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ABSTRACT. Generalizing classic results for a family of measures
in the torus, for a family (u)i>0 of measures defined on a nil-
manifold X, we study conditions under which the family equidis-
tributes, meaning conditions under which the measures u; converge
as t — oo in the weak™ topology to the Haar measure on X. We
give general conditions on a family of measures defined by a dilation
process, showing necessary and sufficient conditions for equidistri-
bution as the family dilates, along with conditions such that this
holds for all dilates outside some set of density zero. Furthermore,
we show that these two types of equidistribution are different.

1. INTRODUCTION

1.1. Limiting distributions of measures. A classic problem for bil-
liards is of illumination: in a polygonal room, a light source is located
at some point and the question is if there is some point not illuminated
by this source. Chaika and Hubert [5] recently studied a related prob-
lem for circles of light, rather than points, showing that dilated circles
around a fixed point weakly equidistribute outside a set of density zero
(in their terminology, this phenomenon is called weak illumination).
Motivated by their work, we prove weak and strong equidistribution
results for a dilated family of measures on a nilmanifold.

The study of equidistribution results on a nilmanifold originates in
the work of Green [I], where he showed that a flow is either equidis-
tributed or there is a nontrivial obstruction to this flow arising from
horizontal character on the nilmanifold. More precise distributional re-
sults were obtained by Shah [12], who described the limiting behavior
for a polynomial series of iterates in a flow, and by Leibman [6], who
proved convergence results for polynomial sequences of iterates. The
asymptotic behavior of dilates of a measure supported on a curve in a
nilmanifold was studied by Bjorklund and Fish [4], and among other
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results we answer a conjecture of theirs about the general behavior of
such dilates (this result is given in Theorem [1.2).

For example, we consider a family of measures that are linear expan-
sions on the Lie algebra g associated to some nilpotent Lie group G.
A sample result is necessary and sufficient conditions that this family
equidistributes as it dilates, and whether or not these equidistribution
results for all sufficiently large dilates or only for all dilates outside
a set of density zero depends on the derivative of the dilation. The
simplest case of our results is for a torus, where such strong equidis-
tribution results for a curve are implicit in the literature (though we
are unaware of an explicit result like this). For a nilmanifold X, if we
consider a continuous curve with the induced measure on this curve,
it is easy to check that the dilates equidistribute weakly so long as the
curve contains no linear segment of positive length (this corresponds to
a nontrivial horizontal character picking up positive measure). More
general equidistribution results on a nilmanifold, covering a broader
class of dilations, require significantly more work and these character-
izations are our main focus.

To give the precise formulations of our results in Sections [I.6] [1.7]
and we start by defining the objects that give us sufficient (and in
some cases necessary) conditions for equidistribution.

1.2. Equidistribution and weak equidistribution. Let X = G/T’
be a compact nilmanifold, meaning that G is a simply connected nilpo-
tent Lie group and I' C G is a cocompact closed subgroup of GG. The
group G acts on X = G/T" by left translation, and there is a unique
G-invariant Borel probability measure g on X (the Haar measure).

A family of probability measures ()0 on X is equidistributed on
X if pu; converges in the weak* topology as t — oo to the Haar measure
p of X. Letting C'(X) denote the space of continuous functions on X,
this means that the family of measures (u:):>o is equidistributed if for

all f e C(X),
}H?o/de“t:/de“' (1.1)

Throughout, we let A denote the Lebesgue measure. The family
of measures (f)i>0 is said to be weakly equidistributed on X if the
convergence in holds for ¢ in a set of asymptotic density 1 in
[0, 00), meaning there exists A C [0, 00) such that

L AMAN[0,7))
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and for all f € C(X),

lim/fdut:/fdu.
t—o0 X X

teA

If we consider discrete time, then the family (u,)neny of measures is
weakly equidistributed on X if the convergence in holds for a set
of parameters n with asymptotic density 1, meaning along a set A C N
satisfying limy_, M = 1, where | - | denotes the cardinality of
the set.

Equivalently, (1)i>0 is weakly equidistributed if and only if for every
feC(X) with [, fdu=0,

1 T
TIEEOT/O ’/de“t

and for discrete iterates (p,)nen, this becomes

2
dt =0, (1.2)

oo, (1.3)

While it is clear that strong equidistribution implies weak equidistri-
bution, for a family of measures in a nilmanifold these two notions are
not equivalent. Various examples illustrating the difference are given
in Section [l

1.3. Dilation associated to the Lie algebra. We note that Ad(T")
is a Zariski dense subgroup of Ad(G), see [10, Chapter 2]. Since I'
normalizes its connected component of the identity, say I'°, we have
that I'° is a normal Lie subgroup of G. We note that I'° acts trivially
on G/T, so G acts on X = G/I" via G/T?, or we can say that G/T"
acts on X = G/I" as follows:

(gI°) -z = g, forall g€ G and z € X.

Let g denote the Lie algebra associated to the nilpotent Lie group
G. Then g/ Lie(I'?) is the Lie algebra associated to G/T°. We define
a family of dilations (p;)ier such that p: g — g/ Lie(T?) is a linear
transformation, and each matrix entry of p; with respect to any bases
of g and g/ Lie(T") is a polynomial in ¢. In other words, for some m > 0
and for some linear maps B; : g — g/ Lie(T?), 0 < j < m, we have
pr =y ot B; for all t € R.
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1.4. Dynamics of measures under dilations. Let v be a probabil-
ity measure on g and let zp € G/I". For t > 1, let ji,,4,,, denote the
measure on X defined as follows: for any f € C(X),

AfwmwzéﬂwwawWM% (1.4)

where exp : g/ Lie(T'%) — G/I'? is the exponential map from Lie algebra
to Lie group.

An interesting example of v is as follows: Given a measurable map
¢:(0,1) — g, we can take v to be the pushforward of the Lebesgue
measure A restricted to (0,1) under ¢. Then for ¢ > 0, taking fi4 0.
to be the measure on X defined by

1
[ Fbonn = [ Sesvopiootu) sir@) (19
X 0
for all f € C(X), then g zop = tuzo.p:-

1.5. Abelianization of a nilsystem. Let [G, G| denote the Lie sub-
group of G corresponding to the commutator algebra [g,g]. For a
cocompact, closed subgroup I' of GG, we have that [G, G| is a closed
subgroup of G, and X := G/[G, G]T" can be identified with a compact
torus R™/Z™ for some m > 1 (see for example [10, Corollary 1 of The-
orem 2.3]). We call X the abelianization of X and use t = R™ to denote
the associated Lie algebra of X and ¢: X = G/ — X = G/|G,G|T
to denote the natural quotient map.

Let dq: g/ Lie(T°) — t denote the differential of the map ¢ at the
identity coset. Then

q(exp(y) - o) = exp odq(y) + q(zo) (1.6)

for all y € g/ Lie(I'°) and all z5 € X.
Then dg o p;: g — t can be expressed as

dy
dqo p; = ZtiAi, (1.7)
=0

where d; € N and each A;: g — tis a linear map.

When T is discrete; that is, T = {e}, a natural choice for a family
of dilations is to consider (p;)icr, where pv = tv for all v € g. In this
case, d; = 1, A; = dg, and Ay = 0.

Let X* denote the space of (continuous) unitary characters on the
torus X. Then elements of X* are in one-to-one correspondence with
unitary characters on GG such that the kernel of the map contains I'.
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For any y € X*, let dy: t — R denote the differential of Yy, meaning
that for y € t, '
Xy +Z7) = i), (18)

1.6. Weak equidistribution of dilated measures. Our first result
provides necessary and sufficient conditions for weak equidistribution
of the family (1 1= fty.20,p.)i>0-

Theorem 1.1. Let v be a probability measure on g, xro € X, and

(11t := Hw,zop, )i>0 be the family of measures defined in (L.4). If for all
x € X*\ {1} and (z1,...,2q4,) € RM we have

v({v e g: dx(Aw) =z forall1 <i<d}) =0, (1.9)

then the families of measure (fi)i>0 and (pn)nen are weakly equidis-
tributed on X.

Furthermore, if Ay = 0, then condition 1s necessary for weak
equidistribution of (fn)nen, and also for (pu)i>o-

1.7. Equidistribution of dilated analytic curves. We maintain
the same notation in this section. Carrying out the constructions of
the family of measures in ([1.5) with an analytic map ¢: (0,1) — g, we
resolve a conjecture stated in Bjorklund and Fish [4] (see the discussion
following Theorem 7 in their paper):

Theorem 1.2. Assume ¢: (0,1) — g is analytic, let o € X, and let

(11t = Hoozo.pi)ter e as defined in ([L5). If for every x € X*\ {1}, there
exists 1 <1 < dy such that the map

u = dx(Aip(u)) (1.10)
is not constant, then ()0 is equidistributed on X.
Furthermore, if Ay = 0, then the conditions on the maps given

in (L.10)) are also necessary for the equidistribution of (ut)i>o0 on X.

1.8. Equidistribution of dilated differentiable curves. Our main
result of this article provides a condition on tangents to the curve for
(strong) equidistribution, when ¢ is a sufficiently differentiable curve.
Still maintaining the assumptions and notation stated at the beginning
of this section, we have:

Theorem 1.3. Assume that X = G/I" is a compact nilmanifold. There
erists a natural number D, which can be expressed in terms of the
degrees of polynomials in t defining p; such that the following holds:
suppose that 'P)(u) exists for (Lebesque) almost allu € (0,1) and that
for every x € X*\ {1} and (Lebesque) almost every u € (0,1),

AW () ¢ ker dy (1.11)



6 BRYNA KRA, NIMISH A. SHAH, AND WENBO SUN

for some 1 < i < dy. Then the family of measures (fipzg,p)t>0 S
equidistributed on G /T .

Our proof is based on a stronger equidistribution result for dilates
of curves that shrink (the precise statement is given in Theorem (3.1)).
The following special case is of interest:

Corollary 1.4. Let X = R"/Z" and ¢: (0,1) — R"™ be an almost
everywhere differentiable map. Suppose that for each v € Z™ \ {0},

¢V (u) is not orthogonal to v for (Lebesque) almost every u € (0,1).
Then for any f € C(R"/Z") and xo € R™ /7",

lim / F(t6(s) + x0) dA(s) = / L

t—o00

where \ denotes the Lebesgue measure on [0, 1] and u the Haar measure
on R"/Z™.

For analytic ¢, the conclusion of Corollary was obtained in Ran-
dol [9].

In Section [5| we provide examples where condition in ((1.9) holds and
so ()0 is weakly equidistributed on X, but (p:):>0 is not equidis-
tributed on X.

2. WEAK EQUIDISTRIBUTION FOR MEASURES

This section is devoted to proving Theorem [I.I, We give a detailed
proof for the discrete case, and then indicate the modifications needed
for the continuous setting.

The classic equidistribution theorem in the discrete setting is due to

Weyl:

Theorem 2.1 (Weyl [13]). Let p(t) = agt® + -+ + ayt + ag be a real
polynomial. Then

| N
li - 2mip(n) _
dim, 3y 2 e =0
n=1
if and only if at least one of ay, ..., aq is not rational.

If G is a nilpotent Lie group, ay,...,a,, € G,and py,...,ppm: N— N
are polynomials taking integer values on the integers, then a sequence
(9(n))nen in G of the form a?™a?™ . 2™ is a polynomial. 1f g
denotes the Lie algebra of GG, we say that (: N — g is a polynomial
map if exp(¢(n)) = g(n) for some polynomial (g(n)),en. Generalizing
Weyl’s equidistribution result, Leibman [6] showed (we write his result
in terms of the Lie algebra):
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Theorem 2.2 (Leibman [6]). Let (: N — g be a polynomial map such
that for every nontrivial character x on X,

dxodgo((n) #Zdyodgo((0) modQ for somen € N. (2.1)
Then for any f € C(X) and any z € X,

ngnoo—Zfexpoc /fdu

We make use of these results in the proof of the weak equidistribution
result:

Proof of Theorem (in the discrete setting). First we prove the ne-
cessity of condition (|1.9)) for weak equidistribution. Assume that Ay =
0 and suppose that ([1.9)) fails to hold, and we want to prove that the
families (1¢)¢>0 and (pn)nen are both not weakly equidistributed. Thus
there exist a nontrivial character y on X and z,. ..,z € R such that

v({v e g:dx(Ajv) =z forall 1 <j <di}) (2.2)

is positive. Since x is a nontrivial character on the torus X and its
pushforward g, p is the translation invariant (Haar) probability measure
on the compact torus X, we have

/Xxoqduz/)_{xd(q*u)zil- (2.3)

Therefore in view of ((1.3]), in order prove that (p,)nen is not weakly
equidistributed, we need to show that

hmsup—Z‘/ qudun

N—o0

> 0.

Therefore it suffices to prove that

> 0, (2.4)

J&@W&E&—Z\/ voadm|

because for any sequence {a,} of non-negative reals, and M € N,

MIN

M'N Z fin = M'NZ“M""‘
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For all t € R,

/Xx oqduy = /X(Q(eXp opi(y) - wo)) dv(y)
:xx«mwy/xaMopxy»+zm)m4m

=xmm»/¥mWWMwwm

g

:xm%»/ﬁﬂﬁwwW“W@x

9

where we have used equations (1.6), (1.8), and (1.7). Writing y; :=
dx(A;y) and using the assumption that Ay = 0, this last quantity is

the same as
x(q(z0)) / eI dy(y).
g

Combining this expression for [, xoq du, with the fact that |x(q(zo))| =
1, we have that

2

N
. 1
i 3| [ xoadion,
N

1 - j /
= Jim Jim D7 [0 ) y)
n=1"98%8

N
1 - ~d j j /
_ li lim — E 2mi 3051 I (MY (y5—v5)) a

/gxg [Mﬂnoo Noo N pwrt © 7 v x )y y)
We claim that this integral over g x g is the same as integrating the
indicator function of the set

W={(y,y)€agxg:y;=y; modQ forall 1 <j<d}

To see this, fix v,y € g. If y; # v, mod Q for some 1 < j < d, by
Weyl Equidistribution (Theorem [2.1]) the limit equals to 0. If y; = ¥
mod Q for all 1 < j < dy, then (M!)7y; = (M!)7y; mod Z for all 1 <
7 < d; and all M sufficiently large, and so the limit as N — oo equals
to 1.
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Thus

o 2| o]
— [ twdw <))
axg

= /y({y € g:dx(Ajy) =y; mod Q for all 1 < j < di})dv(y)
g
= Z v({y € g: dx(Ajy) =w; mod Q forall 1 <j <di})x

v({y € g: dx(A;y') = w; for all 1 < j < d;})
v({v € g: dy(Av) = 2; for all 1 < j < d;})*

By ([2.2)), this is strictly positive and so ([2.4) holds, which completes
the proof that (f,)nen is not weakly equidistributed on X.

The converse implication. Assume that condition (1.9)) of Theorem
holds. Our goal is to show that (1.3) holds for the family (u, :=
Lwmo,pn Jnen and any given f e C(X) with [, fdu =0. We have:

= Jim 37| stexpoputy) - a0l e om0 mo iy x )0 1)

:/ lzx}linooﬁzf ® f(exp oGy (1) - (:po,xo))] dlv xv)(y,y),
(2.5)

where (,,: N — g/ Lie(T?) x g/ Lie(T'"") is the map given by
Gy () = (pe(y), pi(y))  forall t € N. (2.6)

From the definition of (pt)ier, it follows that (expo(y . (n))nen is a
polynomial on (G/T'%) x (G/T?).
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For every (x,x') € X* x X*\ {(1,1)}, we have d(x ® X') = dx ® dY/,
and by ,
(dx ® dX') © Gy (1)
= dx(dg o pa(y)) — dx'(dg © pu(y’))

= Zl[dx(Ajy) — dX'(A;y)]n? + dx(Agy) — dx'(Agy).

Therefore in view of condition (2.1)) of Theorem ,
(dx ® dX') o (yyy(n) = dx(Aoy) — dx'(Aoy’) mod Q
for all n € Z is equivalent to the condition that
dx(A;y) = dx'(A;y)) mod Q
forall 1 <j <d;.

In order to apply Theorem 2.2 to {,, and X x X, define B to be the
set of (y,vy') € g x g such that for all (x, x') € X* x X*\ {(1,1)}, there
exists j € {1,...,d1} such that dx(A;y) # dx(4;y') mod Q. Define
C' to be the set of y € g such that for all x € X*\ {1}, there exists
Jj €{1,....di} such that dx(A;y) € Q and define

E,={y' €g: (y,y) & B}.

Since Q is countable, by the hypothesis given in ((1.9)), we have that

v(C) =1. Also

B> [J{y} x (8\ E,). (2.7)

yeC
For any y € C, x € X*, X' € X*\ {1}, define E,, ,/ to be the set

{y € g:dX'(Ajy) =dx(4;y) mod Q for all 1 < j < d;}.
Then since Q is countable, by the hypothesis (1.9)), we have that
V(Eyyy) =0. (2.8)

Suppose that y € C, v € E,, and (x,x) € X* x X*\ {(1,1)} are
such that

dx(A;y) = dx'(A;y') mod Q for all 1 < j < d. (2.9)

By definition of the set C, we can choose j with 1 < j < d; such that

dx(A;y) ¢ Q. Then by (2.9), x'(4;y') ¢ Q. Therefore x’ # 1. By
definition of the set £,

E,= |J U B (2.10)

X' €X*\{1} xeX*
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Since X* is countable, by (2.8)), we have v(E,) = 0. Hence by (2.7),
(v xv)(B) =1.

By Theoremapplied to X x X, for any f € C(X) with fX fdu=
0, for all (y,y’) € B, we have

lim —Zf@f exp oG (n) - (w0, 70)) = 0.

Now since (1/ x v)((g x g)\ B) =0, it follows from (2.5 that

2

(y) - zo) dv(y)

:/M[hm —Zf@fexpocyy< )+ (o, 0)) | d(v x )y, 4/) = 0.

Thus (tn)nen is weakly equidistributed. O

The case of continuous parameter. The proof in this case is similar. In-
stead of using the discrete version of Weyl’s Theorem to show necessity,
we use:

Theorem 2.3 (Weyl [13]). Let p(t) = agt? + - -+ + ait + ag be a poly-
nomial with real coefficients. Then

1 [T
lim —/ e2mP(t) (gt — ()
T Jo

if and only if at at least one of aq,...,aq is nonzero.

We also replace the use of Leibman’s Theorem by the following result
of Shah (which is generalizes Theorem [2.3)):

Theorem 2.4 (Shah [12]). Let (: R — g be a polynomial map such
that for every nontrivial character x on X,

dx odqo((t) # dxodgo((0) for somet € R. (2.11)
Then for any f € C(X) and any x € X,

71520—/ FlexpoC(t) - z)dt = /fdu

Up to obvious changes in notation, the proof is then the same as in
the discrete case; in fact it gets simplified as one can replace equivalence
mod Q by just equality, and we omit further details.
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3. STRONG EQUIDISTRIBUTION

3.1. A stronger equidistribution result for dilations of curves.
The key ingredient for proving Theorem is a stronger equidistribu-
tion of dilation of shrinking curves as stated below. First we need to
recall the notation.

We continue to use A to denote the Lebesgue measure on (0, 1) or R,
depending on the context.

We consider the dynamics on X = G/T", where G is a simply con-
nected nilpotent Lie group and I' a closed subgroup of G. Let g denote
the Lie algebra of G.

We write g = g/ Lie(T?). For t € R, let p; : g — g denote the linear
map such that p; is a polynomial in ¢ with coefficients which are linear
maps from g to g.

Let t denote the Lie algebra associated to the compact torus X =
G/|G,GI'. Let dq : g — t = g/[g, 8] denote the natural quotient map.
Then dg o p; : g — t can be expressed as

where each A; : g — t is a linear map.

Consider the lower central series g*) = [g,g*~V] for k& > 1. Put
g = g. Let x > 1 be an integer such that gi*) = 0.

For 1 <k <k, let Qr: g — §/g" denote the natural quotient map
and choose an integer D, > 0 such that the map Qo p: g — /g™ is
a polynomial of degree at most Dy in t and D; < Dy < --- < D,.. Set

D:maX{Zka: kagm,lgkmgm,lgngn}. (3.1)
m=1 m=1

The purpose of such a definition of D becomes apparent later.

Theorem 3.1. Suppose that ¢: (0,1) — g is a function such that
¢P)(u) exists for (Lebesque) almost allu € (0,1). Assume further that
for every nontrivial character x on X and (Lebesque) almost every
ue (0,1),
AipW (u) ¢ ker dy for some 1 <i < dj. (3.2)
Then there exists W C (0,1) with \(W) = 1 such that for all sp € W
the following holds: Let (¢;)¢>1 be a family such that ¢, > 0, and ¢; — 0o
and l;it7t = 0 ast — oo. Then

1

1m
t—o0 Ett_l

so4-£t~1
| Hewopose) mds= [ fan (33
X

S0
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We defer the proof of this result to the next two sections. Before this,
we explain its use in completing the proof Theorem[I.3]and obtain some
of its immediate consequences.

Proof of Theorem|[1.3 Let f € C(G/T') be such that fG/Ffd[L =0,
and without loss of generality we can assume that || f||. < 1. Given
e > 0, choose W C (0,1) with A(W) = 1 as in Theorem [3.1 The
conclusion of Theorem can be interpreted as follows: for every

s € W, there exists £, > 1 such that for any ¢ > /,, there exists
tse > £(1 — s)7! such that for all ¢ > t,,,

s+et—t
/ Flexpopr 0 6(€) - zo) de| < 1. (3.4)
For L > 0, let

W(L)={seW:ls <L}
By our choice of /g, there exists L > 0 such that \(W \ W(L)) <e.
For t > 1, let
W(L,t) ={se W(L): t, <t}.

By our choice of t; 1, there exists Ty, > 1 such that A(W(L)\W(L,T.)) <
E.
Pick a compact set Wy C W(L,Ty) such that \(W (L, Tp)\Ws) < e.
Let t > Tr. We cover Wy by disjoint intervals [s;, s; + Lt™!] for
0 <i <n, where sg = min W, and if s; € W5 is chosen for some 7 > 0,
then choose
siv1 =min(Wa \ (0,8, + Lt™)) € Wa, if s; 4+ Lt < max(Ws),

otherwise put n =i and stop the induction. Since s,, € W(L,T7), and
t > Tr, we have s, + Lt~ < 1. Therefore the intervals [s;, s; + Lt 1)
for 0 < ¢ < n are disjoint and contained in (0, 1). Hence

(n+1)(Lt™) < 1.
Let W) = U [si, si + Lt™'). Then Wy C W} and by (3.4),
n si+Lt™1
[ Hexpomosts)-mas| <37 [ Hexpopios(s) s
W; i=0 Vsi
<(n+1) (Lt He<e
Since A(W3) > A(Wy) > 1 — 3¢, for all t > T7,

1
‘/0 Flexpop, o 6(s) - 70) ds| < = + 3] flc < 4= O

The following special case of Theorem is of interest:
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Corollary 3.2. Let k > 1 be such that g = 0. Suppose that that for
1<k <k,

Qrop: g — 8/8% is a polynomial of degree at most k int. (3.5)

Let ¢: (0,1) — g be such that ¢\ (u) eists for almost all u € (0,1).
Suppose that the condition on x € X*\ {1} given in (1.11)) holds. Then
the family of measures (g o p,)t>0 @5 equidistributed on X ast — oo.

Note that the example of p; being multiplication by ¢ on g is an
example satisfying and generalizing Corollary to nilpotent
groups. Other natural examples of family of dilations (p;);er satisfying
the condition given in are given in [2, 3, B]. In particular, when
p¢ is a Lie algebra automorphism of g, then p; satisfies .

Proof of Corollary[3.3. Given the assumption in (3.5]), the bound Dy

on the degree of the quotient map @y o p; satisfies D, = k for all
1 <k < k. Therefore in (3.1)), we have

i ka = i km < R,
m=1 m=1

and hence D < k. Thus the result is a special case of Theorem O
We also complete the proof of Theorem [I.2}

Proof of Theorem[1.4. Since ¢ is an analytic curve, the condition on
the x given in implies the condition given in (1.11]). Therefore
the equidistribution follows from Theorem [1.3]

For the converse, suppose that the condition on the map given in
- fails to hold and Ay = 0. Then there exists a nontrivial character
x on X such that dy(A;¢"(u)) = 0forallu € (0,1) andall 1 < i < dj.
But then by analyticity of ¢, for every 1 < ¢ < d, there exists z; € R,
such that dx(A;¢(u)) = z; for all u € (0,1). Hence, since Ay = 0,

dx(dg o ps o p(u Z t'dy (Ao (u Z iz (3.6)

Let f =xoqé€ C(X). Then

/fdu /Xxd(q*u)=07

because x is a nontrivial character on the torus X and g, is the in-
variant probability measure on X.

For any zo € X, by (1.8]),
flexpopy 0 g(u) - wg) = M ePedt) y (q(xg)).  (3.7)
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If limy oo f f dp; exists, then by and limy oo 62”221’9“ ex-
ists. We conclude that z; = 0 for all 7. It follows that the limit is equal
to x(q(xo)) # 0. Therefore the sequence p; does not converge to p as
t — oo with respect to the weak* topology. 0

3.2. Equidistribution of expanding translates of shrinking curves.
First we describe a quantitative condition that we want for sy € (0,1)
to hold, so that holds.

Assume that ¢: (0,1) — g is a function satisfying the hypotheses of
Theorem . That is, ¢(P)(u) exists for almost all u € (0,1), where
D is defined as in (3.1)), and for every x € X*\ {1}, for almost all
u € (0,1), there exists 1 < i < dy, such that A;¢p()(u) & ker dx.

Define a map v {(u,€): u+ & u € (0,1)} — g/ Lie(T'%) by

Ui(u,§) = loglexp(py 0 ¢(u +¢)) - exp(—pr o p(u))],  (3.8)
where exp : g/ Lie(T°) — G/T? is the exponential map, and log is its
inverse.

Definition 3.3 (Property W(I'?)). We say that sy € (0,1) has prop-
erty W(I'?) if the following holds: there exists @ > 1 such that for any
sequences t, — oo and ¢, — oo with £,t,; 1 — 0 and for any € > 0,
there exists a compact set I, C [0,1] with A([0,1] \ Z.) < € such that
the following holds: for any s € I, and ¢ € R, for each n € N, if we put
Up = So + slpt;t and &, = (t @, then

lim ¢y, (un, &) = n(C), (3.9)

n—oo

where 1 : R — g/ Lie(I'%) is a non-constant polynomial map.

If A is any closed subgroup of G' containing I'; then let dp : g =
g/ Lie(T°) — g/ Lie(A%) be the natural quotient map. Then we replace
the dilations p; with dpo p; : g — g/ Lie(A%). With these modification,
property W(A?) is also defined.

Proposition 3.4. Suppose that sy € (0,1) has property W(A°) for
every closed subgroup A of G containing I'. For all t > 1, let ¢, > 0
be such that ast — oo, {y — oo and lit™' — 0. For allt > 1 such
that so + £t~ < 1, let v, be the probability measure on X such that all

fec(x),
so+lst—1
[rav= s [ oo 0l a0 de

S0

1
N / flexpop, o p(sg+ slit™) - ) ds.
0

Then vy — p with respect to the weak® topology as t — oo.
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Proof. The result is trivial if dim(G/T°) = 0. We intend to prove the
result by induction on dim(G/T?). In particular, we can assume that
the result is valid for all closed subgroups A of GG containing I such that
dim(A%) > dim(T"°). In other words, if p: G/T' — G/A is the natural
quotient map, and p, denotes the corresponding pushforward of mea-
sures then as t — 0o, p.(1;) converges to the G-invariant probability
measure on GG/A with respect to the weak* topology.

Let t, — oo be any given sequence. It suffices to show that after
passing to a subsequence of {t,}, we have that v, — p in the weak*
topology as n — oo, where p denotes the G-invariant probability mea-
sure on G/T.

Since G/I" is compact, after passing to a subsequence, we may assume
that v, — v in the space of probability measures on G /I" with respect
to the weak* topology as n — oc.

Claim 3.4.1. The measure v is invariant under a connected subgroup
U of G properly containing T'°.

Proof. Let f € C(G/T). Since sq has property W(T'?), let a > 1 be
such that holds. For the remainder of the proof, we make use of
some shorthand to simplify formulas. For all n € N, we write t = ¢,
for all s € [0, 1], we write u = sy + slyt~!, and for all { € R, we write
& = (t™“. Then, since vy, — v as n — 0o, by we have

1

f(x)dv(z) = lim [ f(expopy, o ¢(u) - xq)ds. (3.10)
G/r n—oo Jq

Now &0, 't = ¢¢;7't=(@=1) — 0, because a > 1 and ¢, — 00 as n — o0.
Therefore (3.10]) can be rewritten as

lim flexpop o d(u) - xo) ds + O(]| )

n—00 [s+§é;lt

= lim flexpop, 0 ¢(so + slit™) - wo) ds + O(|| fll )

n—00 IE+§€;1t

= lim [ f(expop, o d(so+ (s + 6 )0t~ - x0) ds + O(|| f||oct)
I

n—oo

n—oo

= lim i flexpop o d(u+¢€) - o) ds + O] flloo)-
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Applying (3.8)), this becomes

tim [ flexp(un(u, ) explp o 9(w) - 20) ds + O(1fc2)

= lim [ f(exp(n(¢)) exp(p: © ¢(u)) - wo) ds + O(|| f | €)

n—o0 IE

= lim flexp(n(Q)) - @) diy, (x) + O2| fll2),

where we have used (3.9)) in the second to last step. Taking the limit,

in view of ,
f@)dv(z) — | flexp(n(¢))z) dv(z)| < O2| flloe)-

‘ leXiy G/T
Thus v is invariant under the action of Uy, where U; is the closure of
the subgroup of G/T'? generated by {exp(n(¢)): ¢ € R}. But ¢ — n(()
is a non-constant polynomial map and so U; is a nontrivial connected
subgroup of G/TY. Let U = 7' (U;). Then v is U-invariant, U is
connected, and properly contains I'°. 0

Claim 3.4.2. The measure v is invariant under a closed connected
normal subgroup F of G containing U such that FT'/T" is compact.

Proof. Let H be the collection of all closed connected subgroups H of
G containing T with HT'/T' is compact. Then H is countable. By
Lesigne [7, Theorem 2], or more generally Ratner’s Theorem [I1], any
U-ergodic invariant probability measure on G//T" is of the form gy for
some H € H, where py denotes the H-invariant probability measure
on HT'/T', and g € G is such that Ugl' C gHT', or equivalently, g €
X (U, H), where

X(U,H)={geG: g'Ug C H}. (3.11)

Note that X (U, H) is an algebraic subvariety of G with respect to any
algebraic group structure on G.
Let F' € ‘H be a subgroup of smallest possible dimension such that

v(X (U, F)I'/T) > 0. (3.12)
We note that
X(U,H)Z =X(U,H), (3.13)

where Z C G is the inverse image of the center of G/T°. Now A :=
ZT is closed and G/A is compact, see [10, Chapter II]. Consider the
natural quotient map p: G/T' — G/A. Let p, denote corresponding
the pushforward map of measures. Then p, (v, ) — p«(v) as t,, — 0.
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If G =TY, the lemma is trivial. So we assume that G//T'° is a nontriv-
ial connected nilpotent group. Therefore its center is of strictly positive
dimension. Therefore dim(G/Z) < dim(G/T"). So by our induction
hypothesis stated on the beginning of the proof of Proposition (3.4, we
conclude that p,(v) is the G-invariant probability measure on G/ZT.

By (B12) and (B.13),
p.(V)(X (U, F)ZT/ZT) = v(X (U, F)T/T) > 0.

Since X(U, F')Z = X(U, F) and p.(v) is the G-invariant measure on
G/ZT, the Haar measure of X (U, F') is strictly positive. As we noted
before, X (U, F') is an algebraic subvariety of G. Therefore X (U, F') =
G; that is, Ug C gF for all g € G.

Now we show that that F'is normal in GG, and v is F-invariant.

By minimality of F',

v(S(U, F)T)T) =0,
where
S(U,F) = {X(U.H): H €M, dimH < dim F}.

Therefore

v(X (U, F)I'/T'\ S(U, F)T')T") = 1.
As a consequence, almost every U-ergodic component of v is of the
form gup for some g € G.

Now G\ S(U,F) # 0. Let g € G\ S(U, F). We claim that Ugl' =
gFT. To see this note that Ug C gF and FT is closed, so Ugl' C gFT,
and by the orbit closure theorem (cf. Lesigne [7, Theorem 2]), Ugl' =
LgT and g7'Lg € H. Therefore g~'Lg C F. Since g € X (U, g ' Lg)
and g € S(U, F), we conclude that dim(¢~'Lg) > dim F, and hence
¢ 'Lg=F, and so Ugl' = gFT.

Now let v € T'. Since ¢g,97 € G = X(F,U), we have that Ugy C
gvF, and hence gFT' = Ugl' C gyFT. Therefore gFg=* C gyFy~tg71,
and hence F' = yF~~!. This proves that F is normalized by I'. But
AdT is Zariski dense in Ad G} see [10, Chapter 2|. Hence F' is normal-
ized by G.

As we noted above, almost every U-ergodic component of v is of the
form gup for some g € G, so it is gF¢g~! = F-invartiant. Therefore v
is F-invartiant. This completes the proof of the claim. U

Now it remains to prove that v is G-invariant. Let p: G/I' — G/FT
be the natural quotient map, and let p, denote the corresponding push-
forward map of measures. Then p.(vy,) — p«(v) as n — oo. Since
U C F, we have that dim((FT)°) > dim(I'°). Therefore by the induc-
tion hypothesis stated in the begining of the proof of Proposition [3.4]
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p«(v) is the G-invariant probability measure on G/FT'. Since v is F-
invariant, it follows that v is G-invariant. Since the Haar measure is
the unique G-invariant probability measure on X, we have that v = p,
completing the proof of Proposition [3.4] O

4. POINTS WITH PROPERTY W(T")

Now we determine which points sy € (0,1) satisfy the property
W(I'?). For this purpose, we study the following function using Tay-
lor’s expansion and Baker-Campbell-Hausdorff formula: for u € (0,1)
and £ € (—1,1) such that u+ & € (0,1), we have

Ue(u,§) = loglexp(pr © d(u + &) - exp(—p 0 d(u))] € g. (4.1)
Let u € (0,1) be such that ¢”)(u) exists. By Taylor’s formula, for
any ¢ € R such that v + ¢ € (0,1), we have

d(u+€) :Z% w)e + e(u, €)EP, (4.2)

where e(u, &) — 0 as £ — 0.
Since g® < g*=Y for all 1 < k < &, we can choose a subspace
Vi C g%V such that g =V, @ g*®. Then
@ZW@@Vnandg :Vk’—i-l@"'@vm-
Let P.: g — V. denote the corresponding projection.
By the choice of the integers Dy (the polynomial Qy o p; is of degree

at most Dy), for all 1 < k < k and for each 1 < i < Dy, there exists a
linear map A;: g — Vi, such that

Dy,
Pyop = Z t" A g (4.3)
i=0
Then
prod(u+§) = (Pkopt) o p(u+¢)

k=
k Dg

D
= Z <Z t’fl%Aiw% - tifDA@-,ksw,o) - (44)
1=0 ’

=0

By the Baker—Campbell—Hausdorff formula, since gi*) = 0, using the
definition of 1, in (4.1]), we have

kD kD

=D € Zuy(u.8), (4.5)

=0 [=0
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where the functions Z(; ;) can be expressed as
Ziny(u, &) = Y (u) + i (u, §), (4.6)

where Y(; ;) (u) is a fixed linear combination of nested commutators of
the form

(X3, [Xo, [+, [Xno1, X4]]]],  where 1 <n <k. (4.7)
and
X = Aiy g 0 (0) € Vi, for 1 <m <, (4.8)

and e(;1)(u, £) is a fixed linear combination of similar nested commuta-
tors where one or more of the X,,’s with [,, = D are replaced by

X = A kne(u,§) € Vi, (4.9)
Claim 4.1. We have the following:

(1) limg_m é‘(i,l)(u,f) = 0.
(2) For alli, Z;0) = 0.

(3) [fl < D, then E(il) = 0.
(4) [fl > D, then Z(N) =0.

In particular,

D kD
Ui, &) = Y V() + Y ) #een(u, ), (4.10)

(i,1)eP i=0 =D
where
P={(1:0<i<D,1<I1<kD}. (4.11)

Proof. From the description of e(;;)(u, &) and (4.9), due to (£.2) we
conclude that holds.

Next holds, because 1;(u,0) = 0.

In view of (4.4)), the following relations hold between various indices

in (L3) and (L9):

1<kn<k, 0<4, <Dy, and 0 <[, <D. (4.12)

In view of equations (4.5)-(4.9), we get
D im=iand Y Iy =1 (4.13)
i=1 m=1

For every commutator appearing in the expression for £ (u, ), we
have 1,, = D for at least one m, and hence [ > D by . Therefore
if I < D then ¢(;;) = 0, which proves (3)).

By Xm € Vi, , and by X, € Vi, - Also

Vi, C g%*m=Y and [k, g* =] c g*k+)=t  for all kK.
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Therefore the nested commutator as in (4.7) and its analogue involving
X,’s belong to g{Gm=1#m)=1) " Since gi*) = 0, if the nested commutator
is nonzero then

D ki <k (4.14)
m=1

By (4.12) and (4.13]), we have that if the nested commutator as in
(4.7) or its analogue involving X,,’s is nonzero then

i= sz < Z Dy (4.15)
Now in view of (4.7} . and ( - we recall (| -
D= maX{ZDk kagﬂﬂgkmgm,lgngn}.

m=1 m=1

Therefore by (4.15)), if ¢ > D then Z;;) = 0. This proves O
Claim 4.2. For 0 <i <d;,

dQ(Y(i,l)(U)) = Ai¢(1)(u)-
Proof. First note that dq = dgq o P;. Now

Py oYn(u) = AW (u), (4.16)
because | = 1 and by (4.7) and (4.8]) we have n = 1, and hence by (4.7))
Ih=1=1.

So by ([@3),

Dy Dy
dgop; =dgo (Pyop;)=dgqo (Z tiAM) = Ztidq oA, (4.17)

1=0

Therefore by (1.7), dy < Dy and

A, if0<i<d
dgo A, = 418
79 {o ifd, <i< Dy (4.18)

Hence the claim follows from (4.16|). U

Proposition 4.3. Given gy > 0, there exists a Borel measurable set
J1 C (0,1) such that \(Jy) > 1 —¢e¢ and the following conditions hold:

(1) The derivative ¢**)(u) exists and is uniformly continuous for
u € Jy and it is bounded on Jy. In particular, for each (i,1) € P,
Y (u) is uniformly continuous and bounded for u € J,.
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(2) For every u € Jy and every nontrivial unitary character x on
the torus G/|G,G|I' = X, we have

AV (u) & kerdy  for some 0 <i < dj.

(3) For each (i,1) € P, eupy(u,&) — 0 as & = 0, and this conver-
gence is uniform for u € Jy.

Proof. By our assumption, ¢(*)(u) exists for almost all u € (0,1), hence
by Lusin’s Theorem there exists a compact set J, C (0,1) such that
¢*) is uniformly continuous on J, and A(J) > 1 — g¢/2.

By the condition given in (L.11]), since X*\ {1} is countable, there
exists a Borel set J; C Jy such that A(Jy \ J3) = 0 and for every
x € X*\ {1} and every u € Js, there exists 1 < i < d; such that
AipW (u) € ker dy.

Given p,q > 1, define the set J, , to be

{u € Js: forall (i,1) € P, |en(u,§)| < 1/pfor all [£] < 1/q}.

Then by Claim [4.1]((T])), the sets J,, form a nested sequence of sets
growing to J; as ¢ — oo. Choose, ¢, > 1 such that

A5\ Jpg,) <277(€0/2)

and set Jy = ()2 Jpq,- Then A(J3\J1) < 0/2, and for every (i,) € P,
gir(u, &) = 0 as & — 0 uniformly for u € J;. Also A\(J;) >1—¢p. O

Corollary 4.4. If J; satisfies conditions , and of Proposi-
tion[4.3 for T, then Jy also satisfies the same three conditions when we
replace I' by any closed subgroup A of G containing I' and p; by dpo py,
where dp : g/ Lie(T°) — g/ Lie(A°) it the natural quotient map.

Proof. When A replaces T', each Y(;;) gets replaced by dp(Y(;;)) and
£, gets replaced by dp(e(y)). Therefore it directly follows that Con-
ditions and hold.

Now X; = G/[G, G]A is the abelianization of G /A with t; = Lie(G/[G, G]A°)
being its Lie algebra. Let dry : t — t; the natural quotient map. Then
dq gets replaced by dq; : Lie(G/A®) — t; such that dq; o dp = dry o dg.
Then in view of ,

d1
dg1 0 (dpo py) =dryo(dgop) = Zti(drl o A;).
i=0

Thus in case of A replacing I', we have that A; gets replaced by
dry o A; in Condition ([2)). To verify this condition, let x; € X7\ {1}
be given. Put xy = xy; 0o € X*\ {1}. Then

dxy o (drio A;) =dyxo A;.
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For any u € J;, by Condition for I', pick 0 < 7 < d; such that
dx( A0 () £ 0. Then dya((drs o A6V ()) £ 0. 0

Let Fr denote the collection of all normal connected normal sub-
groups F of G such that ¥ D T'° and FT is closed. In particular,
F/FNT = FT/T is compact. By [10, Chapter II], there exists a Q-
structure on G such that I'Y is a Q-subgroup of G and the image of I'
on G /T consists of integral points with respect to the Q-structure on
the quotient algebraic group G/T°. Moreover for any F' € Fr, we have
that F//T° must be an algebraic Q-subgroup of G/T'°. Therefore Fr is
countable.

For any F' € Fr, let mp: G — G/F be the natural quotient map
and let drp: g — g/f denote its differential, where § denotes the Lie
algebra of F'.

For all (i,]) € P and F € Fr, define

Kipr={ue(0,1): o) (u) exists and drp(Yipn(u)) =0}, (4.19)
Let J; be a Borel measurable set which satisfies the conditions ,
and of Proposition .
For any (i,l) € P and F € Fr, let
S(i,l),F = {S eJin K(“)’F:
s is not a Lebesgue Density point of J; N K r}. (4.20)
Then by the Lebesgue Density theorem, A(S(; ), r) = 0. Let
Ss= U Seor (4.21)
(3,0)eP, FEFr
Since P is finite and Fr is countable,
A(Sr) = 0. (4.22)
If A is a closed subgroup of G containing I', then A° € Fr. Hence
Fa C Fr. Therefore using Corollary and (4.21)), we have that
Sx C Sp. (4.23)
Proposition 4.5. Let J; be a Borel set which satisfies all the three

conditions of Proposition . Let sg € J1 \ Sr. Then so has property
W(Tr?).

Proof. . Let
P ={(i,1) € P: Y;5)(s0) # 0}. (4.24)
In view of (4.19)),
sop € J1 N K, where K := ﬂ K(i,l),I‘O- (425)

(3,))eP\P!
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Set
a = max{i/l: (i,1) € P'}. (4.26)
We first show that o > 1. It suffices to show that
Yii1)(so) #0  for some 1 <i < dj. (4.27)

Let x be a nontrivial character on G/[G,GII' = X. Since sy €
J1, by condition of Proposition pick 1 < ¢ < d; such that
dx(A;¢0M (s0)) # 0. Therefore A;¢(M)(s9) # 0. Therefore by Claim

dg(Yii.1)(50)) = Aip™M (s0) # 0.

Therefore by (4.24]) and (4.27)), there exists 1 < ¢ < d; such that

(7,1) € P'. Hence by (4.26))
a>i/1>1. (4.28)

Fix ¢ > 0. For every (i,1) € P\ P, so € J; N K(; ) ro by (4.25)), and

since 5o & Sr, so is a Lebesgue density point of J; N K; ;) x0 by (4.20)).

For every n > 1, we can choose k, > n and a compact set I, C [0, 1]
such that if we put ¢t = {¢;,, then

so+ sttt e N Ko forall s € I, and (i,1) € P\ P,

and
A[0,1]\ I,) < 27"e.
Let I. = ()2, I,. Then A((0,1)\ I.) <e. For any s € I., ( € R, and
n > 1, put
t=ty, u=s0+slt '€ JNK, and & = (t™°. (4.29)
Then the following statements hold:
(1) For [ > i, since a > 1, by of Proposition [4.3]

€Y (u) = 0 asn — oo. (4.30)
(2) Forl > D > i,sincea > 1l and u € Jy, by of Proposition,
telein (u, &) = ¢t Ve (1, &) = 0 asn — oo (4.31)
(3) For all (i,l) € P\ P, u € K C K(ijyro, so by (4.19),
Vi () = 0. (132)
(4) Since s, u € Jy, for each (i,1) € P" we have that
Yin(u) = Yiun(so) asn— oo, (4.33)

by continuity of ¥(;; on J;.
(5) For each (i,1) € P/,

: , Loifi/l = «
lim #i¢! = lim clg—ol = &0 ] 4.34
am e = Jim ¢ {0, it i/l < a. (4:34)
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In view of (4.10)), by the above list of observations
lim (. €) = Y ¢Viarp(s0) := 1(¢). (4.35)

leL
where £ = {l : 1 <1 < kD, (al,l) € P'}, which is nonempty by the
definition of o. By (4.24), Yay # 0 for all [ € £. Therefore sy has
property W(T'?). O

Proof of Theorem[3.1. Let e > 0. Obtain J; as in Proposition [4.3] such
that A(J;) > 1 —e. Let Sr be as defined in (4.21]). Then by we
have A(Sp) = 0. Let W, = J; \ Sp. Then A\(W,) > 1 —e. Let sg €
We.. By Corollary and , and Proposition , so has property
W(A?) for every closed subgroup A of G containing I'. Therefore (3.3))
holds by Proposition . Now let W = UpenWi/n. Then A(W) =1
and is satisfied for every sq € W. O

5. WEAK EQUIDISTRIBUTION DOES NOT IMPLY EQUIDISTRIBUTION

In this section we provide different instances where weak equidistri-
bution of sequence of measures hold, but (strong) equidistribution does
not. As before let A\ denote the Lebesgue measure on R restricted to
(0,1).

Proposition 5.1. Let X = T = G/I', where G = R and I' = Z.
Let pi(v) = tv for all v € R = Lie(G) and t € R, and let xy € X.
There exists a measure v on R such that the family of measures (p; =

P wo.pr )t>0 15 weakly equidistributed but not equidistributed on (X, u),
where  1s the Haar measure on X.

Proof. We first construct a non-atomic probability measure v on R such
psm = pqp for all m € N. To construct such a measure, let ¥: R =+ R
be the function defined by

1
vw)= >, (5.1)
{n>1: an(u)=1}

for

= an(u)
u= ; m mod 1,  where a,(u) € {0, 1,2},
and then take v be the pushforward of A under the map ¥ to R =
Lie(G). We now check that it has the stated properties.

Note that if 0 < u; < uy < 1 and ¥ (u;) = ¥(ug) then zo — zy =
Yoo an/3", where a, € {0,2}. So us — u; belongs to the standard
Cantor middle third set, which has zero Lebesgue measure. Therefore
MY ({y})) = 0 for all y € R. Hence v is non-atomic.
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Let f € C(T). Then for all t € R,

[ s= [ 0000+ )t

For any u € [0,1/3) and b € {0, 1,2},

JWOB+u) = > 3:_1 =¢(3u) modZ.  (5.2)

{n>1: an(u)=1}

Thus it follows that for any o € T,

1 2 b/3+1/3
/0 F(BY(u) + xo) du = Z /b/3 F(3(u) + xo) du

2 1/3
=> F(@(3u) + 20) du
b=0 0

_21/3/]” u) + o) d

/f u) + o) d

From this we conclude that for any m € N,

F™b(u) + zo)du= [ F(3™ W (u) + 0) du.
A

It follows that pgm = py for all m > 0. Thus the measures v and
satisfy the stated conditions.

Since p; differs from the Haar measure pu, the family of measures
(1¢)¢>0 is not equidistributed with respect to p. On the other hand,
since ker(dy) is countable set for all nontrivial unitary characters ¥,
we have that v(ker(dx) +v) = 0 for all v € Lie(G) = R, since v is
non-atomic. By Theorem [L.] (y1):0 is weakly equidistributed. O

This example can be generalized to higher dimensional tori:

Corollary 5.2. For every torus X = T¢ = G/T', where G =

[ =79, let py(v) = tv for allv € Lie(G) = R? and t € R™. There exists
a measure o on R? such that for any xo € G/T', the family of measures
(l = Pomop)t>0 1S weakly equidistributed but not equidistributed on
(X, 1), where p is the Haar measure on X.

Proof. Let v be the measure of R as defined in Proposition and
define 0 = v X --- X v. We claim that o satisfies these conditions.
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Suppose that g = (y1,...,yq). Then

Han = Huyr,pgn X000 X Py pan = Hugyies X0 X Moy pss

and so (pt)i>o0 is not equidistributed.

On the other hand, for every nontrivial unitary character y on T¢
and every v € Lie(G) = R?, there exist finitely many linear functionals
G1s--,gp: R = R and some 1 < i < d such that

k
v+ ker(dy) = U{(yl,...,yd) € R go(ys,. s 0is - Ya) = Ui}
m=1

Assuming without loss of generality that ¢ = d, for all 1 <m < k,
c({(W,- - Ya): Gm(y1, -+ Ya-1) = ya})

/IR;Cll V({yd €g:Ys= gm(yla ce ,ydfl)}) dV(Z/l) C dy(ydfl)

=0,
because v is non-atomic. Thus o(v+ker(dy)) = 0 and by Theorem L.1]
(1¢)e>0 is weakly equidistributed. O

Theorem 5.3. Let X = T? = G/T', where G = R? and T' = Z?
and let py(v) = tv for all v € Lie(G) = R? and t € R. There is a
function ¢: (0,1) — g such that for any xo € T2, the family of measures
(Lt 2= Lip,z0,p0 )10 15 weakly equidistributed but not equidistributed on X .

Proof. Let ¢: (0,1) — Lie(G) = R? be defined by
¢(u) = (u, ¥ (u)), Vu € (0,1),

where ¢: (0,1) — R is defined by (5.1). Let e = f620,0:-

We first show that (p):>0 is weakly equidistributed.

Let v be the probability measure on R? which is the pushforward of
the Lebesgue measure on (0, 1) under the map ¢. Let

C={(u,v(u)) € R* :u e (0,1)}.

Let P, : R? — R denote the projection on the first factor. Then for any
E C R? we have v(E) = AN(P/(C N E)). Then fip10p, = fuzgp for all
t € R. Therefore by Theorem [I.1], to prove the weak equidistribution
of (Hy,z¢.p, )10, 1t suffices to show that for all (p,q) € Z*\ {(0,0)} and
z € R, if we put

L(p,q,2) ={(z,y) : pr +qy = 2}

then
v(L(p,q,2)) = MPi(L(p,q,2) N C) = 0.



28 BRYNA KRA, NIMISH A. SHAH, AND WENBO SUN

First suppose that p = 0. Then ¢ # 0 and P(L(p,q,2) N C) =

~1(z/q), which is contained in a translate of a Cantor middle set.
Therefore A\(Py(L(p,q,2) N C)) =

Now assume that p # 0. For N € N and a4, ...,ay € {0, 1,2}, set

S RE ) (S5 Sy

Note that for b, € {0,1,2} for alln > N + 1,

-----

1 1 =1

I P OF ETIUE SE T SR
n=1 n=N-+1 anp=1 an=1 n=N-+1

Also

N a N a 1

e Y o[y,
ai,....,an€{0,1,2} Ln=1 n=1

Therefore

C C By = U Ba1
[ PR aN€{07172}
Therefore it suffices to prove that

lim A(P(L(p,q,2) N By)) =0.
N—o0

It is easy to see that there exist si,..., 88 € (0,1) such that for all
a,...,any € {0,1,2}, > 3% = s; for some 1 <7 <2V, Let

CJ}N = U Bal ~~~~~ an -

A1 yeeey aNe{07172}7Zan:1 %:SJ

Then
2N
BN - U Cj,N-
j=1
Now

Pi(L(p,q,2) N Cin) CH{(z/p = (a/p)y : y € [s5,5; +1/(2-3V)]}.
Therefore
APi(L(p, q,2) N Cin)) < la/pl/(2-3Y).
Hence
MPL((L(p,q,2) N By)) <2V - |q/2p|/3" — 0 as N — oc.

Thus we can now conclude that the family of measures (pu;):>0 is weakly
equidistributed.
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We now prove that (u¢)¢>o is not equidistributed. By definition, for
any continuous function f on T?, we have

[ ram= [ st + o) du

Recall that by (5.2), For any w € [0,1/3) and b € {0, 1, 2},

3(u+b/3) = Z 3n11 = ¢ (3u) mod Z. (5.3)

{n>1: an(u)=1}

Therefore, for any f € C(T?), and b € {0,1,2}

So

3t3 1/3
/ f((3u, 3¢ (u)) + m) du = /0 F((3u,¥(3u)) + xo) du.

b
3

/O F((3u, 3 () + o) du 3/03 F((3u, (3u)) + o) du

:/o f((u,¥(u)) + xo) du.

From this we can deduce that for any m > 1,

/0 F((3™u, 3™p(u)) + xp) du = /0 F((3™  u, 3™ () + ) du.

Therefore, figm = figm—1 = 1. Since p; is not a Haar measure on T?,
()10 is not equidistributed. O
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