‖ ≤ 1/10. Then ‖f ′′ +
c+ c′‖ ≤ ‖f + c‖+ ‖f ′ + c′‖ ≤ 1/5. On the other hand, there exists an element of
K with projection on Z equal to ss′. This means that there exists g ∈ C(Z) with
‖g‖ < 1/20 and Ss′s,g ∈ G. We get that S1,f ′′−g ∈ G and thus f ′′ − g ∈ A(Z) and
f ′′ − g + c+ c′ ∈ A(Z). But ‖f ′′ − g + c+ c′‖ ≤ ‖f ′′ + c+ c′‖+ ‖g‖ ≤ 1/4 and so
f ′′− g+ c+ c′ is equal to a constant d ∈ T. Finally, ‖f ′′+ c+ c′− d‖ = ‖g‖ < 1/20
and Ss′s,f ′′ ∈ K. Clearly, the identity transformation S1,0 belongs to K and the
inverse of an element of K belongs to K. The claim is proven.
K clearly contains the group T of vertical rotations. If f is an affine map and

‖c+ f‖ ≤ 1/10 for some constant c, then f is constant. It follows that the kernel
of the group homomorphism p|K : K → Z is the group T of vertical rotations.
Moreover, K is clearly closed in G and is locally compact. Since the kernel T and
the range Z of p|K are compact, K is a compact group.

Claim: K is abelian.
We consider the commutator map (g, h) 7→ [g;h]. It is continuous and bilinear

because K is 2-step nilpotent. But the commutator group K′ is included in T
because K′ is the kernel of the group homomorphism pK ranging in the abelian
group Z. Thus the commutator map has range in T. Moreover, T is included in the
center of K. (This can be seen either by applying Proposition 6.3 or by checking
directly.) Thus the commutator map is trivial on T ×K and K × T. Therefore, it



40 BERNARD HOST AND BRYNA KRA

induces a continuous bilinear map from K/T×K/T → T and finally a continuous
bilinear map b : Z × Z → T. Choose f ∈ C(Z) with St,f ∈ K. For all integers m,n
the transformations Smt,f and Snt,f commute and by definition of b, b(tm, tn) = 0.

Since (Z, t) is an ergodic rotation, {tn : n ∈ Z} is dense in Z and so the bilinear
map b is trivial. Returning to the definition, the commutator map K ×K → K′ is
trivial and the second claim is proven.

The compact abelian group K admits T as a closed subgroup, with quotient
Z. Thus it is isomorphic to T ⊕ Z. This means that the group homomorphism
p|K : K → Z admits a cross section Z → K, which is a group homomorphism and
is continuous. This cross section has the form s 7→ Ss,fs and the map s 7→ fs is
continuous from Z to C(Z) satisfies for all s, s′ ∈ Z

fss′(z) = fs′(sz) + fs(z) for almost every z ∈ Z.

By Lemma C.8, there exists f ∈ C(Z) so that fs(z) = f(sz)− f(z) for every s ∈ Z.
Define ρ′(z) = ρ(z)− f(tz) + f(z). The cocycle ρ′ is cohomologous to ρ. More-

over, for every s we have Ss,fs ∈ K ⊂ G and this means that s and fs satisfy
Equation (CL) for some constant c. Substituting in the definition of ρ′ we have
ρ′(sz) − ρ(z) = c. As this holds for every s ∈ Z, ρ′ is an affine cocycle. This
completes the proof of Lemma 8.10. �

End of the proof of Proposition 8.9.
Let W be the family of weakly mixing cocycles of type 2 on Z. To every cocycle

ρ ∈ W , we have associated an element Φρ of F . Since F is separable, there exists a
countable family {ρi : i ∈ I} in W so that for every ρ ∈ W , there exists i ∈ I with
|||Φρ − Φρi ||| < 1/20.

Let ρ : Z → T be a cocycle of type 2.
Assume first that ρ is not weakly mixing. There exists an integer n 6= 0 so that

nρ is a quasi-coboundary and by Lemma 8.2 ρ itself is a quasi-coboundary.
Assume now that ρ is weakly mixing. Choose i ∈ I so that |||Φρ − Φρi ||| < 1/20.

If ρ − ρi is not weakly mixing, by the same argument as above this cocycle is a
quasi-coboundary and ρ is the sum of ρi and a quasi-coboundary. If ρ−ρi is weakly
mixing, then Φρ−ρi = Φρ − Φρi . Thus |||Φρ−ρi ||| < 1/20 and by Lemma 8.10 the
cocycle ρ− ρi is cohomologous to some affine map. In this case, ρ is the sum of ρi,

a character γ ∈ Ẑ and a quasi-coboundary.
The proof of Proposition 8.9 is complete. �

9. The main induction

We now generalize the results for systems of order 2 of Section 8 to higher orders.
We start with a more detailed study of the ergodic decomposition of µ× µ.

9.1. The systems Xs. In this section, we use the following notation. Let (X,µ, T )
be an ergodic system. For every integer k ≥ 2, Zk = Zk(X) is an extension of Zk−1

by a compact abelian group Uk, given by a cocycle ρk : Zk−1 → Uk of type k.
We recall the ergodic decomposition of formula (7)

µ× µ =

∫

Z1

µs dµ1(s)

of µ× µ for T × T .

Notation. For every s ∈ Z1, let Xs denote the system (X ×X,µs, T × T ).
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We recall that Xs is ergodic for µ1-almost every s ∈ Z1 (see Subsection 3.2).

Lemma 9.1. Let (X,µ, T ) be an ergodic system, U a compact abelian group,
ρ : X → U a cocycle and k ≥ 0 an integer. Then the subset

A = {s ∈ Z1 : ∆ρ is a cocycle of type k of Xs}
of Z1 is measurable and µ1(A) = 0 or 1. Furthermore, the cocycle ρ is of type k+ 1
if and only if µ1(A) = 1.

Proof. We recall that ∆ρ is defined on X × X by ∆ρ(x′, x′′) = ρ(x′) − ρ(x′′).
Under the identification of X [k+1] with (X×X)[k], we can write ∆k+1ρ = ∆k(∆ρ).
Moreover, by Equation (8) we have

∫
(µs)

[k] dµ1(s) = µ[k+1]. By using the definition
of a cocycle of type k + 1 on X , the definition of a cocycle of type k on Xs and
Corollary C.4, we get immediately that A is a measurable subset of Z1 and that ρ
is of type k + 1 if and only if µ1(A) = 1. It only remains to show that µ1(A) = 0
or 1.

Let s ∈ Z1 with Ts ∈ A. The map Id×T is an isomorphism of Xs onto XTs.
Thus ∆ρ ◦ (Id×T ) is a cocycle of type k on Xs. But ∆ρ ◦ (Id×T ) − ∆ρ is the
coboundary of the map (x′, x′′) 7→ −ρ(x′′). Thus, ∆ρ is of type k on Xs and s ∈ A.
Therefore, the subset A of Z1 is measurable and invariant under T and so has
measure 0 or measure 1. �

Before stating the next property we need some notation. Let p : (X,µ, T ) →
(Y, ν, S) be a factor map. p induces a factor map p1 from the Kronecker factor
Z1(X) of X to the Kronecker factor Z1(Y ) of Y . By an abuse of notation, for
s ∈ Z1(X) we often write νs instead of νp1(s) and Ys instead of Yp1(s). By the
ergodic decomposition, for µ1-almost every s ∈ Z1 the measure νs is the image of
µs under p× p. In other words, p× p is a factor map from Xs to Ys.

Lemma 9.2. Let (X,µ, T ) be an inverse limit of a sequence {Xn}n of ergodic
systems. Then for µ1-almost every s ∈ Z1, Xs = lim←−Xn,s, where Xn,s is the
system associated to Xn in the same way that Xs is associated to X.

Proof. There exists a countable family {fi : i ∈ I} of bounded functions defined
everywhere on X , dense in L2(µ) and so that the linear span of the family {fi⊗fj :
i, j ∈ I} is dense in L2(ν) for every probability measure ν on X ×X . For every i
and every n, we consider E(fi | Xn) as a function defined everywhere on X .

For every i ∈ I , E(fi | Xn) converges to fi µ-almost everywhere. There exists a
subset X0 of X , with µ(X0) = 1, so that E(fi | Xn)(x)→ fi(x) for all i ∈ I and all
x ∈ X0. For µ1-almost every s ∈ Z1, we have µs(X0 ×X0) = 1.

Fix such an s, and consider X × X as endowed with µs. For every i, j ∈ I ,
E(fi | Xn)⊗E(fj | Xn) converges to fi⊗fj on X0×X0, thus µs-almost everywhere.
For every n, E(fi | Xn)⊗ E(fj | Xn) is measurable with respect to Xn ⊗Xn and it
follows that fi ⊗ fj is measurable with respect to the inverse limit lim←−Xn,s of the

factors Xn,s of Xs. By density, every function in L2(µs) is measurable with respect
to lim←−Xn,s. �

9.2. The factors Zk(Xs). We compute the factors Zk(Xs) of Xs.
As above, for every integer k ≥ 2, Zk is an extension of Zk−1 by a compact

abelian group Uk, given by a cocycle ρk : Zk−1 → Uk of type k. We recall that for
every integer k, the system Zk has the same Kronecker factor Z1 as X .
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For every k and µ1-almost every s ∈ Z1, we associate to the system (Zk, µk, T )
a measure µk,s on Zk × Zk in the same way that µs is associated to (X,µ, T ). Let
Zk,s denote the system (Zk × Zk, µk,s, T × T ).

The measure µs is a relatively independent joining of µ over the joining µ1,s of
µ1. Thus, for every k, µk,s is a relatively independent joining of µk over µ1,s and
thus over the joining µk−1,s of µk−1. Therefore, the system (Zk,s, µk,s, T × T ) is
an extension of (Zk−1,s, µk−1,s, T × T ) by the group Uk ×Uk, given by the cocycle
ρk × ρk : (x′, x′′) 7→ (ρk(x′), ρk(x′′)).

Lemma 9.3. Let k ≥ 1 be an integer. Then:

(1) For µ1-almost every s ∈ Z1, ρk × ρk is a cocycle of type k on Zk−1,s.
(2) For µ1-almost every s ∈ Z1, Zk,s is a system of order k. In particular, if

X is of order k then Xs is of order k for µ1-almost every s ∈ Z1.

Proof. (1) We identify Z
[k]
k−1 × Z

[k]
k−1 with (Z2

k−1)[k] and with Z
[k+1]
k−1 . We recall

that there exists Fk : Z
[k]
k−1 → Uk with ∆kρk = Fk ◦ T [k] − Fk, µ

[k]
k−1-almost every-

where. Define G : Z
[k]
k−1 × Z

[k]
k−1 → Uk × Uk by G(x′,x′′) = (Fk(x′), Fk(x′′)). As

each of the two projections of µ
[k+1]
k−1 on Z

[k]
k−1 is equal to µ

[k]
k−1, we get that the

equality ∆k(ρk×ρk) = G◦T [k+1]−G holds µ
[k+1]
k−1 -almost everywhere. As µ

[k+1]
k−1 =∫

Z1
(µk−1,s)

[k] dµ1(s), for µ1-almost every s, the same relation holds (µk−1,s)
[k]-

almost everywhere and ρk × ρk is a cocycle of type k of Zk−1,s.
(2) This follows by induction on k, using Proposition 7.7 at each step. �

Proposition 9.4. For every integer k ≥ 1 and µ1-almost every s ∈ Z1, Zk(Xs)
is a factor of Zk+1,s; it is an extension of Zk,s by Uk+1, given by the cocycle
∆ρk+1 : (x′, x′′) 7→ ρk+1(x′) − ρk+1(x′′), when viewed as a cocycle on Zk(Xs).
Furthermore, Zk+1,s is an extension of Zk(Xs) by Uk+1, given by the cocycle
(x′, x′′) 7→ ρk+1(x′′).

Proof. By Proposition 4.7, the invariant σ-algebra I [k+1](X) of the system (X [k+1],

µ[k+1], T [k+1]) is measurable with respect to Z [k+1]
k+1 . As µ[k+1] =

∫
µ

[k]
s dµ1(s), by

classical arguments for µ1-almost every s ∈ Z1, the invariant σ-algebra of X
[k]
s =

(X [k+1], µ
[k]
s , T [k+1]) is measurable with respect to the same σ-algebra, that is,

with respect to (Zk+1×Zk+1)[k]. By the minimality property of the factor Zk(Xs)
(Proposition 4.7 again), the σ-algebra Zk(Xs) is measurable with respect to Zk+1×
Zk+1. In other words, Zk(Xs) is a factor of Zk+1,s.

Let χ′, χ′′ ∈ Ûk+1 and consider here these characters as taking values in T. Write

χ = (χ′, χ′′) ∈ Ûk+1× Ûk+1, which we identify with the dual group of Uk+1×Uk+1.
Let σ : Zk × Zk → Uk+1 be the map given by

σ(x′, x′′) = χ′(ρk+1(x′)) + χ′′(ρk+1(x′′)) .

Define

A =
{
s ∈ Z1 : σ is a cocycle of type k of Zk,s

}
.

By the same method as in the proof of Lemma 9.1, we get that A is invariant under
T and µ1(A) = 0 or 1.

Let us assume that µ1(A) = 1. For µ1-almost every s ∈ Z1, ∆kσ is a coboundary

of the system (Z
[k+1]
k , µ

[k+1]
k,s , T [k+1]). Thus ∆kσ is a coboundary of the system
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(Z
[k+1]
k , µ

[k+1]
k , T [k+1]) and there exists a map F : Z

[k+1]
k → Uk+1, with

F (T [k+1]x)− F (x) =
∑

ε∈Vk+1

s(ε)χε(ρk+1(xε))

where

χε =

{
χ′ if ε1 = 0

−χ′′ if ε1 = 1.

The function Φ, defined on Z
[k+1]
k+1 = Z

[k]
k × U

[k+1]
k+1 by

Φ(x,u) = F (x)−
∑

ε∈Vk+1

s(ε)χε(uε) ,

is invariant under T [k+1]. By Proposition 6.3, it is invariant under u
[k+1]
α for ev-

ery edge α = (ε, η) of Vk+1 and every u ∈ Uk+1. This means that s(ε)χε(u) +
s(η)χη(u) = 1 and thus χε(u) = χη(u). As this holds for every u ∈ Uk+1, χε = χη.
This holds for every edge α and so χ′′ = −χ′.

Summarizing, if χ′′ 6= −χ′, then µ1(A) 6= 1 and so µ1(A) = 0. Then for µ1-almost
every s, the cocycle σ of Zk,s is not of type k. If χ′′ = −χ′, then σ = χ′ ◦∆ρk+1,
which is a cocycle of type k on Zk,s for µ1-almost every s ∈ Z1 by Lemma 9.1.

We recall that Zk+1,s is the extension of Zk,s associated to the cocycle ρk+1×ρk+1

with values in Uk+1×Uk+1 and apply Proposition 7.6. The annihilator of the group

W appearing in this proposition is {(χ′,−χ′) : χ ∈ Ûk+1}. Thus W = {(u′, u′) :
u′ ∈ Uk+1}. The map (u′, u′′) 7→ (u′−u′′, u′′) is an isomorphism of Uk+1×Uk+1 on
itself. It maps W to {0}×Uk+1 and we can identify (Uk+1 ×Uk+1)/W with Uk+1.
Under this identification, the cocycle ρk+1 × ρk+1 mod W is simply ∆ρk+1. We
get that Zk(Xs) is the extension of Zk,s associated to the cocycle ∆ρk+1. Using
the identification of the subgroup W with Uk+1 explained above, we have the last
statement of the Proposition. �

9.3. Connectivity. We generalize the connectivity result established for systems
of order 2 in Section 8 to higher orders. We show that for an ergodic system
(X,µ, T ) and integer k ≥ 1, Zk+1(X) is an extension of Zk(X) by a connected
compact abelian group. In fact, we prove simultaneously two results by induction:

Theorem 9.5. Let k ≥ 1 be an integer.

(1) Let (X,µ, T ) be a system of order k, ρ : X → T a cocycle of type k+ 1 and
n 6= 0 an integer. If nρ is of type k, then ρ itself is of type k.

(2) For every ergodic system (X,µ, T ), Zk+1(X) is an extension of Zk(X) by
a compact connected abelian group.

Proof. For k = 1 these results have been proven in Section 8 (Lemma 8.2 and
Corollary 8.4).

Let k > 1 and assume that the two properties hold for k − 1. Let X, ρ and n be
as in the first statement of the Theorem.
X is an extension of Zk−1 = Zk−1(X) by a compact abelian group U , which is

connected by the inductive hypothesis. As usual, for u ∈ U we also use u to denote
the corresponding vertical rotation of X over Zk−1.
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Since nρ is of type k, by Corollary 7.10 there exists a cocycle σ : Zk−1 → T and
a map f : X → T so that

nρ = σ ◦ πk−1 + f ◦ T − f .
Let u ∈ U . By Part (3) of Corollary 7.5, the cocycle ρ◦u−ρ is a quasi-coboundary
and so there exist φ : X → T and c ∈ T with

ρ ◦ u− ρ = φ ◦ T − φ+ c .

Plugging into the preceding equation, we get that the constant nc is a coboundary
of X . That is, nc is an eigenvalue of this system and c belongs to the countable
subgroup

Γ = {c ∈ T : nc is an eigenvalue of X}
of T. For every c ∈ Γ, define

Uc = {u ∈ U : ρ ◦ u− ρ− c is a coboundary of X} .
Each of these sets is a Borel subset of U and their union is U . Thus there exists
c ∈ Γ such that mU (Uc) > 0, where mU is the Haar measure of U . But U0 is clearly
a subgroup of U and Uc a coset of this subgroup. It follows that mU (U0) > 0
and that U0 is an open subgroup of U . Since U is connected, U0 = U . Thus for
every u ∈ U the cocycle ρ ◦ u − ρ is a coboundary. By Lemma C.9, there exists
τ : Zk−1 → T and g : X → T with

ρ = τ ◦ πk−1 + g ◦ T − g .
By considering X as a system of order k + 1, τ is a cocycle of type k + 1 on Zk−1

by Corollary 7.8 and nτ is a cocycle of type k.
We use the notation and results of Section 9.1, applied to the system Zk−1.

By Lemma 9.3, Zk−1,s is a system of order k − 1 for almost every s ∈ Z1. By
Lemma 9.1, for almost every s, the cocycle ∆τ of the system Zk−1,s is of type k
and the cocycle n∆τ of this system is of type k − 1. By the inductive assumption,
∆τ is a cocycle of type k− 1 of this system. Using Lemma 9.1 again, τ is a cocycle
of type k of the system Zk−1 and by Corollary 7.8 ρ is a cocycle of type k on X .

The first assertion of Theorem 9.5 is proven for k. It remains to show the second
assertion for k.

We deduce it from the first part exactly as in the proof of Corollary 8.4. We
reproduce it here for completeness. Zk+1 is an extension of Zk by a compact abelian
group U , given by a cocycle ρ of type k+ 1. Assume that U is not connected. This
group admits an open subgroup U0 such that U/U0 is isomorphic to Z/nZ for some
integer n > 1. We write ρ : Zk → U/U0 for the reduction of ρ modulo U0; it is
a cocycle of order k + 1. Using the isomorphism from U/U0 onto Z/nZ and the
natural embedding of Z/nZ as a subgroup of T, we get a cocycle τ : Zk → T, of type
k + 1, so that nτ = 0. Thus nτ is of type k and by the first part of the Theorem,
τ is of type k.

Therefore ρ is of type k. The extension of Zk associated to this cocycle is a factor
of X and is of type k by Corollary 7.7. Proposition 4.11 provides a contradiction.

�

9.4. Countability. The countability result that we have shown for the cocycles
of order 2 (Proposition 8.9) cannot be generalized to higher orders. However, the
weaker result proved in this section suffices for our purposes.
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Notation. We let Ck(X) denote the subgroup of C(X) consisting in cocycles of
type k.

Theorem 9.6. Let k ≥ 2 an integer, (X,µ, T ) be an ergodic system, (Ω, P ) a
(standard) probability space and ω 7→ ρω a measurable map from Ω to Ck(X). Then
there exists a subset Ω0 of Ω, with P (Ω0) > 0, so that ρω − ρω′ ∈ C1(X) for every
(ω, ω′) ∈ Ω0 × Ω0.

Proof. We proceed by induction on k.
By Corollary 7.9, Theorem 9.5 and Corollary 7.10, for every cocycle ρ of type

2 on X there exists a cocycle ρ′ of type 2 on Z1 so that ρ is cohomologous to
ρ′ ◦π1. By Proposition 8.9, C1(Z1) has countable index in C2(Z1) and so C1(X) has
countable index in C2(X). The statement of the Theorem follows immediately for
k = 2.

Fix an integer k ≥ 2 and assume that the Theorem holds for k. Let (X,µ, T ),
(Ω, P ) be as in the statement of the Theorem and let ω 7→ ρω be a measurable map
from Ω to Ck+1(X).

We use the usual ergodic decomposition (formula (7)) of µ × µ for T × T and
formula (8) for µ[k+1]. The map ω 7→ ∆ρω from Ω to C(X ×X) is measurable. By
Lemma C.3 the subset

A =
{

(ω, s) ∈ Ω× Z1 : ∆ρω ∈ Ck(Xs)
}

of Ω× Z1 is measurable. In the same way, the subset

B =
{

(ω, ω′, s) ∈ Ω× Ω× Z1 : ∆ρω −∆ρω′ ∈ C1(Xs)
}

of Ω× Ω× Z1 is measurable. By Lemma 9.1, for all ω, ω′ ∈ Ω the subset

Bω,ω′ = {s ∈ Z1 : (ω, ω′, s) ∈ B}
of Z1 has measure 0 or 1. Moreover, for every ω ∈ Ω the cocycle ρω is of type k+ 1
by hypothesis and so by Lemma 9.1, the cocycle ∆ρ is of type k on Xs for µ1-almost
every s ∈ Z1. Thus (P × µ1)(A) = 1. Therefore, for µ1-almost every s ∈ Z1, using
the inductive hypothesis applied to the system Xs and the map ω 7→ ∆ρω, we get
that

(P × P )
{

(ω, ω′) ∈ Ω× Ω : (ω, ω′, s) ∈ B
}
> 0 .

Therefore (P × P × µ1)(B) > 0 and the subset

C =
{

(ω, ω′) ∈ Ω× Ω : µ1(Bω,ω′) > 0
}

=
{

(ω, ω′) ∈ Ω× Ω : µ1(Bω,ω′) = 1
}

of Ω × Ω has positive measure under P × P . By applying Lemma 9.1 again, for
(ω, ω′) ∈ C, the cocycle ρω−ρω′ belongs to C2(X). By the base step of the induction,
C1(X) has countable index in C2(X) and so there exists ρ ∈ C2(X) so that the set

D =
{

(ω, ω′) ∈ C : ρω − ρω′ − ρ ∈ C1(X)
}

satisfies (P × P )(D) > 0. Choose ω0 ∈ Ω so that the set

Ω0 = {ω ∈ Ω : (ω0, ω) ∈ D}
has positive measure. Then for ω, ω′ ∈ Ω0, ρω − ρω′ ∈ C1(X). �

Corollary 9.7. Let (X,µ, T ) be an ergodic system and {Su : u ∈ U} a free action
of a compact abelian group U on X by automorphisms. Let ρ : X → T be a cocycle
of type k for some integer k ≥ 2. Then there exist a closed subgroup U1 of U such
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that U/U1 is a toral group and a cocycle ρ′ cohomologous to ρ with ρ′ ◦ Su = ρ′ for
every u ∈ U1.

Proof. Define

U0 = {u ∈ U : ρ ◦ ρ− ρ is a quasi-coboundary} .
Clearly, U0 is a measurable subgroup of U .

The map u 7→ ρ ◦ Su − ρ is a measurable map from U to Ck(X) (and even to
Ck−1(X) by Corollary 7.5). By Theorem 9.6 there exists a subset U2 of U , with
mU (U2) > 0, so that ρ ◦ Su − ρ ◦ Sv is a quasi-coboundary for every u, v ∈ U2.
We get immediately that U2 − U2 ⊂ U0 and so mU (U0) > 0. Thus U0 is an open
subgroup of U .

By Lemma C.10 applied to the action {Su : u ∈ U0}, there exist a subgroup U1

of U0 and a cocycle ρ′ on X with the required properties. (Note that U/U1 is toral
because U0/U1 is toral and U/U0 is finite). �

10. Systems of order k and nilmanifolds

By using the tools developed in the preceding sections, we can now describe the
structure of systems of order k. We show:

Theorem 10.1 (Structure Theorem). Any system of order k ≥ 1 can be expressed
as an inverse limit of a sequence of k-step nilsystems.

The definition of nilsystems and the properties we use are summarized in Ap-
pendix B.

The proof splits into two parts. First we show show that every system of order
k can be expressed as an inverse limit of simpler ones, called toral systems (The-
orem 10.3). Then we show that each toral system of order k is actually a k-step
nilsystem (Theorem 10.5).

10.1. Reduction to toral systems.

Definition 10.2. An ergodic system (X,µ, T ) of order k ≥ 1 is toral if Z1(X) is
a compact abelian Lie group and for 1 ≤ j < k, Zj+1(X) is an extension of Zj(X)
by a torus.

Theorem 10.3. Any system of order k ≥ 1 is an inverse limit of a sequence of
toral systems of order k.

We begin with a Lemma.

Lemma 10.4. Let (X,µ, T ) be an ergodic system, U a torus and ρ : X → U a
cocycle of type k + 1 for an integer k ≥ 0. Assume that X is an inverse limit of a
sequence {Xi : i ∈ N} of systems. Then ρ is cohomologous to a cocycle ρ′ : X → U ,
which is measurable with respect to Xi for some i.

Proof of Lemma 10.4. We show by induction on ` that:

(*) For integers 0 ≤ ` ≤ k, there exist i` ∈ N and a cocycle ρ` cohomologous to
ρ that is measurable with respect to Zk−`(X) ∨ Xi` .

By Corollary 7.9, ρ is cohomologous to a cocycle which factorizes through Zk+1(X).
By Theorem 9.5, Zk+1(X) is an extension of Zk(X) by a connected compact abelian
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group. Using Corollary 7.10, there exists a cocycle ρ0, cohomologous to ρ and mea-
surable with respect to Zk(X), and a fortiori with respect to Zk(X) ∨ X1. The
claim (*) holds for ` = 0.

Let 0 ≤ ` < k and assume that (*) holds for `. Let i` and ρ` be as in the
statement of the claim. By Corollary 7.8, ρ` is of type k + 1.

Let Y be the factor of X corresponding to the σ-algebra Y = Zk−`(X)∨Xi` and
let W be the factor of X corresponding to W = Zk−`−1(X) ∨ Xi` . As Zk−`(X)
is an extension of Zk−`−1(X) by a compact abelian group, by the first part of
Lemma C.2, Y is an extension of W by a compact abelian group V . We identify
Y with W × V . As usual, for v ∈ V we also let v : Y → Y denote the associated
vertical rotation of Y above W .

By Corollary 9.7, there exist a closed subgroup V1 of V so that V/V1 is a compact
abelian Lie group and a cocycle ρ′, cohomologous to ρ` and thus to ρ, so that
ρ′(v · y) = ρ(y) for every v ∈ V1. We consider ρ′ as a cocycle defined on the factor
W × V/V1 of Y .

Since V/V1 is a compact abelian Lie group, its dual group V̂/V1 = V ⊥1 is finitely
generated. Choose a finite generating set {γ1, . . . , γm} for V ⊥1 . For 1 ≤ j ≤ m,
consider γj as taking values in the circle group S1 and define the function fj on
Y = W ×V by fj(w, v) = γj(v). Since X is the inverse limit of the sequence {Xi},
there exists i ≥ i` so that for 1 ≤ j ≤ m, E(fj | Xi) 6= 0. Thus, E(fj | W ∨Xi) 6= 0.
By Lemma C.2 the functions fj are measurable with respect to W ∨ Xi. But the
functions fj , 1 ≤ j ≤ m, together with the σ-algebra W , span the σ-algebra of the
system W ×V/V1. As ρ′ is measurable with respect to this system, it is measurable
with respect to W∨Xi = Zk−`−1 ∨Xi. Therefore, (*) holds for `+ 1 with i`+1 = i.
Property (*) with ` = k is the announced result. �

Proof of Theorem 10.3. We proceed by induction. For k = 1 the result is proven
in Section 8.1.

Let k ≥ 1 be an integer and assume that the result holds for k. Let Y be a
system of order k + 1. Write X = Zk(Y ). Then Y is an extension of X by a
compact abelian group U and let ρ : X → U be the cocycle defining this extension.
By Theorem 9.5, U is connected and can be written as lim←−Uj , where each Uj is a
torus. Let ρj : X → Uj be the projection of ρ on the quotient Uj of U .

By the inductive hypothesis, X can be written as an inverse limit lim←−Xi, where
each Xi is toral. By Lemma 10.4, for every j there exist ij and a Uj-valued cocycle
ρ′j , measurable with respect to Xij , and cohomologous to ρj . We can clearly assume

that the sequence {ij} is increasing. Each system Xij×ρ′jUj is toral and Y = X×ρU
is clearly the inverse limit of these systems. �

10.2. Building nilmanifolds. Here we show that every toral system can be given
the structure of a k-step nilsystem. This is obtained by showing that the group G
associated to this system as in Section 5 is a Lie group and acts transitively.

Theorem 10.5. Let (X,µ, T ) be a toral system of order k ≥ 1. Then:

(1) G = G(X) is a Lie group and is k-step nilpotent.
(2) Let G be the subgroup of G spanned by the connected component of the

identity and T . Then G admits a discrete co-compact subgroup Λ so that
the system X is isomorphic to the nilmanifold G/Λ, endowed with Haar
measure and left translation by T .
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(See Appendix B for more on nilmanifolds.)
The proof is by induction on the order k of the system. When k = 1, the system

is a rotation on a compact abelian Lie group Z. We have G(X) = Z, acting on
itself by translations and the first statement is obvious. By ergodicity G = Z and
the second statement holds with Λ = {1}.

Let k ≥ 1 be an integer and assume that both statements of the Theorem hold
for every toral system of order k.

10.2.1. Conditions for lifting. Throughout this section, k ≥ 1 is an integer and
(Y, ν, S) is a toral system of order k + 1. We write (X,µ, T ) for Zk(Y ), where Y is
an extension of X by a torus U , given by a cocycle ρ : X → U of type k + 1. By
the inductive hypothesis, G(X) is a Lie group.

By Lemma 5.2, every element g of G(Y ) induces a transformation pkg ofX , which
belongs to G(X). We now study the inverse problem. We say that an element g
of G(X) can be lifted to an element of G(Y ) if there exists g ∈ G(Y ) with pkg = g.
We now establish conditions for lifting.

We use the maps F : X [k+1] → U and Φ: Y [k+1] → U introduced in Proposi-
tion 6.4. We have

(25) ∆k+1ρ = F ◦ T [k+1] − F and Φ(x,u) = F (x)−
∑

ε∈Vk+1

s(ε)uε

under the identification of Y [k+1] with X [k+1] × U [k+1]. By Proposition 6.4, the
σ-algebra I [k+1](Y ) is spanned by the σ-algebra I [k+1](X) and the map Φ.

Lemma 10.6. Let g ∈ C(X). If g ∈ G(Y ) is a lift of g, then g is given by

(26) g · (x, u) = (g · x, u+ φ(x))

where φ : X → U is a map satisfying

(27) F ◦ g[k+1] − F = ∆k+1φ .

Conversely, if φ : X → U satisfies Equation (27), then the transformation g of
Y given by Equation (26) is a lift of g to G(Y ).

Proof. Let g ∈ G(X) and assume that g admits a lift g ∈ G(Y ). By Corollary 5.10,
the vertical rotations of Y over X belong to the center of G(Y ) and thus commute
with g. It follows that g has the form given by Equation (26) for some φ : X → U .

As g ∈ G(Y ), the transformation g[k+1] of Y [k+1] acts trivially on I [k+1](Y ) and thus
leaves the map Φ invariant. This implies immediately that φ satisfies Equation (27).

Conversely, let g ∈ G(X), φ : X → U be a map satisfying Equation (27) and let g
be the measure preserving transformation of Y given by Equation (26). Since ν [k+1]

is conditionally independent over µ[k+1] and g[k+1] leaves the measure µ[k+1] invari-
ant, g[k+1] leaves the measure µ[k+1] invariant. Moreover, Equation (27) means

exactly that the map Φ is invariant under g[k+1]. Since g ∈ G(X), g[k+1] acts

trivially on I [k+1](X) By Proposition 6.4, g[k+1] acts trivially on I [k+1](Y ). By
Corollary 6.6, g ∈ G(Y ). �

Corollary 10.7. The kernel of the group homomorphism pk : G(Y ) → G(X) con-
sists in the transformations of the form (x, u) 7→ (x, u+φ(x)), where φ ∈ Dk+1(X,U)
(see Section 7.1).
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In order to build lifts of elements of G(X), we progress from G(k−1)(X) to G(X)
along the lower central series of G(X). For 1 ≤ j < k, we show that ‘many’ elements
of G(j)(X) satisfy a property stronger than the lifting condition of Lemma 10.6. We
need some notation.

Notation. Let β be a `-face of Vk+1 and φ : X → U a map. We write ∆k+1
β : X [k+1] →

U for the map given by

∆k+1
β φ(x) =

∑

ε∈β
s(ε)φ(xε) .

The projection ξ
[k+1]
β : X [k+1] → X [`] is defined in Section 2.1. We have that

∆k+1
β φ(x) = ±∆`φ

(
ξ

[k+1]
β (x)

)
,

where the sign depends on the face β.

Lemma 10.8. Let j be an integer with 0 ≤ j < k. For g ∈ G(j)(X) and φ : X → U ,
the following are equivalent:

(1) For every (k + 1− j)-face β of Vk+1, F ◦ g[k+1]
β − F = ∆k+1

β φ.

(2) For every (k − j)-face α of Vk+1, F ◦ g[k+1]
α − F −∆k+1

α φ is invariant on
X [k+1].

Notation. We write G(j)
0 for the set of g ∈ G(j)(X) so that there exists φ : X → U

satisfying the properties of Lemma 10.8.

Proof. The proof is similar to the proof of Lemma 10.6. Let g ∈ G(j)(X). Let
φ : X → U and let g be the measure preserving transformation of Y = X×U given

by Equation (26). As g ∈ G(j)(X), the measure µ[k+1] is invariant under g
[k+1]
α

whenever α is a (k − j)-face of Vk+1. Also, ν[k+1] is invariant under g
[k+1]
α because

this measure is conditionally independent over µ[k+1]. So for a (k − j + 1)-face β,

ν[k+1] is invariant under g
[k+1]
β .

The first property means that the function Φ (see Proposition 6.4) defined above

is invariant under g
[k+1]
β for every (k+1−j)-face β of Vk+1. Moreover, by Lemma 5.8,

g
[k+1]
β acts trivially on I [k+1](X) because g ∈ G(j)(X). Therefore, the first property

means that g
[k+1]
β acts trivially on I [k+1](Y ) for any (k + 1− j)-face β of Vk+1.

Similarly, the second property means that for every (k−j)-face α of Vk+1, g
[k+1]
α

maps the σ-algebra I [k+1](Y ) to itself.
The equivalence of these properties follows from Lemma 5.3. �

Note that for j = 0 the first property of Lemma 10.8 coincides with the condition

given in Lemma 10.6. Therefore, G(0)
0 consists in the elements of G(X) which can

be lifted to an element of G(Y ) and G(0)
0 = pk

(
G(Y )

)
.

More generally, let g ∈ G(j)
0 for some j and φ satisfying the first property of

Lemma 10.8. Then φ obviously satisfies Equation (27), and the transformation g of

Y given by Equation (26) is a lift of g in G(Y ). Therefore, pk maps p−1
k

(
G(j)

0

)
onto

G(j)
0 . Each element g of G(Y ) is given by Equation (26) for g = pk(g) and some

φ, and p−1
k

(
G(j)

0

)
consists in those g for which the map φ satisfies the conditions of

Lemma 10.8. Therefore, p−1
k

(
G(j)

0

)
is a closed subgroup of G(Y ).
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10.2.2. Lifting results. We maintain the same notations as in Section 10.2.1.

Lemma 10.9. Each element of G(k−1)(X) can be lifted to an element of G(Y ).

More precisely, G(k−1)
0 = G(k−1)(X).

Proof. Let g ∈ G(k−1)(X). We use the results of Section 5. Since G(X) is k-step
nilpotent, g belongs to the center of G(X) and thus commutes with T and is an
automorphism of X . Since G(Zk−1) is (k − 1)-step nilpotent, g induces the trivial
transformation on Zk−1. Thus g is a vertical rotation of X over Zk−1. For every

edge α of Vk+1, the transformation g
[k+1]
α leaves the measure µ[k+1] invariant and

commutes with T [k+1] by Corollary 5.4. By Equation (25),

(28) ∂
(
F ◦ g[k+1]

α − F
)

=
(
∆k+1ρ

)
◦ g[k+1]

α −∆k+1ρ = ∆k+1
α (ρ ◦ g − ρ)

= ±∆(ρ ◦ g − ρ) ◦ ξ[k+1]
α .

By Lemma C.7, ∆(ρ ◦ g − ρ) : X2 → U is a coboundary. As U is a torus, by
Lemma C.5, ρ ◦ g − ρ is a quasi-coboundary. Thus there exists φ : X → U and
c ∈ U with

(29) ρ ◦ g − ρ = φ ◦ T − φ+ c .

Using this in Equation (28), we get that for every edge α there exists an invariant
map i : X [k+1] → U , with

F ◦ g[k+1]
α − F = ∆[k+1]

α φ+ i .

By Lemma 10.8, g ∈ G(k−1)
0 . �

The next Proposition is the crucial step in the proof. We recall that G(X) is a
Lie group.

Proposition 10.10. For an integer j with 0 ≤ j < k, G(j)
0 is open in G(j)(X).

Proof. We proceed by induction downwards on j. For j = k− 1, G(j)
0 = G(j)(X) by

Lemma 10.9. Take j with 0 < j ≤ k − 1 and assume that G(j)
0 is open in G(j)(X).

We prove now that G(j−1)
0 is open in G(j−1)(X).

Since G(j)
0 is an open subgroup of G(j)(X), it is also closed and it is locally

compact and Polish (actually it is a Lie group). We have noted that the contin-

uous group homomorphism pk : p−1
k

(
G(j)

0

)
→ G(j)

0 is onto. By Theorem A.1, this
homomorphism admits a Borel cross section.

Let H = {g ∈ G(j−1)(X) : [g−1;T−1] ∈ G(j)
0 }. By the inductive hypothesis, H is

open in G[j−1](X), and is locally compact. Consider the Borel map κ : H → G(Y )

obtained by composing the continuous map g 7→ [g−1;T−1] from H to G(j)
0 with

a Borel cross section G(j)
0 → G(Y ). For g ∈ H, κ(g) is given by Equation (26)

for some map ψg : X → U so that the properties of Lemma 10.8 are satisfied with
[g−1;T−1]. That is, for every (k + 1− j)-face β of Vk+1,

F ◦ [g−1;T−1]
[k+1]
β − F = ∆k+1

β ψg .

Define θg = ψg ◦ Tg + ρ ◦ g − ρ.
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Let β be a (k + 1− j)-face of Vk+1. Then

(
F ◦ g[k+1]

β − F
)
◦ T [k+1] −

(
F ◦ g[k+1]

β − F
)

=
(
F ◦ [g−1;T−1]

[k+1]
β T [k+1]g

[k+1]
β − F ◦ T [k+1]g

[k+1]
β

)

+
(
F ◦ T [k+1]g

[k+1]
β − F ◦ g[k+1]

β

)
−
(
F ◦ T [k+1] − F

)

=∆k+1
β ψg ◦ T [k+1]g

[k+1]
β + (∆k+1ρ) ◦ g[k+1]

β −∆k+1ρ

=∆k+1
β θg

=±∆k+1−jθg ◦ ξ[k+1]
β .

Thus the cocycle ∆k+1
β θg is a coboundary of the system X [k+1]. As already

noted, the cocycle (∆k+1−jθg)◦ ξ[k+1]
β is equal to this coboundary or to its opposite

and thus is a coboundary. By Lemma C.7, ∆k+1−jθg is a coboundary of the system

X [k+1−j] and θg is a cocycle of type k + 1− j ≤ k on X .
Since the map κ defined above is Borel, the map g 7→ ψg from H to C(X,U) is

Borel, and the map g 7→ θg is a Borel map from H to the group Ck+1−j(X,U) of
U -valued cocycles of type k + 1− j on X . Choose a probability measure λ on H,
equivalent to the Haar measure of H and apply Theorem 9.6. Then there exists a
measurable subset A of H, with λ(A) > 0, so that θg − θh is a quasi-coboundary
for every (g, h) ∈ A×A.

Let g, h ∈ A. Let θ : X → U and c ∈ U be such that θg − θh = ∂θ + c. For any
(k + 1− j)-face β of Vk+1, by the last equation we get that

∂
(
F ◦ g[k+1]

β − F ◦ h[k+1]
β

)
= ∂∆k+1

β θ .

Thus F ◦ g[k+1]
β − F ◦ h[k+1]

β − ∆k+1
β θ is an invariant function on X [k+1]. As

h ∈ G(j−1)(X), the transformation h
[k+1]
β maps the σ-algebra I [k+1](X) to itself.

Therefore, the function F ◦(gh−1)
[k+1]
β −F −∆k+1

β (θ◦h−1) is invariant. The second

property of Lemma 10.8 is satisfied and gh−1 ∈ G(j−1)
0 .

Therefore A · A−1 ⊂ G(j−1)
0 . Since H is open in G(j−1), A has positive Haar

measure in G(j−1) and it follows that G(j−1)
0 also has positive Haar measure in

G(j−1). Since G(j−1)
0 is a Borel subgroup of G(j−1)(X), it is an open subgroup. �

10.2.3. End of the proof of Theorem 10.5.

Proof. Recall that k ≥ 1 is an integer and that we assume that the properties
of Theorem 10.5 hold for every toral system of order k. Let (Y, ν, S) be a toral
system of order k + 1. We write (X,µ, T ) = Zk(Y ). By the inductive hypothesis,
the conclusions of Theorem 10.5 hold for this system. Let G and Λ be as in this

Theorem and let G(0)
0 be as in the preceding subsection.

(1) By Proposition 10.10 used with j = 0 the group G(0)
0 is open in G(0)(X) = G(X)

and thus is a Lie group. The restriction map pk : G(Y ) → G(X) is a continuous

group homomorphism and maps G(Y ) onto G(0)
0 . Its kernel is Dk+1(X,U) by Corol-

lary 10.7 and thus is a Lie group. Since G(0)
0 and Dk+1(X,U) are both Lie groups,

G(Y ) is a Lie group by Corollary A.2 and Lemma A.3 (see Appendix A).
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(2) Let H be the subgroup of G(Y ) spanned by the connected component of the
identity and S. The image under pk of the connected component of the identity
of G(Y ) is included in the connected component of the identity of G(X); moreover

pk(S) = T and thus pk(H) ⊂ G. Since pk maps G(Y ) onto G(0)
0 , it is an open map

and pk(H) is an open subgroup of G(0)
0 and thus also of G(X). Therefore pk(H)

contains the connected component of the identity in G(X) and so it contains G.
We get that pk(H) = G.

On the other hand, for every u ∈ U , the corresponding vertical rotation belongs
to G(Y ) and it defines an embedding of U in G(Y ). H ∩ U is an open subgroup of
U and since U is connected, U ⊂ H .

By the inductive assumption, X = G/Λ. This means that G acts transitively on
X and that Λ is is the stabilizer of the point x1 of X , image of the identity element
of G under the natural projection G→ G/Λ = X . Choose a lift y1 of x1 in Y and
consider the map f : H → Y given by f(h) = h ·x1. Since U ⊂ H , the range of this
map is invariant under all vertical rotations. The projection of this range on X is
onto. Therefore f is onto.

This defines a bijection of H/Γ onto Y , where Γ is the stabilizer of y1 in H . This
bijection commutes with the actions of H on Y and H/Γ. The measure on H/Γ
corresponding to ν through this bijection is invariant under the action of H and
thus is the Haar measure of H/Γ.

Thus we are left only with checking that Γ is discrete and cocompact in H .
Clearly, Γ ·U = p−1

k (Λ). Since Γ ∩U is trivial, Γ is discrete. This also implies that
H/ΓU is homeomorphic to G/Λ and thus is compact. Since U is compact, Γ is
cocompact in H . �

11. The measures µ[k]

We can prove a converse to Theorem 10.5, showing that every k-step ergodic
nilsystem is a system of order k. Therefore the expressions “toral system of order
k” and “k-step ergodic nilsystem” are actually synonymous. However, as we have
no need for this result, we do not prove it and we keep using the term “toral system
of order k”.

When (X,µ, T ) is a toral system of order ` for some integer `, the measures
µ[k], k ≥ 1, have a simple description, which is used in the proof of Theorem 1.2
(convergence for “cubic averages”).

11.1. Algebraic preliminaries. In this Section G is a nilpotent Lie group. We

study the sequence of groups G
[k]
k−1 for k ≥ 1 and the relations between two consec-

utive groups of this form.

Temporarily, we slightly modify the definition of G
[k]
k−1 given by Definition 18:

G
[k]
k−1 is the subgroup of G[k] spanned by

{g[k]
α : g ∈ G and α is an `-face of Vk.}

Therefore the group G
[k]
k−1 with the preceding definition is the closure of the present

group G
[k]
k−1. Below we show that this group is actually closed and thus the two

definitions coincide. Recall that the groups G(j) are equal to the algebraic iterated
groups of commutators (see Lemma B.1).



NONCONVENTIONAL ERGODIC AVERAGES AND NILMANIFOLDS 53

Let k ≥ 1 be an integer. As usual, we write g = (g′,g′′) for a point of G[k+1],
where g′,g′′ ∈ G[k] are given by

g′ε : gε0 and g′′ε = gε1 for ε ∈ Vk .
We also identify the element g = (g′,g′′) of G[k+1] with the element (g′ε, g

′′
ε : ε ∈ Vk)

of (G×G)[k] and thus we have G[k+1] = (G×G)[k].

Lemma 11.1. Let

G
[k]
• =

{
g ∈ G[k] : (g, 1[k]) ∈ G[k+1]

k

}
.

Then G
[k]
• is a normal subgroup of G

[k]
k−1 and

(30) G
[k+1]
k =

{
(g′,g′′) ∈ G[k]

k−1 ×G
[k]
k−1 : g′g′′

−1 ∈ G[k]
•
}
.

Proof. For g′ ∈ G
[k]
k−1, we have (g′,g′) ∈ G

[k+1]
k . For h = (h′,h′′) ∈ G

[k+1]
k , we

have h′,h′′ ∈ G[k]
k−1. The result follows. �

We also note that g[k] ∈ G[k]
• for every g ∈ G.

Lemma 11.2. Define

G̃ =
{

(g′, g′′) ∈ G×G : g′′g′
−1 ∈ G(1)

}
.

Then G̃
[k]
k−1 is a normal subgroup of G

[k+1]
k .

Moreover, writing ζ for the side {ε ∈ Vk+1 : εk+1 = 0}, we have

G
[k+1]
k =

{
h

[k+1]
ζ g : h ∈ G, g ∈ G̃[k]

k−1

}
.

If h
[k+1]
ζ g = h′[k+1]

ζ g′ for some h, h′ ∈ G and g,g′ ∈ G̃[k]
k−1, then h′ = hu−1 and

g′ = u
[k+1]
α g for some u ∈ G(1).

(Here we consider G̃
[k]
k−1 as a subgroup of G[k+1].)

Proof. We claim that, for every g ∈ G and every h ∈ G̃[k]
k−1 we have

(31)
(
g

[k+1]
ζ

)−1
h g

[k+1]
ζ ∈ G̃[k]

k−1 .

First we consider the case that h = (h, h)
[k]
α for some h ∈ G and some side α of Vk.

Then, under the identification of (X ×X)[k] with X [k+1], h = h
[k+1]
β where β is the

side α×{0, 1} of Vk+1. We notice that β ∩ ζ = α×{0}. By Equation (19) we have
[
h; g

[k+1]
ζ

]
= [h; g]

[k+1]
β∩ζ =

(
[h; g], 1

)[k]

α
∈ G̃[k]

k−1

because [h; g] ∈ G(1) and thus ([h; g], 1) ∈ G̃. The relation (31) holds in this case.

We consider now the case that h = (1, u)
[k]
α for some u ∈ G(1) and some side α

of Vk. We have h = u
[k+1]
γ where γ is the (k − 1)-face α× {1} of Vk+1. We notice

that γ∩ ζ = ∅. It follows that [h; g
[k+1]
ζ ] = 1 and the relation (31) holds in this case

also.
Therefore, when α is a side of Vk , this relation holds whenever h = (g′, g′′)[k+1]

α

for any (g′, g′′) ∈ G̃. This relation holds for every h ∈ G̃[k]
k−1 by definition of this

group. The claim is proven.

By definition, every element of G
[k+1]
k can be expressed as a product of elements

of one of the following three types.
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(1) g[k+1] for some g ∈ G.

(2) g
[k]
β for some g ∈ G and some side β of Vk+1 defined by fixing a coordinate
j < k + 1.

(3) g
[k+1]
ζ for some g ∈ G.

Let g ∈ G. g[k+1] = (g, g)[k] ∈ G̃[k]
k−1 because (g, g) ∈ G̃. Let β be a side of Vk+1

defined by fixing a coordinate j < k + 1. Then β = α× {0, 1} where α is a side of

Vk and g
[k+1]
β = (g, g)

[k]
α ∈ G̃[k]

k−1.

Therefore, every element of the types (1) or (2) above belongs to G̃
[k]
k−1. The

first two assertions of Lemma 11.2 follows immediately from the relation (31).

If we have h
[k+1]
ζ g = h′[k+1]

ζ g′ as in the third statement of the Lemma, then

(hh′−1
)
[k+1]
ζ ∈ G̃[k]

k−1. Thus (hh′−1
, 1) ∈ G̃ and hh′−1 ∈ G(1). �

By induction, the commutator subgroups G̃(j), j ≥ 0, of G̃ are given by

G̃(j) =
{

(g′, g′′) ∈ G(j) ×G(j) : g′′g′
−1 ∈ G(j+1)

}
.

Lemma 11.3. Let

G
[k]
∗ = {g ∈ G[k] : (g, 1[k]) ∈ G̃[k]

k−1} .

Then G
[k]
∗ is a normal subgroup of G

[k]
• and

G
[k]
• = {h[k]g : h ∈ G, g ∈ G[k]

∗ } .

Proof. We claim that

(G(1))
[k]
k−1 ⊂ G

[k]
∗ ⊂ (G(1)) [k] .

When u ∈ G(1) and α is a side of Vk we have (u
[k]
α , 1[k]) = (u, 1)

[k]
α ∈ G̃[k]

k−1 because

(1, u) ∈ G̃ and thus u
[k]
α ∈ G

[k]
∗ . The first inclusion follows. Moreover, when

g ∈ G[k]
∗ , we have (g, 1[k]) ∈ G̃[k]

k−1 thus for every ε ∈ Vk we have (gε, 1) ∈ G̃ and

thus gε ∈ G(1). The second inclusion follows and the claim is proven.

Since G̃
[k]
k−1 is a normal subgroup of G

[k+1]
k , it follows from the definition of G

[k]
∗

and G
[k]
• that G

[k]
∗ is a normal subgroup of G

[k]
• .

Let q ∈ G[k]
• . We have (q, 1[k]) ∈ G[k+1]

k . By Lemma 11.2, there exists h ∈ G
and g ∈ G̃[k]

k−1 with (q, 1[k]) = h
[k+1]
ζ g. The element g has the form g = (g′, 1[k]),

g′ ∈ G[k]
∗ by definition and q = h[k]g′. �

If for some q ∈ G[k]
• and some ε ∈ Vk we have qε ∈ G(1), then, writing q = h[k]g

as in Lemma 11.3, we have that h ∈ G(1). Thus h[k] ∈ G[k]
∗ and q ∈ G[k]

∗ . This
proves:

Lemma 11.4. For every ε ∈ Vk,

G
[k]
∗ = {q ∈ G[k]

• : qε ∈ G(1)} .

In particular, G
[k]
∗ = G

[k]
• ∩ (G(1))[k].
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11.2. Topological results.

Lemma 11.5. Let G be a nilpotent Lie group. For any integer k ≥ 1, the group

G
[k]
k−1 is closed in G[k].

Proof. By induction on k. For k = 1, G
[1]
0 = G[1] = G × G and there is nothing

to prove. Take k ≥ 1 and assume that the result holds for k and any nilpotent Lie
group. We use the notation of the preceding subsection.

Since G̃ is a nilpotent Lie group, by the inductive hypothesis G̃
[k]
k−1 is closed in

G̃[k]. Thus it is complete and thus it is closed in G[k+1]. Therefore G
[k]
∗ is closed in

G[k].
Let {gn} be a sequence in G

[k]
• , converging in G[k] to some element g. For every

integer n, let θn be the image of the first coordinate (gn)0 of gn in G/G(1). Then θn
converges to the projection of g0 in G/G(1). As G/G(1) is endowed with the quotient
topology, the sequence {θn} can be lifted in a sequence {hn} in G, convergent to

some h ∈ G. The sequence {(hn[k])−1gn} converges in G[k] to (h[k])−1g. For every

n, we have that (hn
[k])−1gn ∈ G

[k]
• and its 0 coordinate is equal to 1. Thus by

Lemma 11.4, this element belongs to G
[k]
∗ . Since this group is closed, (h[k])−1g ∈

G
[k]
∗ and it follows that g ∈ G[k]

• . Therefore G
[k]
• is closed in G[k].

The announced result follows now immediately from Lemma 11.1. �

Along the way, we have shown that

G
[k]
∗ and G

[k]
• are closed subgroups of G[k].

Recall that if Λ is a discrete cocompact subgroup of a nilpotent Lie group G,
then for every j the group G(j)Λ is closed in G (see Lemma B.1). It follows that
for every j, the group Λ ∩G(j) is cocompact in G(j).

Lemma 11.6. Let G be a nilpotent Lie group and Λ a discrete cocompact subgroup

of G. For every integer k ≥ 1, the group Λ[k] ∩G[k]
k−1 is cocompact in G

[k]
k−1.

Proof. By induction on k. For k = 1 there is nothing to prove. We take k ≥ 1
and assume that the result holds for k and for any nilpotent Lie group G and any
discrete cocompact subgroup Λ.

We use the notation of the preceding sections. The group G̃ is a nilpotent Lie
group. We define

Λ̃ := G̃ ∩ (Λ× Λ) =
{

(λ′, λ′′) ∈ Λ× Λ : λ′′λ′
−1 ∈ Λ ∩G(1)

}

and we note that Λ̃ is cocompact in G̃.

Claim. G
[k]
∗ ∩ Λ[k] is cocompact in G

[k]
∗ .

Proof. Let {gn} be a sequence in G
[k]
∗ . Consider the sequence {(gn,1)} in G̃

[k]
k−1.

By the inductive hypothesis, Λ̃[k]∩ G̃[k]
k−1 is cocompact in G̃

[k]
k−1. Therefore, for each

integer n, there exists (λλλ′n,λλλ
′′
n) ∈ Λ̃[k] ∩ G̃[k]

k−1 and (h′n,h
′′
n) ∈ G̃

[k]
k−1 so that the

sequence {(h′n,h′′n)} is bounded and for every n,

gn = h′nλλλ
′
n and 1[k] = h′′nλλλ

′′
n .

The sequence {λλλ′′n} is bounded; since Λ is discrete, this sequence takes only finitely

many values. Let λλλ ∈ Λ[k] ∩G[k]
k−1 be one of these values and let E = {n : λλλ′′n = λλλ}.
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For n ∈ E, we have (λλλ,λλλ) ∈ G̃[k]
k−1. Thus (h′nλλλ,1) ∈ G̃[k]

k−1 and h′nλλλ ∈ G[k]
∗ . We

have written the sequence {gn : n ∈ E} as the product of the bounded sequence

{h′nλλλ : n ∈ E} in G
[k]
∗ with the sequence {λλλ−1λλλ′n : n ∈ E} in G

[k]
∗ ∩ Λ[k].

Since N is a finite union of sets E with this property, it follows that G
[k]
∗ ∩ Λ[k]

is cocompact in G
[k]
∗ . �

Claim. G
[k]
• ∩ Λ[k] is cocompact in G

[k]
• .

Proof. Let {qn} be a sequence in G
[k]
• . By using Lemma 11.3 and the fact that λ is

cocompact in G, for every n we can write qn = h
[k]
n λ

[k]
n gn, where {hn} is a bounded

sequence in G, λn ∈ Λ for every n, and gn ∈ G
[k]
∗ for every n. We have that

λ
[k]
n gnλ

[k]
n

−1
∈ G

[k]
∗ . Using the first claim, we write λ

[k]
n gnλ

[k]
n

−1
= vnµµµn, where

{vn} is a bounded sequence in G
[k]
∗ and µµµn ∈ G[k]

∗ ∩ Λ[k] for every n. The claim
follows. �

The Lemma follows immediately from Equation 30 and the inductive hypothesis.
�

As a corollary of the two claims we have:

Corollary 11.7. G
[k]
∗ (Λ[k] ∩ G[k]

k−1) and G
[k]
• (Λ[k] ∩ G[k]

k−1) are closed subgroups of

G
[k]
k−1.

11.3. The measures µ[k]. Here (X,µ, T ) is a toral system of order ` for some
integer `. By Theorem 10.5, this system can be represented as an `-step nilsystem
X = G/Λ, where G is nilpotent Lie group, Λ is a cocompact subgroup, µ is the Haar
measure of X and the transformation T is left translation by some fixed element
of G which we also write as T . Recall that G is the subgroup of G(X) spanned by
the connected component of the identity and T .

For every integer k, the group Λ[k] ∩G[k]
k−1 is cocompact in G

[k]
k−1 by Lemma 11.6

and we can define the nilmanifold

(32) Xk := G
[k]
k−1/(Λ

[k] ∩G[k]
k−1)

and let νk denote its Haar measure. The nilmanifold Xk is included in X [k] =
G[k]/Λ[k] in the natural way.

For every g ∈ G we have g[k] ∈ G
[k]
k−1. It follows that, for every x ∈ X , Xk

contains the diagonal point (x, x, . . . , x) of X [k].

Lemma 11.8. For every k ≥ 1, the measure µ[k] is the Haar measure of the
nilmanifold Xk.

Proof. The proof is by induction. The assertion is obvious for k = 1, because

X1 = X ×X and G
[1]
0 = G[1] = G×G. We assume that it holds for some k ≥ 1.

By Corollary 11.7 G
[k]
• (Λ[k] ∩ G[k]

k−1) is a closed subgroup of G
[k]
k−1 and we can

define the space

Yk := G
[k]
k−1 /G

[k]
• (Λ[k] ∩G[k]

k−1) .

Write φk : Xk → Yk for the the natural continuous surjection.

For x ∈ Xk, the subset G
[k]
• · x := {g · x : g ∈ G[k]

• } of Xk is the inverse image of

the point φk(x) ∈ Yk under φk and thus it is closed. So the action of G
[k]
• on Xk by
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left translations has closed orbits and we can identify Yk with the quotient of Xk

under this action.

Claim. The invariant σ-algebra I [k] of (X [k], µ[k], T [k]) is equal up to µ[k] null sets
to the inverse image under φk of the Borel σ-algebra of Yk.

Proof of the Claim. Let B be this inverse image. This σ-algebra consists in the

Borel subsets of Xk which are invariant under translation by any element of G
[k]
• .

Since T ∈ G, T [k] ∈ G[k]
• and every set belonging to B is invariant under T [k] and

thus belongs to I [k].
On the other hand, as G ⊂ G(X), the measure µ[k+1] is invariant under g for

any g ∈ G[k+1]
k by Corollary 5.4. In particular µ[k+1] is invariant under (1

[k]
k ,h) for

any h ∈ G[k]
• . Proceeding exactly as for the implication (2) =⇒ (3) in the proof of

Lemma 5.3, we have that every h ∈ G[k]
• acts trivially on I [k] and we conclude that

I [k] is measurable with respect to φ−1(B). The claim is proven. �
From Equation (30), it follows immediately that Xk+1 consists in the pairs

(x′,x′′) ∈ Xk × Xk, with φk(x′) = φk(x′′). Using the inductive hypothesis and
the definition of the measure µ[k+1], we get that this measure is concentrated on
the nilmanifold Xk+1. By Lemma 5.2, this measure is invariant under the transla-

tion by any of the generators of G
[k+1]
k and thus by translation by every element

of this group. It is therefore the Haar measure of the nilmanifold Xk+1 and the
statement of the Lemma is proven for k + 1. �

12. Arithmetic Progressions

We now use the tools assembled to study convergence along arithmetic progres-
sions in order to obtain Theorem 1.1.

12.1. Characteristic Factor for Arithmetic Progressions. We first show that
we can modify the original system and replace it by some factor so that convergence
of the factor system implies convergence in the original system. This is based on
the notion of a characteristic factor used by Furstenberg and Weiss in [FW96].

We can always assume that the system is ergodic by using, if necessary, ergodic
decomposition.

Theorem 12.1. Let (X,µ, T ) be an ergodic system. Assume that f1, . . . , fk are
bounded functions on X with ‖fj‖∞ ≤ 1 for j = 1, . . . , k. Then

(33) lim sup
N→+∞

∥∥∥ 1

N

N−1∑

n=0

( k∏

j=1

fj ◦ T jn
)∥∥∥

L2(µ)
≤ min

1≤`≤k

(
` · |||f`|||k

)
.

Proof. We proceed by induction. For k = 1 by the Ergodic Theorem,

∥∥∥ 1

N

N−1∑

n=0

f1 ◦ Tn
∥∥∥
L2(µ)

→
∣∣∣
∫
f1 dµ

∣∣∣ = |||f1|||1 .

Let k ≥ 1 and assume that the majorization (33) holds for k. Let f1, . . . , fk+1 ∈
L∞(µ) with ‖fj‖∞ ≤ 1 for j = 1, . . . , k + 1. Choose ` ∈ {2, . . . , k + 1}. (The case
` = 1 is similar.) Write

ξn =

k+1∏

j=1

fj ◦ T jn .
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By the van der Corput Lemma (Lemma D.2),

lim sup
N→∞

∥∥∥ 1

N

N∑

n=1

ξn

∥∥∥
2

L2(µ)
≤ lim sup

H→∞

1

H

H∑

h=1

(
lim sup
N→∞

∣∣∣ 1

N

N∑

n=1

∫
ξn+h · ξn dµ

∣∣∣
)
.

Letting M denote the last lim sup, we need to show that M ≤ `2|||f`|||2k+1.
For any integer h ≥ 1,

∣∣∣ 1

N

N∑

n=1

∫
ξn+h · ξn dµ

∣∣∣

=
∣∣∣
∫

(f1 · f1 ◦ T h) · 1

N

N∑

n=1

(k+1∏

j=2

(fj · fj ◦ T jh) ◦ T (j−1)n
)
dµ
∣∣∣

≤‖f1 · f1 ◦ T h‖L2(µ) ·
∥∥∥ 1

N

N∑

n=1

(k+1∏

j=2

(fj · fj ◦ T jh) ◦ T (j−1)n
)∥∥∥

L2(µ)

and by the inductive assumption,

lim sup
N→∞

∣∣∣ 1

N

N∑

n=1

∫
ξn+h · ξn dµ

∣∣∣ ≤ ` · |||f` · f` ◦ T `h|||k .

We get

M ≤ ` · lim sup
H→∞

1

H

H∑

h=1

|||f` · f` ◦ T `h|||k ≤ `2 · lim sup
H→∞

1

H

H∑

h=1

|||f` · f` ◦ T h|||k

≤ `2 · lim sup
H→∞

( 1

H

H∑

h=1

|||f` · f` ◦ T h|||2
k

k

)1/2k

.

Define F (x) =
∏
ε∈Vk f`(xε). The last average becomes

1

H

H∑

h=1

∫
F ◦ (T [k])h · F dµ[k]

by definition of the seminorm ||| · |||k. When H → +∞, this average converges to∫
E(F | I [k])2 dµ[k] =

∫
F ⊗ F dµ[k+1] = |||f`|||2

k+1

k+1

by definition of the seminorm ||| · |||k+1, and the proof is complete. �
12.2. Convergence for Arithmetic Progressions. We prove Theorem 1.1.

Let fj , 1 ≤ j ≤ k, be k bounded functions on X . By Theorem 12.1, the difference
between the average (1) and the same average with fj replaced by E(fj |Zk) for
1 ≤ j ≤ k tends to 0 in L2(X). Thus it suffices to prove Theorem 1.1 when all
functions are measurable with respect to Zk. In particular, we can assume that
the system X = Zk(X), that is, that X is a system of type k. Such a system is an
inverse limit of translations on nilmanifolds by Theorem 10.3 and so it suffices to
prove Theorem 1.1 for a translation x 7→ t · x on a nilmanifold X = G/Λ endowed
with its Haar measure. By density, it is also sufficient to prove the convergence
when the functions f1, . . . , fk are continuous.

Several independent proofs already exist for the convergence of the averages (1)
in this case (see Appendix A). Leibman [Lb02] uses Theorem B.3 applied to the
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the translation by s = (t, t2, . . . , tk) on the nilmanifold Xk = Gk/Λk, and obtain
the convergence everywhere. Ziegler ([Zie02a]) builds an explicit partition of Xk

into invariant nilmanifolds and shows that almost every nilmanifold is ergodic and
thus uniquely ergodic for the translation by s; the convergence almost everywhere
follows.

13. Cubes

We are now ready to complete the proof of Theorem 1.2. As for the arith-
metic progressions, we can assume that the system is ergodic. We first describe an
appropriate characteristic factor.

Let (X,µ, T ) be an ergodic system. Given an integer k ≥ 1 and 2k bounded
functions fε, ε ∈ Vk, on X , we study the convergence of the sequence of numerical
averages:

(Ak)

k∏

i=1

1

Ni −Mi

∑

n∈[M1,N1)×···×[Mk,Nk)

∫ ∏

ε∈Vk
fε ◦ T ε1n1+···+εknk dµ

and the convergence in L2(µ) of the averages

(Bk)

k∏

i=1

1

Ni −Mi

∑

n∈[M1,N1)×···×[Mk,Nk)

∏

ε∈V ∗k

fε ◦ T ε1n1+···+εknk

when N1 −M1, . . . , Nk −Mk tend to +∞. We show:

Theorem 13.1. (1) The averages (Ak) converge to

(34)

∫

X[k]

∏

ε∈Vk
fε(xε) dµ

[k](x) .

(2) The averages (Bk) converge in L2(µ). The limit is the function

(35) x 7→ E
(⊗

ε∈V ∗
k

fε
∣∣J [k]∗

)
(x)

where we have identified the σ-algebra J [k]∗ with the factor Zk−1(X) (see
Section 4.2).

13.1. The case of a toral system.

Lemma 13.2. The results of Theorem 13.1 hold when X is a toral system of order
` for some integer ` ≥ 1.

Proof. Let k ≥ 1 be an integer. For this proof we let Ti, 1 ≤ i ≤ k, denote the

transformation T
[k]
αi of X [k], where α1, . . . , αk are the sides of Vk not containing 0.

We recall that the group of transformations T [k]
∗ of X [k] is spanned by {Ti : 1 ≤

i ≤ k} and that the group T [k]
k−1 is spanned by T [k]

∗ and T [k].

We assume that X is a toral system of order `. By Lemma 11.8, µ[k] is the Haar

measure of the nilmanifold Xk = G
[k]
k−1/(Λ

[k]∩G[k]
k−1) introduced in Subsection 11.3.

By Corollary 3.5, µ[k] is ergodic under the group T [k]
k−1. As the transformations Ti,

1 ≤ i ≤ k, and T [k] of Xk are translations by commuting elements of G
[k]
k−1, it

follows from Theorem B.2 that Xk is uniquely ergodic for the action of T [k]
k−1.



60 BERNARD HOST AND BRYNA KRA

Let fε, ε ∈ Vk, be 2k continuous functions on X . For integers n, n1, . . . , nk the
transformation T nTn1

1 . . . Tnkk is given by
(
TnTn1

1 . . . Tnkk x
)
ε

= Tn+ε1n1+···+εknkxε for every ε ∈ Vk .
Therefore, by unique ergodicity, when N1−M1, . . . , Nk −Mk and N tend to +∞,
the functions

x 7→
k∏

i=1

1

Ni −Mi

∑

M1≤n1<N1,··· ,
Mk≤nk<Nk

1

N

N−1∑

n=0

∏

ε∈Vk
fε(T

n+ε1n1+···+εknkxε)

converge uniformly on Xk to the constant given by the integral

(36)

∫

Xk

∏

ε∈Vk
fε(xε) dµ

[k](x) .

Thus, they converge uniformly to this constant on the ‘diagonal’ subset of Xk (the
subset consisting in points x = (x, x, . . . , x)). This means that the averages

x 7→
k∏

i=1

1

Ni −Mi

∑

M1≤n1<N1,··· ,
Mk≤nk<Nk

1

N

N−1∑

n=0

∏

ε∈Vk
fε(T

n+ε1n1+···+εknkx)

converge uniformly on X to this constant. Taking the integral we get that the
averages (Ak) converge to this constant. Part (1) of Theorem 13.1 holds for a
toral system when the functions fε are continuous. The case of arbitrary bounded
functions follows by density.

Let fε, ε ∈ Vk, be 2k − 1 continuous functions on X . By Theorem B.3 the
averages

k∏

i=1

1

Ni −Mi

∑

M1≤n1<N1,··· ,
Mk≤nk<Nk

∏

ε∈V ∗k

fε(T
ε1n1+···+εknkxε)

converge for every x ∈ Xk and in particular for every diagonal point x = (x, x, . . . , x).
Therefore the averages (Bk) converge for every x ∈ X . Let φ(x) be the limit. By
Part (1), for every bounded function f0 on X ,

∫

X

f0(x)φ(x) dµ(x) =

∫

X[k]

f0(x0)
∏

ε∈V ∗k

fε(xε) dµ
[k](x)

=

∫

X

f0(x)E
(⊗

ε∈V ∗k

fε | J [k]∗
)

(x) dµ(x)

by Lemma 4.2, under the identification of the σ-algebras J [k]∗ and Zk−1(X). It fol-
lows that the function φ is equal to the conditional expectation (35). By density, the
same result holds for arbitrary bounded functions on X . Part (2) of Theorem 10.3
is proven for a toral system. �

Corollary 13.3. The results of Theorem 13.1 hold when X is a system of level `
for some ` ≥ 1.
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Proof. Let X be a system of order `. By Theorem 10.3, X can be represented as
an inverse limit of a sequence of toral systems of order `. Let Y be one of these
systems and p : X → Y the corresponding factor map.

Let gε, ε ∈ Vk , be bounded functions on Y . p[k] : X [k] → Y [k] is a factor map
by Lemma 4.5 and thus it follows from Lemma 13.2 that Part (1) of Theorem 13.1
holds for X and the functions fε = gε ◦ p.

By Proposition 4.6, p−1(Zk(Y )) = Zk(X)∩p−1(Y) and Part (2) of Theorem 13.1
also follows from Lemma 13.2 for the functions fε = gε ◦ p.

By density the same results hold for every bounded functions on X . �

13.2. The general case. In the proof, we consider the averages (Ak) with f0 = 1
separately. That is, the averages

(Ck)

k∏

i=1

1

Ni −Mi

∑

n∈[M1,N1)×···×[Mk,Nk)

∫ ∏

ε∈V ∗k

fε ◦ T ε1n1+···+εknk dµ .

We prove Theorem 13.1 by induction. For k = 1, the averages are

1

N −M

N−1∑

n=M

∫
f0 · f1 ◦ Tn dµ

and

1

N −M

N−1∑

n=M

f1 ◦ Tn dµ

where f0 and f1 are bounded functions on X . Since µ[1] = µ × µ, the results are
obvious.

Henceforth, fix an integer k > 1 and assume that the two statements of Theo-
rem 13.1 hold for k − 1.

13.2.1. The averages (Ck).

Lemma 13.4. Let gη, η ∈ Vk−1, be bounded functions on X. Then the lim sup for
N1 −M1,. . . , Nk−1 −Mk−1 → +∞ and N −M → +∞ of

(37)

k−1∏

i=1

1

(Ni −Mi)

∑

M1≤n1<N1,··· ,
Mk−1≤nk−1<Nk−1

∫ ∣∣∣ 1

N −M

N−1∑

p=M

∏

η∈V ∗k−1

gη ◦ T η·n−p
∣∣∣
2

dµ

is less than or equal to

(38)

∫ ∣∣E
( ⊗

η∈Vk−1

gη | I [k−1]
)∣∣2 dµ[k−1] .

Proof. Without loss of generality, we can assume that |gη| ≤ 1 for each η ∈ Vk−1.
Fix an integer H > 0. By the finite van der Corput Lemma (Lemma D.2), for each
n = (n1, . . . , nk−1) the integral in (37) is bounded by

N−M+H−1

(N−M)H
+

N−M+H−1

N−M

H−1∑

h=1

2
H−h
H2

N−h
N

∫ ∏

η∈Vk−1

(gη · gη ◦ T h) ◦ T η·n dµ .
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Thus the lim sup of expression (37) is bounded by

1

H
+
H−1∑

h=1

2
H−h
H2

lim sup
N1−M1→∞,··· ,

Nk−1−Mk−1→∞

k∏

i=1

1

Ni−Mi

∑

M1≤n1<N1,··· ,
Mk≤nk<Nk

∫ ∏

η∈Vk−1

(gη ·gη ◦T h)◦T η·n dµ .

By the inductive hypothesis Theorem 13.1 holds for k − 1 and this expression is
equal to

1

H
+
H−1∑

h=1

2
H−h
H2

∫

X[k−1]

⊗

η∈Vk−1

(gη · gη ◦ T h) dµ[k−1] .

Taking the limit when H →∞, we get the result. �

Lemma 13.5. The factor Zk−2 is characteristic for the convergence of the aver-
ages (Ck). In other words, if for some ε ∈ V ∗k we have E(fε | Zk−2) = 0, then these
averages converge to 0.

Proof. Without loss of generality, we can assume that |fε| ≤ 1 for every ε ∈ V ∗k .
First assume that E(fε | Zk−2) = 0 for some ε ∈ V ∗k with ε1 = 0. Define gη,

η ∈ V ∗k by gη = f0η and g0 = 1 and hη, η ∈ Vk, by hη = f1η. Then the average (Ck)
can be written

k−1∏

i=1

1

Ni−Mi

∑

M1≤n1<N1,...,Mk−1≤nk−1<Mk−1

∫ ( ∏

η∈Vk−1

hη ◦ T η·n+p
)
·
(

1

Nk−Mk

Nk−1∑

p=Mk

∏

η∈Vk−1

gη ◦ T η·n−p
)
dµ .

By the Cauchy-Schwartz inequality, the square of this average is bounded by (37).
By Lemma 13.4, the lim sup of the square of this average is bounded by (38).

The measure µ[k−1]∗ is relatively independent with respect to Z [k−1]∗

k−2 and at
least one of the functions gη, η ∈ V ∗k , has zero conditional expectation with respect

to Zk−2. Therefore E(⊗η∈V ∗
k
gη | Z [k]∗

k−2) = 0. But by Part (2) of Proposition 4.9,

the σ-algebra I [k−1]∗ is measurable with respect to Z [k−1]∗

k−2 . Thus E(
⊗

η∈V ∗
k
gη |

I [k−1]∗) = 0 and also E(
⊗

η∈Vk gη | I [k−1]) = 0. The bound (38) is equal to 0 and

the averages (Ck) converge to 0.
By permuting the coordinates, we get the same result when E(fε | Zk−2) = 0 for

some ε with εj = 0 for some j, that is, for some ε 6= 11 . . . 1.
Finally assume that E(f11...1 | Zk−2) = 0. By the preceding proof, the lim sup

of the absolute value of the averages (Ck) remains unchanged when we substitute
E(fε | Zk−2) for fε, for every ε 6= 11 . . . 1. Without loss of generality, we can
therefore assume that for each 11 . . . 1 6= ε ∈ V ∗k , the function fε is measurable with
respect to Zk−2. But in this case the integral in the average (Ck) is equal to 0 and
the result is obvious. �

Corollary 13.6. The averages (Ck) converge to

(39)

∫

X[k]∗

∏

ε∈V ∗k

fε(xε) dµ
[k]∗(x̃) .
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Proof. By Lemma 13.5 the difference between the averages (Ck) and the same av-
erages with the functions E(fε | Zk−2) substituted for fε converges to zero. As

the natural projection X [k]∗ → Z
[k]∗

k−2 is a factor map, the announced result follows
immediately from Corollary 13.3. �

13.2.2. The averages (Ak) and (Bk).

Lemma 13.7. The factor Zk−1 of X is characteristic for the convergence in L2(µ)
of the averages (Bk)

Proof. Assume that for some ε ∈ V ∗k we have E(fε | Zk−1) = 0. By Proposi-

tion 4.9 the measure µ[k]∗ is conditionally independent with respect to Zk−1 and

thus E(
⊗

ε∈V ∗k fε | Z
[k]∗

k−1) = 0. Moreover by Proposition 4.9 the σ-algebra J [k]∗ is

measurable with respect to Z [k]∗

k−1 and thus

E(
⊗

ε∈V ∗k

fε | J [k]∗) = 0 .

For n = (n1, . . . , nk) ∈ Zk, set

gn =
∏

ε∈V ∗k

fε ◦ T ε·n

and we have to show that

k∏

i=1

1

Ni −Mi

∑

M1≤n1<N1,··· ,
Mk≤nk<Nk

gn → 0 in L2(µ)

as N1 −M1, . . . , Nk −Mk → +∞. For h = (h1, . . . , hk) ∈ Zk, by Corollary 13.6

k∏

i=1

1

Ni −Mi

∑

M1≤n1<N1,··· ,
Mk≤nk<Nk

∫
gn+h · gn dµ→ γh ,

when N1 −M1, . . . , Nk −Mk tend to +∞, where

γh =

∫

X[k]∗

⊗

ε∈V ∗k

(fε · fε ◦ T ε·h) dµ[k]∗ .

When H →∞, we have

∑

−H≤h1≤H,
...

−H≤hk≤H

k∏

i=1

H−|hi|
H2

γh →
∥∥∥E
(⊗

ε∈V ∗k

fε
∣∣J [k]∗)

∥∥∥
2

L2(µ[k]∗)
= 0

and the statement of the Lemma follows from the multidimensional van der Corput
Lemma (Lemma D.3). �

As for arithmetic progressions, we combine the fact that the factors Zk are
characteristic with the proof of convergence for nilsystems to prove Theorem 13.1:
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Proof of Theorem 13.1. We study the convergence of the averages (Ak) and (Bk)
for an arbitrary ergodic system.

Recall that the natural projections X [k] → Z
[k]
k−1 and X [k]∗ → Z

[k]∗

k−1 are factor

maps and that the σ-algebra J [k]∗ is measurable with respect to Z [k]∗

k−1 (Propo-
sition 4.9). Then Theorem 13.1 follows immediately from Corollary 13.3 and
Lemma 13.7. �

13.3. Proof of Theorem 1.3. Using ergodic decomposition, we restrict to the case
where the system X is ergodic. By part (1) of Theorem 13.1, applied to fε = 1A
for every ε ∈ Vk, the averages appearing in the statement of Theorem 1.3 converge
to ∫

X[k]

∏

ε∈Vk
1A(xε) dµ

[k](x) = |||1A|||2
k

k .

By part (3) of Lemma 3.9 we have |||1A|||k ≥ |||1A|||1 = µ(A) and the result follows.
�

13.4. Proof of Theorem 1.5. Theorem 1.3 has the following corollary:

Corollary 13.8. Let (X,B, µ, T ) be an invertible measure preserving probability
system, let A ∈ B and let k ≥ 1 be an integer. Then for any c > 0, the set of
n ∈ Zk so that

µ
( ⋂

ε∈Vk
T ε·nA

)
≥ µ(A)2k − c

is syndetic.

Proof. Let E be the subset of Zk appearing in Theorem 1.3. If E is not syndetic,
there exist intervals [M1i , N1i), [M2i , N2i), . . . , [Mki , Nki) with the lengths of the
intervals tending to +∞ so that

E ∩ ([M1i , N1i)× [M2i , N2i)× . . .× [Mki , Nki)) = ∅ .
Taking averages along these k dimensional cubes in Theorem 1.3, we get a contra-
diction. �

Theorem 1.5 follows by combining Furstenberg’s correspondence principle and
Corollary 13.8.

Appendix A. Groups

A.1. Polish groups. We summarize the main results we need (see Chapter 1
of [BK96]):

Theorem A.1. Let G and H be Polish groups and let p : G → H be a group
homomorphism that is continuous and onto. Then p is an open map. Moreover, p
admits a Borel cross section, that is, a Borel map s : H → G with p ◦ s = Id.

Let G,H and p be as above and let the quotient G/ ker(p) be endowed with
the quotient distance. It follows from the Theorem the natural group isomorphism
G/ ker(p)→ H is a homeomorphism.

Corollary A.2. Let H be a closed normal subgroup of the Polish group G. If
H and G/H are locally compact, then G is locally compact. If H and G/H are
compact, then G is compact.
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We often build groups by a skew product construction and so present it here. Let
G be a Polish group and let (X,µ) be a probability space. A measure preserving
action on G on X is a measurable map (g, x) 7→ g · x of G×X to X so that

(1) For every g ∈ G, the map x 7→ g · x is a measure preserving bijection from
X onto itself.

(2) For every g, h ∈ G, gh · x = g · (h · x) almost everywhere.

Let U be a compact abelian group, written additively. We recall that C(X,U)
denotes the additive group of measurable maps from X to U . Endowed with the
topology of convergence in probability, it is an abelian Polish group. For g ∈
G and f ∈ C(X,U) we write Sg,f for the measure preserving transformation of
(X × U, µ×mU ) given by

Sg,f (x, u) =
(
g · x, u+ f(x)

)
.

These transformations form a group, called the skew product of G and written
G n C(X,U). Endowed with the topology of convergence in probability, it is a
Polish group. A sequence

{
Sgn,fn

}
converges to Sg,f in Gn C(X,U) if and only if

gn converges to g in G and fn converges to f in C(X,U).
The map p : Sg,f 7→ g is a continuous group homomorphism from G n C(X,U)

onto G and thus is an open map.

A.2. Lie groups. We call a locally compact group a Lie group when it can be
given the analytic structure of a Lie Group, although we never use the analytic
structure. From the characterization of Lie groups in [MZ55] it can be deduced:

Lemma A.3. Let G be a locally compact group and H a closed normal subgroup.
If H and G/H are Lie groups then G is a Lie group.

A.3. Nilpotent Lie groups. Let G be a Polish or locally compact group. For
g, h ∈ G, we write [g;h] for the commutator g−1h−1gh of g and h. If A,B are subsets
of G, we write [A;B] for the closed subgroup of G spanned by {[a; b] : a ∈ A, b ∈ B}.
The subgroups G(j), j ≥ 0, of G are defined by G(0) = G and G(j+1) = [G;G(j)] for
j ≥ 0. We say that G is k-step nilpotent if G(k) is the trivial subgroup {1} of G.

(This definition of nilpotency is stronger than the purely algebraic definition,
but the two definitions coincide for Lie groups.)

Appendix B. Nilmanifolds

Let G be a k-step nilpotent Lie group and Λ a discrete cocompact subgroup.
The compact manifold X = G/Λ is called a k-step nilmanifold. The group G acts
on X by left translations and we write (g, x) 7→ g · x for this action. There exists
a unique probability measure µ on X invariant under this action; it is called the
Haar measure of X . The fundamental properties of nilmanifolds were established
by Malcev [Ma51]. We use the following properties of the commutator:

Lemma B.1. Let G be a nilpotent Lie group and Λ a discrete cocompact subgroup.
Then:

(1) The groups G(j), j ≥ 1, are equal to the algebraic subgroups of iterated
commutators. This means that for j ≥ 1 the group G(j) is algebraically
spanned by {[g;h] : g ∈ G, h ∈ G(j−1)}.

(2) For every j ≥ 1, the subgroup G(j)Λ of G is closed in G.
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Let X = G/Λ be a k-step nilmanifold with Haar measure µ, let t ∈ G and
T : X → X the transformation x 7→ t · x. Then the system (X,µ, T ) is called a
k-step nilsystem.

The dynamical properties of nilsystems were studied by Auslander, Green and
Hahn [AGH63], Parry ([P69], [P70]), Lesigne [L91] and Leibman [Lb02], between
others.

Theorem B.2. Let X = G/Λ be a nilmanifold with Haar measure µ and let
t1, . . . , t` be commuting elements of G. If the group spanned by the translations
by t1, . . . , t` acts ergodically on (X,µ), then X is uniquely ergodic for this group.

This result was shown by Parry [P69] in the case of a single translation, by using
methods of [F61]. A similar proof for the general case can be found in [Lb02].

Theorem B.3. Let X = G/Λ be a nilmanifold and let t1, . . . , t` be commuting
elements of G. Then for any continuous function f on X the averages

k∏

i=1

1

Ni −Mi

∑

M1≤n1<N1···
Mk≤nk<Nk

f
(
tn1
1 . . . tnkk x

)

converge everywhere on X when N1 −M1, . . . , Nk −Mk tend to infinity.

This theorem can be viewed as a special case of the general results of M. Ratner
and N. Shah (see [Ra91] and [Sh96]). A proof of this result is given in [L91]
for a single transformation, under the additional hypothesis that the group G is
connected. The preprint [Lb02] contains a similar proof for the general case. We
do not reproduce it here, but indicate the different steps. By distality, for every
x ∈ X , its closed orbit

Yx = {tn1
1 . . . tnkk x : (n1, . . . , nk) ∈ Zk}

is minimal for the the action spanned by the translations by t1, . . . , tk. The crucial
point is that Y can be given the structure of a nilmanifold. By [P69], a minimal
nilmanifold is uniquely ergodic, and the result follows.

We notice that in Theorem B.3 the “cubes” [M1, N1) × · · · × [Mk, Nk) can be
replaced by an arbitrary Følner sequence of subsets of Zk.

Appendix C. Cocycles

C.1. Cocycles and extensions. Let (X,µ, T ) be a system and U a compact
abelian group. We generally assume here that U is written with additive notation.
(The changes needed when multiplicative notation is used are obvious.) A cocycle
with values in U is a measurable map ρ : X → U . We let C(X,U) denote the
family of U -valued cocycles on X and we write C(X) instead of C(X,T). C(X,U)
is endowed with pointwise addition and the topology of convergence in probability.
It is a Polish group.

The extension of (X,µ, T ) by U associated to the cocycle ρ ∈ C(X) is the system
(X × U, µ×mU , Tρ), where Tρ : X × U → X × U is given by

Tρ(x, u) =
(
Tx, u+ ρ(x)

)
.

If (X ×U, µ×mU , Tρ) is ergodic, we say that the cocycle ρ is ergodic. If moreover
(X × U, µ ×mU , Tρ) has the same Kronecker factor as X , we say that ρ is weakly
mixing.
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The factor map (x, u) 7→ x is called the natural projection. For v ∈ U , we also
let v denote for the measure preserving transformation of X × U given by

v · (x, u) = (x, v + u) .

A transformation of this type is called a vertical rotation or in case of ambiguity,
a vertical rotation above X . We continuously identify the group U with the group
of vertical rotations. The vertical rotations commute with Tρ and preserve the
natural projection on X . When ρ is ergodic, they are exactly characterized by
these properties.

C.2. Cocycles and coboundaries. For ρ ∈ C(X,U), the coboundary of ρ is the
cocycle ρ◦T −ρ and when there is no ambiguity, we write it ∂ρ. Let ∂C(X) denote
the subgroup of C(X) consisting of coboundaries.

Assume that X is ergodic. Then a cocycle ρ ∈ C(X,U) is ergodic if and only

if there exists no nontrivial character χ ∈ Û so that the cocycle χ ◦ ρ ∈ C(X) is a
coboundary.

The following result is found in Moore and Schmidt [MS80]:

Lemma C.1. Let (X,µ, T ) be a system, U a compact abelian group and ρ ∈
C(X,U). Then ρ is a coboundary if and only if for every χ ∈ Û , the cocycle
χ ◦ ρ : X → T is a coboundary.

Two cocycles ρ, ρ′ ∈ C(X,U) are said to be cohomologous if ρ−ρ′ is a coboundary.
In this case, the extensions they define are isomorphic (i.e., there is an isomorphism
between these two systems which preserves the natural projections).

Lemma C.2. Let (X,µ, T ) and (Y, ν, S) be ergodic systems, U a compact abelian
group, ρ : X → U an ergodic cocycle and W the extension of X by U associated to
ρ. Assume that W and Y are factors of the same ergodic system K and let L and
M be the factors of K associated to the invariant sub σ-algebras L = X ∨ Y and
M =W ∨Y, respectively. Then M is an extension of L by a closed subgroup V of
U .

Let γ ∈ Û and consider γ as taking values in S1. Define a function fγ on W
by fγ(x, u) = γ(u). If E(fγ | L) 6= 0, then fγ is measurable with respect to L and
γ ∈ V ⊥.

This Lemma is essentially a reformulation of more or less classical results and
similar Lemmas can be found, in particular, in Furstenberg and Weiss [FW96]. We
only give an outline of the proof.

Proof. The system L can be represented as an ergodic joining λ of (X,µ, T ) and
(Y, ν, S). In the same way, M can be represented as an ergodic joining τ of W and
Y . τ is a measure on W × Y = X × Y × U and the projection of τ on X × Y is
λ. Moreover, τ is invariant under the transformation of (X × Y )×U associated to
the cocycle σ : (x, y) 7→ ρ(x) of the ergodic system (X × Y, λ, T × S).

Therefore τ is an ergodic component of the extension of this system by U , defined
by the cocycle σ. Thus it is an extension of this system by a closed subgroup V
of U , the Mackey group of σ in the terminology of Furstenberg and Weiss [FW96].

For γ ∈ Û , we have γ ∈ V ⊥ if and only if γ ◦ σ is a coboundary of the system
(X × Y, λ, T × S). That is, if and only if γ ◦ ρ is a coboundary of L.
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Let γ ∈ Û and assume that E(fγ | L) 6= 0. We have

fγ(Tρ(x, u)) = γ(ρ(x)) · fγ(x, u)

and moreover the map (x, y, u) 7→ γ(ρ(x)) is measurable with respect to L. Thus

E(fγ | L) ◦ T = E(fγ ◦ Tρ | L) = γ ◦ ρ · E(fγ | L) .

The function E(fγ | L) · fγ is invariant on M and thus is constant by ergodicity.
Therefore fγ is measurable with respect to L and γ ◦ ρ is a coboundary on L. By
the first part, γ ∈ V ⊥.

�

C.3. Measurability properties. Let X be a system and U a compact abelian
group. Then the coboundaries form a subgroup of C(X,U), which is Borel because
it it the range of the continuous group homomorphism ∂ : ρ 7→ ρ ◦ T − ρ from the
Polish group C(X,U) to itself ([BK96]).

Lemma C.3. Let (X,µ, T ) be (non-ergodic) system, (Y, ν) a (standard) probability
space, and y 7→ µy a weakly measurable map from Y to the space of probability
measures on X. Assume that

• For every y ∈ Y , the measure µy is invariant under T .
• µ =

∫
Y µy dν(y).

Let (Ω, P ) be a (standard) probability space and let ω 7→ ρω be a measurable map
from Ω to C(X,S1). Then:

(1) The set

A =
{

(ω, y) ∈ Ω× Y : ρω is a coboundary of (X,µy, T )
}

is a measurable subset of Ω× Y .
(2) For ω ∈ Ω, ρω is a coboundary of (X,µ, T ) if and only if the set

Aω = {y ∈ Y : (ω, y) ∈ A}
satisfies ν(Aω) = 1.

A cocycle ρ ∈ C(X,S1) is a map from X to S1 which is defined only µ-almost ev-
erywhere. This makes the definition of the set A in the Lemma appear ‘problematic’
and so we begin with an explanation.

We recall that C(X,S1) is endowed with the topology of convergence in proba-
bility and this topology coincides with the topology of L1. By a classical result (see
for example [Va70], p. 65) there exists a map R : Ω×X → S1, defined everywhere
and measurable, such that for every ω ∈ Ω, ρω(x) = R(ω, x) for µ-almost every x.
In the statement above and in the proof below we write ρω(x) instead of the more
precise but heavier notation R(ω, x).

Proof. (1) For ω ∈ Ω and an integer n ≥ 0, write

ρ(n)
ω (x) = ρω(x)ρω(Tx) . . . ρω(Tn−1x) .

For a bounded function (defined everywhere) on X , we write Bω,f for the set of
points x ∈ X where the averages

(40)
1

N

N−1∑

n=0

ρ(n)
ω (x)f(Tnx)
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converge as N → +∞. Define the function ψω,f on Bω,f to be the limit of these
averages. The set Bω,f is clearly invariant under T and the function ψω,f satisfies

(41) ψω,f (Tx) = ψω,f (x)ρω(x) for x ∈ Bω,f .
Define

Cω,f = {x ∈ Bω,f : ψω,f (x) 6= 0} .
Then Cω,f is invariant under T . For every bounded function f on X , the subset

Cf = {(ω, x) ∈ Ω×X : x ∈ Cω,f}
is measurable in Ω×X .

We show now that µ(Bω,f ) = 1. Let X×S1 be endowed with the transformation
associated to the cocycle ρω and let φ be the function defined on X×S1 by φ(x, u) =
f(x)u. By applying the ergodic theorem on the system X ×S1 and the function φ,
we get that the averages (40) converge almost everywhere. That is, µ(Bω,f ) = 1.
Therefore, the function ψω,f is defined µ-almost everywhere, and satisfies (41) µ-
almost everywhere. By the same argument, for every y ∈ Y , the same properties
hold with µy substituted for µ.

Choose a countable family {fj : j ∈ J} of bounded functions on X that is dense
in L2(µ) and dense in L2(µy) for every y ∈ Y . Define

Cω =
⋃

j∈J
Cω,fj and C =

⋃

j∈J
Cfj .

We claim that

(42) A = {(ω, y) ∈ Ω× Y : µy(Cω) = 1} .
Let ω ∈ Ω and y ∈ Y so that (ω, y) ∈ A. There exists f : X → S1 so that

ρω(x) = f(Tx)f(x) for µy-almost every x and by construction, ψω,f = f µy-a.e.
Choose a sequence {jk} in J so that fjk → f in L2(µy). The sequence of functions
{ψω,fjk } converges in L2(µy) to ψω,f = f , which is of modulus 1. By definition of

these sets, µy
(⋃∞

k=1 Cω,fjk
)

= 1 and thus finally µy(Cω) = 1.

Conversely, assume that µy(Cω) = 1. This set is the union for j ∈ J of the
invariant sets Cω,fj . Thus we can find a sequence {Dj} of measurable subsets of
X , invariant and pairwise disjoint, with

Dj ⊂ Cω,fj for every j and
⋃

j∈J
Dj = Cω .

Define a function f on Cω by f(x) = fj(x) for x ∈ Dj . As the sets Dj are
invariant, it follows from the construction that for every j and every x ∈ Dj we
have ψω,f (x) = ψω,fj (x) 6= 0. Then ψω,f 6= 0 on Cω and so µω-almost everywhere.
By dividing the two sides of Equation (41) by |ψω,f |, we get that ρω is a coboundary
of (X,µω, T ) and that (ω, y) ∈ A.

Our claim (42) is proven and the first part of Lemma C.3 follows.

(2) If ρω is a coboundary of (X,µ, T ), there exists f ∈ C(X,S1) with ρω = f ◦T ·f ,
µ-almost everywhere. As µ =

∫
µy dν(y), for ν-almost every y the same relation

holds µy-almost everywhere and ρω is a coboundary of (X,µy, T ).
Conversely, assume that for ν-almost every y the cocycle ρω is a coboundary of

(X,µ, T ). Define the sets Cω,fj and Cω as above. For ν-almost every y we have
(ω, y) ∈ A and thus µy(Cω) = 1. It follows that µ(Cω) = 1. Use the sets Dj and the
function f defined above, with the measure µ substituted for µy. The function ψω,f
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is defined and non-zero µ-almost everywhere and satisfies Equation (41) µ-almost
everywhere. Therefore, ρ is a coboundary of (X,µ, T ). �

For simplicity, we stated and proved the preceding Lemma only for cocycles with
values in the circle group S1. But it follows immediately from Lemma C.1 that a
similar result holds for cocycles with values in any compact abelian group. (We
recall that implicitly we assume that all compacts abelian groups are metrizable.)

On the other hand, the full form of Lemma C.3 is used only in the proof of The-
orem 9.6. Several times we use a weaker form with a single cocycle, corresponding
to a constant map ω 7→ ρω:

Corollary C.4. Let (X,µ, T ), (Y, ν) and µω be as in Lemma C.3. Let U be a
compact abelian group and ρ : X → U a cocycle. Then the subset

Aρ = {y ∈ Y : ρ is a coboundary of (X,µy, T )}
of Y is measurable. The cocycle ρ is a coboundary of (X,µ, T ) if and only if
ν(Aρ) = 1.

C.4. Quasi-coboundaries and cocycles on squares. Let (X,µ, T ) be an er-
godic system, U a torus and ρ : X → U a cocycle. ρ is a quasi-coboundary if it is
the sum of a coboundary and a constant.

We recall that ρ is weakly mixing if and only if there exists no nontrivial character
γ of U so that γ ◦ ρ : X → T is a quasi-coboundary.

A proof of the following result can be found in Moore and Schmidt [MS80]:

Lemma C.5. Let (X,µ, T ) be an ergodic system, U a torus and ρ : X → U a
cocycle. If the map (x, x′) 7→ ρ(x) − ρ(x′) : X ×X → U is a coboundary of (X ×
X,µ× µ, T × T ), then ρ is a quasi-coboundary.

We note that the analogous result does not hold for a cocycle with values in an
arbitrary compact abelian group.

Lemma C.6. Let (X,µ, T ) be an ergodic system, U a compact abelian group and
ρ ∈ C(X,U) a cocycle. Assume that the map (x, x′) 7→ ρ(x) : X × X → T is a
coboundary on (X ×X,µ× µ, T × T ). Then ρ is a coboundary.

Proof. By Lemma C.1, we can reduce to the case that U is the circle group S1.
Write (Z, t) for the Kronecker factor of X and π : X → Z for the natural projection.

By hypothesis, there exists a function f : X ×X → S1 with

f(Tx, Tx′)f(x, x′) = ρ(x) .

The function defined on X ×X ×X by (x, x′, x′′) 7→ f(x, x′)f(x, x′′) is invariant
under T ×T ×T and thus is measurable with respect to Z ×Z ×Z . It follows that
the function f is measurable with respect to X ×Z . Taking the Fourier transform
of f with respect to the second variable, we can write

(43) f(x, x′) =
∑

γ∈Ẑ

gγ(x)γ(π(x′)) .

Then

f(x, x′) f(x, x′′) =
∑

γ,θ∈Ẑ

gγ(x) gθ(x) γ(π(x′)) θ(π(x′′)) .
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As this function is invariant under T × T × T , by unicity of the Fourier transform

we get that for every γ, θ ∈ Ẑ,

gγ(Tx) gθ(Tx) gγ(x) gθ(x) = γ(t)θ(t) .

The function x 7→ gγ(x) gθ(x) is an eigenfunction of X for the eigenvalue γ(t)θ(t)
and so there exists a constant cγ,θ with

gγ(x) gθ(x) = cγ,θ γ(π(x)) θ(π(x)) .

Finally, there exists a function φ on X and for every γ ∈ Û there exists a constant
cγ so that

gγ(x) = cγ φ(x) γ(π(x)) .

Using the values of the functions gγ in Equation (43), there exists a function g
on Z with f(x, x′) = φ(x)g(π(x) − π(x′)). As f is of modulus 1, the functions
g and φ have constant modulus and so we can assume that |φ| = 1. We have

ρ(x) = φ(Tx)φ(x)). �

The next Lemma uses the definition and properties of the measures µ[k] intro-

duced in Section 3. The notation ξ
[k]
α was introduced in Section 2.1.

Lemma C.7. Let (X,µ, T ) be an ergodic system, 1 ≤ ` ≤ k integers and let α
be an `-face of Vk. Let U be a compact abelian group and ρ : X [`] → U a cocycle.

If the cocycle ρ ◦ ξ[k]
α = X [k] → U is a coboundary of (X [k], µ[k], T [k]), then ρ is a

coboundary of (X [`], µ[`], T [`]).

Proof. We begin by the case ` = 0. Here ρ is a cocycle on X . Assuming that for
some vertex ε of Vk the cocycle x 7→ ρ(xε) is a coboundary of X [k], we have to show
that ρ is a coboundary on X . By permuting coordinates, we can restrict to the
case that ε is the vertex 0.

We proceed by induction on k. For k = 1, the result is exactly Lemma C.6. Take
k ≥ 1 and assume that the result holds for k. Assume that the cocycle x 7→ ρ(x0)
is a coboundary of X [k+1]. We use the ergodic decomposition (4) of µ[k] and the
formula (5) for µ[k+1]. By Corollary C.4, for almost every ω the cocycle x 7→ ρ(x0)

is a coboundary on the Cartesian square of (X [k], µ
[k]
ω , T [k]). This cocycle depends

only on the first coordinate of this square and by Lemma C.6 we get that the

map x′ 7→ ρ(x′0) is a coboundary of the system (X [k], µ
[k]
ω , T [k]). As this holds for

almost every ω, the map x′ 7→ ρ(x′0) is a coboundary of the system (X [k], µ[k], T [k])
by Corollary C.4. By the induction hypothesis, ρ is a coboundary of X . This
completes the proof when ` = 0.

Consider the case that ` > 0. We use the ergodic decomposition given by For-
mula (5) for µ[`] and by Lemma 3.1 we get

µ[k] =

∫

Ω`

(
µ[`]
ω

)[k−l]
dP`(ω) .

We use Corollary C.4 and the first part of the proof with k − ` substituted for k

and (X [`], µ
[`]
ω , T [`]) substituted for (X,µ, T ). The result follows. �
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C.5. Cocycles and group of automorphisms. Let (X,µ) be a probability space,
G a compact abelian group and (g, x) 7→ g · x an action of G on X by measure pre-
serving transformations. This action is said to be free if there exists a probability
space (Y, ν) and a measurable bijection j : Y ×G→ X , mapping ν×mG to µ, with
j(y, gh) = g · j(h) for y ∈ Y and g, h ∈ G.

The vertical rotations introduced in Section C.1 are free actions. The action of
a compact abelian group on itself by translations is free. The restriction of a free
action to a closed subgroup is free.

The next Lemma says that a free action of a compact abelian group G is ‘coho-
mologically’ free. It is a classical result, but we give a proof for completeness.

Lemma C.8. Let {Sg : g ∈ G} be a free action of the compact abelian group G on
the probability space (X,µ) and let g 7→ φg be a measurable map from G to C(X,S1)
so that

(44) φgh = φg · (φh ◦ g) for every g, h ∈ G .

Then there exists φ ∈ C(X,S1) so that φg = (φ ◦ Sg) · φ for every g ∈ G.

Proof. For g ∈ G, let Sg be the unitary operator on L2(µ) given by Sgf(x) =
φg(x)f(g · x). The hypothesis (44) means that {Sg : g ∈ G} is a unitary represen-
tation of the compact abelian group G in L2(µ). Therefore, L2(µ) is the Hilbert

sum of the spaces Hγ , γ ∈ Ĝ, where

Hγ = {f ∈ L2(µ) : Sgf = γ(g) f for every g ∈ G} .
If f ∈ Hγ , the function |f | is invariant under the action of G and thus so is the
set {x ∈ X : f(x) 6= 0}. Therefore, there exists a partition X =

⋃
nXn of X

into invariant sets and there exists for every n a character γn ∈ Ĝ and a function
fn ∈ Hγn with fn(x) 6= 0 for x ∈ Xn. As the action of G is free, for every n there
exists a function hn : X → S1 with hn ◦ g = γn(g)hn for every g ∈ G. The function
φ defined on X by

φ(x) = hn(x)
fn(x)

|fn(x)| for x ∈ Xn

satisfies the announced property. �

Lemma C.9. Let (X,µ, T ) be an ergodic system, U a compact abelian group and
let (u, x) 7→ u · x be a free action of U on X by automorphisms. Let ρ ∈ C(X) be
a cocycle so that ρ ◦ Su − ρ is a coboundary for every u ∈ U . Then there exists an
open subgroup U0 of U and a cocycle ρ′, cohomologous to ρ, with ρ′ ◦ Su = ρ′ for
every u ∈ U0.

Proof. By hypothesis, for every u ∈ U there exists f ∈ C(X) with

(45) ρ ◦ Su − ρ = f ◦ T − f .
As in Appendix A, for f ∈ C(X) and u ∈ U we write Su,f for the measure preserving
transformation of X × T given by Su,f (x, t) = (Sux, t + f(x)). The skew product
group U n C(X) consists in all transformations of this kind. Let K be the subset of
U n C(X) consisting in the transformations Su,f , where u, f satisfy Equation (45).
Clearly, K is a closed subgroup of U nC(X). By hypothesis, the natural projection
p : K → U is onto and its kernel is {S1,c : c ∈ T}, which is a group homeomorphically
isomorphic to T. By Corollary A.2, K is compact. We identify ker(p) with T.
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As p is a homomorphism to an abelian group, its kernel T contains the commu-
tator subgroup K′ of K. But T is obviously included in the center of K. Thus K is
a ≤ 2-step nilpotent group, and the commutator map K×K → T is bilinear. This
map is also continuous and is trivial on K × T and on T × K. Thus it induces a
continuous bilinear map K/T ×K/T → T. As K/T can be identified with U , this
map can be viewed as a bilinear map from U ×U to T and by duality we see it as a

continuous group homomorphism from U to Û . As Û is discrete, the kernel of this
last homomorphism is an open subgroup U0 of U . Following these identifications
back, we get that p−1(U0) is abelian.

The compact abelian group p−1(U0) admits T as a closed subgroup, with quotient
equal to U0. Thus it is isomorphic to U0 ⊕ T. This means that the restriction of
p to p−1(U0) admits a cross section which is a continuous group homomorphism.
This cross section has the form u 7→ Su,fu and u 7→ fu is a continuous map from
U0 → C(X), with

for all u ∈ U0, ρ ◦ u− ρ = fu ◦ T − fu ;(46)

for all u, v ∈ U0, fuv(x) = fu(x) + fv(Sux) .(47)

Since the action of U on X is free, by Equation (47) and Lemma C.8, there exists
f ∈ C(X) so that fu = f ◦ u− f for every u ∈ U0. Write ρ′ = ρ− f ◦ T + f . This
cocycle is cohomologous to ρ and by Equation (46), ρ′ ◦ u = ρ′ for u ∈ U0. �
Lemma C.10. Let (X,µ, T ) be an ergodic system, U a compact abelian group and
(u, x) 7→ u ·x a free action of U on X by automorphisms. Let ρ ∈ C(X) be a cocycle,
so that ρ ◦ u− ρ is a quasi-coboundary for every u ∈ U . Then there exists a closed
subgroup U1 of U so that U/U1 is toral and there exists a cocycle ρ′, cohomologous
to ρ, with ρ′ ◦ Su = ρ′ for every u ∈ U1.

Proof. The beginning of the proof is similar to the proof of Lemma C.9. For every
u ∈ U , there exists f ∈ C(X) and a constant c ∈ T so that

(48) ρ ◦ u− ρ = f ◦ T − f + c .

Let H be the subset of U n C(X) consisting in transformations Su,f so that u
and f satisfy Equation (48) for some c. Clearly, H is a closed subgroup of U n
C(X). By hypothesis, the projection p : H → U is onto and its kernel is {S1,f :
f is an eigenfunction of X}. Thus ker(p) is homeomorphically isomorphic to the
group A(Z) of affine functions on the Kronecker factor Z of X (for this notation

see Section 8.4). This group can be identified with T ⊕ Ẑ and in particular, it is
locally compact. By Corollary A.2, H is locally compact.

A direct computation shows that the commutator subgroup K′ of K is included
in the subgroup T of H. Thus K = H/T is a locally compact abelian group. We
write q : K → U for the continuous group homomorphism induced by p.

For Su,f ∈ H, the constant c appearing in Equation (48) is well defined and the
map ψ : Su,f 7→ c induces a continuous group homomorphism from H to T. This
homomorphism is trivial on T and it induces a character φ of K = H/T.

By the Structure Theorem of Locally compact Abelian Groups, K admits an
open subgroup L isomorphic to K ⊕ Rd, where K is a compact abelian group and
d ≥ 0 is an integer. We identify L with K ⊕Rd and write K0 = K ∩ ker(φ) and U0

for the closed subgroup q(K0) of U .
For u ∈ U0, there exists by definition f ∈ C(X) so that Su,f ∈ H and ψ(Su,f ) = 0.

In other words, u and f satisfy Equation (48) with c = 0, meaning, they satisfy
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Equation (45). By Lemma C.9, there exist an open subgroup U1 of U0 and a cocycle
ρ′, cohomologous to ρ, with ρ′ ◦ u = ρ′ for every u ∈ U1.

It remains to show that U/U1 is a toral group. As L is open in K and q is an
open map, q(L) is an open subgroup of U and thus U/q(L) is finite. q(L)/q(K) is
a quotient of L/K = Rd and is compact and thus it is a torus. K/K0 is isomorphic
to φ(K), which is a closed subgroup of T and so is equal to T or is finite. q(K)/U0

is a quotient of K/K0 and so it is either finite or isomorphic to T. Finally, U0/U1

is open and the proof is complete. �

Appendix D. the van der Corput Lemma

We use several extensions of the classical van der Corput inequality, as found
for example in [KN74]. Both deal with sequences in a Hilbert space. Here H is a
Hilbert space, with norm ‖·‖ and inner product 〈· | ·〉. Let Re(z) denote the real
part of the complex number z.

Lemma D.1 ([Be87]). Let {xn} be a sequence in H. For integers N and H with
1 ≤ H ≤ N we have

H2
∥∥∥
N∑

n=1

xn

∥∥∥
2

≤ H(N +H − 1)

N∑

n=1

‖xn‖2 + 2(N +H − 1)

H−1∑

h=1

(H − h)

N−h∑

n=1

Re〈xn | xn+h〉 .

Taking limits in this inequality, we get:

Lemma D.2. Let {xn} be a bounded sequence in H. We have

lim sup
N→∞

∥∥∥ 1

N

N∑

n=1

xn

∥∥∥
2

≤ lim sup
H→∞

1

H

H∑

h=1

lim sup
N→∞

∣∣ 1

N

N∑

n=1

〈xn | xn+h〉
∣∣ .

We need also a similar result for multidimensional sequences. The following
Lemma can be found in the proof of Lemma A6 of [BMC00]. Here we write n =
(n1, . . . , nk) for a point in Zk.

Lemma D.3. Let {xn : n ∈ Zk} be a bounded sequence in H. Assume that for
every h = (h1, . . . , hk) ∈ Zk

k∏

i=1

1

Ni−Mi

∑

M1≤n1<N1,
...,

Mk≤nk<Nk

Re〈xn+h | xn〉 → γh

as M1 −N1, . . . , Nk −Mk → +∞, and that

∑

−H≤h1≤H,
...,

−H≤hk≤H

k∏

i=1

H−|hi|
H2

· γh −→ 0

as H → +∞. Then
∥∥∥

k∏

i=1

1

Ni−Mi

∑

M1≤n1<N1,
...,

Mk≤nk<Nk

xn

∥∥∥ −→ 0
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as N1 −M1, . . . , Nk −Mk → +∞.
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[L93] E. Lesigne. Équations fonctionelles, couplages de produits gauches et théorèmes ergodiques
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