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Abstract. Generalizing classic results for a family of measures
in the torus, for a family (µt)t≥0 of measures defined on a nil-
manifold X, we study conditions under which the family equidis-
tributes, meaning conditions under which the measures µt converge
as t → ∞ in the weak∗ topology to the Haar measure on X. We
give general conditions on a family of measures defined by a dilation
process, showing necessary and sufficient conditions for equidistri-
bution as the family dilates, along with conditions such that this
holds for all dilates outside some set of density zero. Furthermore,
we show that these two types of equidistribution are different.

1. Introduction

1.1. Limiting distributions of measures. A classic problem for bil-
liards is of illumination: in a polygonal room, a light source is located
at some point and the question is if there is some point not illuminated
by this source. Chaika and Hubert [5] recently studied a related prob-
lem for circles of light, rather than points, showing that dilated circles
around a fixed point weakly equidistribute outside a set of density zero
(in their terminology, this phenomenon is called weak illumination).
Motivated by their work, we prove weak and strong equidistribution
results for a dilated family of measures on a nilmanifold.

The study of equidistribution results on a nilmanifold originates in
the work of Green [1], where he showed that a flow is either equidis-
tributed or there is a nontrivial obstruction to this flow arising from
horizontal character on the nilmanifold. More precise distributional re-
sults were obtained by Shah [12], who described the limiting behavior
for a polynomial series of iterates in a flow, and by Leibman [6], who
proved convergence results for polynomial sequences of iterates. The
asymptotic behavior of dilates of a measure supported on a curve in a
nilmanifold was studied by Björklund and Fish [4], and among other
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results we answer a conjecture of theirs about the general behavior of
such dilates (this result is given in Theorem 1.2).

For example, we consider a family of measures that are linear expan-
sions on the Lie algebra g associated to some nilpotent Lie group G.
A sample result is necessary and sufficient conditions that this family
equidistributes as it dilates, and whether or not these equidistribution
results for all sufficiently large dilates or only for all dilates outside
a set of density zero depends on the derivative of the dilation. The
simplest case of our results is for a torus, where such strong equidis-
tribution results for a curve are implicit in the literature (though we
are unaware of an explicit result like this). For a nilmanifold X, if we
consider a continuous curve with the induced measure on this curve,
it is easy to check that the dilates equidistribute weakly so long as the
curve contains no linear segment of positive length (this corresponds to
a nontrivial horizontal character picking up positive measure). More
general equidistribution results on a nilmanifold, covering a broader
class of dilations, require significantly more work and these character-
izations are our main focus.

To give the precise formulations of our results in Sections 1.6, 1.7,
and 1.8, we start by defining the objects that give us sufficient (and in
some cases necessary) conditions for equidistribution.

1.2. Equidistribution and weak equidistribution. Let X = G/Γ
be a compact nilmanifold, meaning that G is a simply connected nilpo-
tent Lie group and Γ ⊂ G is a cocompact closed subgroup of G. The
group G acts on X = G/Γ by left translation, and there is a unique
G-invariant Borel probability measure µ on X (the Haar measure).

A family of probability measures (µt)t≥0 on X is equidistributed on
X if µt converges in the weak∗ topology as t→∞ to the Haar measure
µ of X. Letting C(X) denote the space of continuous functions on X,
this means that the family of measures (µt)t≥0 is equidistributed if for
all f ∈ C(X),

lim
t→∞

∫
X

f dµt =

∫
X

f dµ. (1.1)

Throughout, we let λ denote the Lebesgue measure. The family
of measures (µt)t≥0 is said to be weakly equidistributed on X if the
convergence in (1.1) holds for t in a set of asymptotic density 1 in
[0,∞), meaning there exists A ⊂ [0,∞) such that

lim
T→∞

λ(A ∩ [0, T ])

T
= 1
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and for all f ∈ C(X),

lim
t→∞
t∈A

∫
X

f dµt =

∫
X

f dµ.

If we consider discrete time, then the family (µn)n∈N of measures is
weakly equidistributed on X if the convergence in (1.1) holds for a set
of parameters n with asymptotic density 1, meaning along a set A ⊂ N
satisfying limN→∞

|A∩{1,...,N}|
N

= 1, where | · | denotes the cardinality of
the set.

Equivalently, (µt)t≥0 is weakly equidistributed if and only if for every
f ∈ C(X) with

∫
X
f dµ = 0,

lim
T→∞

1

T

∫ T

0

∣∣∣∫
X

f dµt

∣∣∣2 dt = 0, (1.2)

and for discrete iterates (µn)n∈N, this becomes

lim
N→∞

1

N

N∑
n=0

∣∣∣∫
X

f dµn

∣∣∣2 = 0. (1.3)

While it is clear that strong equidistribution implies weak equidistri-
bution, for a family of measures in a nilmanifold these two notions are
not equivalent. Various examples illustrating the difference are given
in Section 5.

1.3. Dilation associated to the Lie algebra. We note that Ad(Γ)
is a Zariski dense subgroup of Ad(G), see [10, Chapter 2]. Since Γ
normalizes its connected component of the identity, say Γ0, we have
that Γ0 is a normal Lie subgroup of G. We note that Γ0 acts trivially
on G/Γ, so G acts on X = G/Γ via G/Γ0, or we can say that G/Γ0

acts on X = G/Γ as follows:

(gΓ0) · x = gx, for all g ∈ G and x ∈ X.

Let g denote the Lie algebra associated to the nilpotent Lie group
G. Then g/Lie(Γ0) is the Lie algebra associated to G/Γ0. We define
a family of dilations (ρt)t∈R such that ρt : g → g/Lie(Γ0) is a linear
transformation, and each matrix entry of ρt with respect to any bases
of g and g/Lie(Γ0) is a polynomial in t. In other words, for some m ≥ 0
and for some linear maps Bj : g → g/Lie(Γ0), 0 ≤ j ≤ m, we have
ρt =

∑m
j=0 t

jBj for all t ∈ R.
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1.4. Dynamics of measures under dilations. Let ν be a probabil-
ity measure on g and let x0 ∈ G/Γ. For t ≥ 1, let µν,x0,ρt denote the
measure on X defined as follows: for any f ∈ C(X),∫

X

f dµν,x0,ρt =

∫
X

f(exp ◦ρt(y) · x0) dν(y), (1.4)

where exp : g/Lie(Γ0)→ G/Γ0 is the exponential map from Lie algebra
to Lie group.

An interesting example of ν is as follows: Given a measurable map
φ : (0, 1) → g, we can take ν to be the pushforward of the Lebesgue
measure λ restricted to (0, 1) under φ. Then for t ≥ 0, taking µφ,x0,ρt

to be the measure on X defined by∫
X

f dµφ,x0,ρt =

∫ 1

0

f(exp ◦ρt ◦ φ(u) · x0) dλ(u) (1.5)

for all f ∈ C(X), then µφ,x0,ρt = µν,x0,ρt .

1.5. Abelianization of a nilsystem. Let [G,G] denote the Lie sub-
group of G corresponding to the commutator algebra [g, g]. For a
cocompact, closed subgroup Γ of G, we have that [G,G]Γ is a closed
subgroup of G, and X̄ := G/[G,G]Γ can be identified with a compact
torus Rm/Zm for some m ≥ 1 (see for example [10, Corollary 1 of The-
orem 2.3]). We call X̄ the abelianization of X and use t ∼= Rm to denote
the associated Lie algebra of X̄ and q : X = G/Γ → X̄ = G/[G,G]Γ
to denote the natural quotient map.

Let dq : g/Lie(Γ0) → t denote the differential of the map q at the
identity coset. Then

q(exp(y) · x0) = exp ◦dq(y) + q(x0) (1.6)

for all y ∈ g/Lie(Γ0) and all x0 ∈ X.
Then dq ◦ ρt : g→ t can be expressed as

dq ◦ ρt =

d1∑
i=0

tiAi, (1.7)

where d1 ∈ N and each Ai : g→ t is a linear map.
When Γ is discrete; that is, Γ0 = {e}, a natural choice for a family

of dilations is to consider (ρt)t∈R, where ρtv = tv for all v ∈ g. In this
case, d1 = 1, A1 = dq, and A0 = 0.

Let X̄∗ denote the space of (continuous) unitary characters on the
torus X̄. Then elements of X̄∗ are in one-to-one correspondence with
unitary characters on G such that the kernel of the map contains Γ.
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For any χ ∈ X̄∗, let dχ : t → R denote the differential of χ, meaning
that for y ∈ t,

χ(y + Zm) = e2πidχ(y). (1.8)

1.6. Weak equidistribution of dilated measures. Our first result
provides necessary and sufficient conditions for weak equidistribution
of the family (µt := µν,x0,ρt)t≥0.

Theorem 1.1. Let ν be a probability measure on g, x0 ∈ X, and
(µt := µν,x0,ρt)t≥0 be the family of measures defined in (1.4). If for all
χ ∈ X̄∗ \ {1} and (z1, . . . , zd1) ∈ Rd1 we have

ν({v ∈ g : dχ(Aiv) = zi for all 1 ≤ i ≤ d1}) = 0, (1.9)

then the families of measure (µt)t≥0 and (µn)n∈N are weakly equidis-
tributed on X.

Furthermore, if A0 = 0, then condition (1.9) is necessary for weak
equidistribution of (µn)n∈N, and also for (µt)t≥0.

1.7. Equidistribution of dilated analytic curves. We maintain
the same notation in this section. Carrying out the constructions of
the family of measures in (1.5) with an analytic map φ : (0, 1)→ g, we
resolve a conjecture stated in Björklund and Fish [4] (see the discussion
following Theorem 7 in their paper):

Theorem 1.2. Assume φ : (0, 1) → g is analytic, let x0 ∈ X, and let
(µt = µφ,x0,ρt)t∈R be as defined in (1.5). If for every χ ∈ X̄∗ \{1}, there
exists 1 ≤ i ≤ d1 such that the map

u 7→ dχ(Aiφ(u)) (1.10)

is not constant, then (µt)t≥0 is equidistributed on X.
Furthermore, if A0 = 0, then the conditions on the maps given

in (1.10) are also necessary for the equidistribution of (µt)t≥0 on X.

1.8. Equidistribution of dilated differentiable curves. Our main
result of this article provides a condition on tangents to the curve for
(strong) equidistribution, when φ is a sufficiently differentiable curve.
Still maintaining the assumptions and notation stated at the beginning
of this section, we have:

Theorem 1.3. Assume that X = G/Γ is a compact nilmanifold. There
exists a natural number D, which can be expressed in terms of the
degrees of polynomials in t defining ρt such that the following holds:
suppose that φ(D)(u) exists for (Lebesgue) almost all u ∈ (0, 1) and that
for every χ ∈ X̄∗ \ {1} and (Lebesgue) almost every u ∈ (0, 1),

Aiφ
(1)(u) /∈ ker dχ (1.11)
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for some 1 ≤ i ≤ d1. Then the family of measures (µφ,x0,ρt)t≥0 is
equidistributed on G/Γ.

Our proof is based on a stronger equidistribution result for dilates
of curves that shrink (the precise statement is given in Theorem 3.1).

The following special case is of interest:

Corollary 1.4. Let X = Rn/Zn and φ : (0, 1) → Rn be an almost
everywhere differentiable map. Suppose that for each v ∈ Zn \ {0},
φ(1)(u) is not orthogonal to v for (Lebesgue) almost every u ∈ (0, 1).
Then for any f ∈ C(Rn/Zn) and x0 ∈ Rn/Zn,

lim
t→∞

∫ 1

0

f(tφ(s) + x0) dλ(s) =

∫
Rm/Zm

f dµ,

where λ denotes the Lebesgue measure on [0, 1] and µ the Haar measure
on Rn/Zn.

For analytic φ, the conclusion of Corollary 1.4 was obtained in Ran-
dol [9].

In Section 5 we provide examples where condition in (1.9) holds and
so (µt)t≥0 is weakly equidistributed on X, but (µt)t≥0 is not equidis-
tributed on X.

2. Weak equidistribution for measures

This section is devoted to proving Theorem 1.1. We give a detailed
proof for the discrete case, and then indicate the modifications needed
for the continuous setting.

The classic equidistribution theorem in the discrete setting is due to
Weyl:

Theorem 2.1 (Weyl [13]). Let p(t) = adt
d + · · · + a1t + a0 be a real

polynomial. Then

lim
N→∞

1

N

N∑
n=1

e2πip(n) = 0

if and only if at least one of a1, . . . , ad is not rational.

If G is a nilpotent Lie group, a1, . . . , am ∈ G, and p1, . . . , pm : N→ N
are polynomials taking integer values on the integers, then a sequence

(g(n))n∈N in G of the form a
p1(n)
1 a

p2(n)
2 . . . a

pm(n)
m is a polynomial. If g

denotes the Lie algebra of G, we say that ζ : N → g is a polynomial
map if exp(ζ(n)) = g(n) for some polynomial (g(n))n∈N. Generalizing
Weyl’s equidistribution result, Leibman [6] showed (we write his result
in terms of the Lie algebra):
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Theorem 2.2 (Leibman [6]). Let ζ : N→ g be a polynomial map such
that for every nontrivial character χ on X̄,

dχ ◦ dq ◦ ζ(n) 6≡ dχ ◦ dq ◦ ζ(0) mod Q for some n ∈ N. (2.1)

Then for any f ∈ C(X) and any x ∈ X,

lim
N→∞

1

N

N∑
n=1

f(exp ◦ζ(n) · x) =

∫
X

f dµ.

We make use of these results in the proof of the weak equidistribution
result:

Proof of Theorem 1.1 (in the discrete setting). First we prove the ne-
cessity of condition (1.9) for weak equidistribution. Assume that A0 =
0 and suppose that (1.9) fails to hold, and we want to prove that the
families (µt)t≥0 and (µn)n∈N are both not weakly equidistributed. Thus
there exist a nontrivial character χ on X̄ and z1, . . . , zd1 ∈ R such that

ν({v ∈ g : dχ(Ajv) = zj for all 1 ≤ j ≤ d1}) (2.2)

is positive. Since χ is a nontrivial character on the torus X̄ and its
pushforward q∗µ is the translation invariant (Haar) probability measure
on the compact torus X̄, we have∫

X

χ ◦ q dµ =

∫
X̄

χd(q∗µ) = 0. (2.3)

Therefore in view of (1.3), in order prove that (µn)n∈N is not weakly
equidistributed, we need to show that

lim sup
N→∞

1

N

N∑
n=1

∣∣∣∫
X

χ ◦ q dµn
∣∣∣2 > 0.

Therefore it suffices to prove that

lim
M→∞

lim
N→∞

1

N

N∑
n=1

∣∣∣∫
X

χ ◦ q dµM !n

∣∣∣2 > 0, (2.4)

because for any sequence {an} of non-negative reals, and M ∈ N,

1

M !N

M !N∑
n=1

an ≥
1

M !

1

N

N∑
n=1

aM !n.
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For all t ∈ R,∫
X

χ ◦ q dµt =

∫
g

χ(q(exp ◦ρt(y) · x0)) dν(y)

= χ(q(x0))

∫
g

χ(dq ◦ ρt(y) + Zm) dν(y)

= χ(q(x0))

∫
g

e2πidχ(dq◦ρt(y)) dν(y)

= χ(q(x0))

∫
g

e2πi
∑d1

j=0 t
j ·dχ(Ajy) dν(y),

where we have used equations (1.6), (1.8), and (1.7). Writing yj :=
dχ(Ajy) and using the assumption that A0 = 0, this last quantity is
the same as

χ(q(x0))

∫
g

e2πi
∑d1

j=1 t
j ·yj dν(y).

Combining this expression for
∫
X
χ◦q dµt with the fact that |χ(q(x0))| =

1, we have that

lim
M→∞

lim
N→∞

1

N

N∑
n=1

∣∣∣∫
X

χ ◦ q dµM !n

∣∣∣2
= lim

M→∞
lim
N→∞

1

N

N∑
n=1

∫
g×g

e2πi(nM !)j
∑d1

j=1(yj−y′j) d(ν × ν)(y, y′)

=

∫
g×g

[
lim
M→∞

lim
N→∞

1

N

N∑
n=1

e2πi
∑d1

j=1 n
j((M !)j(yj−y′j))

]
d(ν × ν)(y, y′).

We claim that this integral over g × g is the same as integrating the
indicator function of the set

W = {(y, y′) ∈ g× g : yj ≡ y′j mod Q for all 1 ≤ j ≤ d1}.

To see this, fix y, y′ ∈ g. If yj 6= y′j mod Q for some 1 ≤ j ≤ d1, by
Weyl Equidistribution (Theorem 2.1) the limit equals to 0. If yj = y′j
mod Q for all 1 ≤ j ≤ d1, then (M !)jyj = (M !)jy′j mod Z for all 1 ≤
j ≤ d1 and all M sufficiently large, and so the limit as N →∞ equals
to 1.
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Thus

lim
N→∞

1

N

N∑
n=1

∣∣∣∫
X

χ ◦ q dµn
∣∣∣2

=

∫
g×g

1W d(ν × ν)(y, y′)

=

∫
g

ν({y ∈ g : dχ(Ajy) ≡ y′j mod Q for all 1 ≤ j ≤ d1}) dν(y′)

=
∑

w1,...,wd1
∈R

ν({y ∈ g : dχ(Ajy) ≡ wj mod Q for all 1 ≤ j ≤ d1})×

ν({y′ ∈ g : dχ(Ajy
′) = wj for all 1 ≤ j ≤ d1})

≥ ν({v ∈ g : dχ(Ajv) = zj for all 1 ≤ j ≤ d1})2.

By (2.2), this is strictly positive and so (2.4) holds, which completes
the proof that (µn)n∈N is not weakly equidistributed on X.

The converse implication. Assume that condition (1.9) of Theorem 1.1
holds. Our goal is to show that (1.3) holds for the family (µn :=
µν,x0,ρn)n∈N and any given f ∈ C(X) with

∫
X
f dµ = 0. We have:

lim
N→∞

1

N

N∑
n=1

∣∣∣∫
X

f dµn

∣∣∣2
= lim

N→∞

1

N

N∑
n=1

[∫
X×X

f ⊗ f d(µn × µn)

]

= lim
N→∞

1

N

N∑
n=1

[∫
g×g

f(exp ◦ρn(y) · x0)f(exp ◦ρn(y′) · x0) d(ν × ν)(y, y′)

]

=

∫
g×g

[
lim
N→∞

1

N

N∑
n=1

f ⊗ f̄(exp ◦ζy,y′(n) · (x0, x0))

]
d(ν × ν)(y, y′),

(2.5)

where ζy,y′ : N→ g/Lie(Γ0)× g/Lie(Γ0) is the map given by

ζy,y′(t) = (ρt(y), ρt(y
′)) for all t ∈ N. (2.6)

From the definition of (ρt)t∈R, it follows that (exp ◦ζy,y′(n))n∈N is a
polynomial on (G/Γ0)× (G/Γ0).
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For every (χ, χ′) ∈ X̄∗× X̄∗ \ {(1, 1)}, we have d(χ⊗ χ̄′) = dχ⊕ dχ̄′,
and by (1.7),

(dχ⊕ dχ̄′) ◦ ζy,y′(n)

= dχ(dq ◦ ρn(y))− dχ′(dq ◦ ρn(y′))

=

d1∑
j=1

[dχ(Ajy)− dχ′(Ajy′)]nj + dχ(A0y)− dχ′(A0y
′).

Therefore in view of condition (2.1) of Theorem 2.2,

(dχ⊕ dχ̄′) ◦ ζy,y′(n) ≡ dχ(A0y)− dχ′(A0y
′) mod Q

for all n ∈ Z is equivalent to the condition that

dχ(Ajy) ≡ dχ′(Ajy
′) mod Q

for all 1 ≤ j ≤ d1.
In order to apply Theorem 2.2 to ζy,y′ and X×X, define B to be the

set of (y, y′) ∈ g× g such that for all (χ, χ′) ∈ X̄∗× X̄∗ \ {(1, 1)}, there
exists j ∈ {1, . . . , d1} such that dχ(Ajy) 6≡ dχ(Ajy

′) mod Q. Define
C to be the set of y ∈ g such that for all χ ∈ X̄∗ \ {1}, there exists
j ∈ {1, . . . , d1} such that dχ(Ajy) 6∈ Q and define

Ey = {y′ ∈ g : (y, y′) 6∈ B}.
Since Q is countable, by the hypothesis given in (1.9), we have that

ν(C) = 1. Also

B ⊃
⋃
y∈C

{y} × (g \ Ey). (2.7)

For any y ∈ C, χ ∈ X̄∗, χ′ ∈ X̄∗ \ {1}, define Ey,χ,χ′ to be the set

{y′ ∈ g : dχ′(Ajy
′) ≡ dχ(Ajy) mod Q for all 1 ≤ j ≤ d1}.

Then since Q is countable, by the hypothesis (1.9), we have that

ν(Ey,χ,χ′) = 0. (2.8)

Suppose that y ∈ C, y′ ∈ Ey, and (χ, χ′) ∈ X̄∗ × X̄∗ \ {(1, 1)} are
such that

dχ(Ajy) ≡ dχ′(Ajy
′) mod Q for all 1 ≤ j ≤ d1. (2.9)

By definition of the set C, we can choose j with 1 ≤ j ≤ d1 such that
dχ(Ajy) /∈ Q. Then by (2.9), χ′(Ajy

′) 6∈ Q. Therefore χ′ 6= 1. By
definition of the set Ey,

Ey =
⋃

χ′∈X̄∗\{1}

⋃
χ∈X̄∗

Ey,χ,χ′ . (2.10)
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Since X̄∗ is countable, by (2.8), we have ν(Ey) = 0. Hence by (2.7),
(ν × ν)(B) = 1.

By Theorem 2.2 applied to X×X, for any f ∈ C(X) with
∫
X
f dµ =

0, for all (y, y′) ∈ B, we have

lim
N→∞

1

N

N∑
n=1

f ⊗ f̄(exp ◦ζy,y′(n) · (x0, x0)) = 0.

Now since (ν × ν)((g× g) \B) = 0, it follows from (2.5) that

lim
N→∞

1

N

N∑
n=1

∣∣∣∫
g

f(exp ◦ρn(y) · x0) dν(y)
∣∣∣2

=

∫
g×g

[
lim
N→∞

1

N

N∑
n=1

f ⊗ f̄(exp ◦ζy,y′(n) · (x0, x0))
]
d(ν × ν)(y, y′) = 0.

Thus (µn)n∈N is weakly equidistributed. �

The case of continuous parameter. The proof in this case is similar. In-
stead of using the discrete version of Weyl’s Theorem to show necessity,
we use:

Theorem 2.3 (Weyl [13]). Let p(t) = adt
d + · · · + a1t + a0 be a poly-

nomial with real coefficients. Then

lim
T→∞

1

T

∫ T

0

e2πip(t) dt = 0

if and only if at at least one of a1, . . . , ad is nonzero.

We also replace the use of Leibman’s Theorem by the following result
of Shah (which is generalizes Theorem 2.3):

Theorem 2.4 (Shah [12]). Let ζ : R → g be a polynomial map such
that for every nontrivial character χ on X̄,

dχ ◦ dq ◦ ζ(t) 6= dχ ◦ dq ◦ ζ(0) for some t ∈ R. (2.11)

Then for any f ∈ C(X) and any x ∈ X,

lim
T→∞

1

T

∫ T

0

f(exp ◦ζ(t) · x) dt =

∫
X

f dµ.

Up to obvious changes in notation, the proof is then the same as in
the discrete case; in fact it gets simplified as one can replace equivalence
mod Q by just equality, and we omit further details.
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3. Strong equidistribution

3.1. A stronger equidistribution result for dilations of curves.
The key ingredient for proving Theorem 1.3 is a stronger equidistribu-
tion of dilation of shrinking curves as stated below. First we need to
recall the notation.

We continue to use λ to denote the Lebesgue measure on (0, 1) or R,
depending on the context.

We consider the dynamics on X = G/Γ, where G is a simply con-
nected nilpotent Lie group and Γ a closed subgroup of G. Let g denote
the Lie algebra of G.

We write ḡ = g/Lie(Γ0). For t ∈ R, let ρt : g→ ḡ denote the linear
map such that ρt is a polynomial in t with coefficients which are linear
maps from g to ḡ.

Let t denote the Lie algebra associated to the compact torus X̄ =
G/[G,G]Γ. Let dq : ḡ 7→ t = ḡ/[ḡ, ḡ] denote the natural quotient map.
Then dq ◦ ρt : g→ t can be expressed as

dq ◦ ρt =

d1∑
i=0

tiAi,

where each Ai : g→ t is a linear map.
Consider the lower central series ḡ(k) = [ḡ, ḡ(k−1)] for k ≥ 1. Put

ḡ(0) = ḡ. Let κ ≥ 1 be an integer such that ḡ(κ) = 0.
For 1 ≤ k ≤ κ, let Qk : ḡ→ ḡ/ḡ(k) denote the natural quotient map

and choose an integer Dk ≥ 0 such that the map Qk ◦ ρt : g→ ḡ/ḡ(k) is
a polynomial of degree at most Dk in t and D1 ≤ D2 ≤ · · · ≤ Dκ. Set

D = max

{
n∑

m=1

Dkm :
n∑

m=1

km ≤ κ, 1 ≤ km ≤ κ, 1 ≤ n ≤ κ

}
. (3.1)

The purpose of such a definition of D becomes apparent later.

Theorem 3.1. Suppose that φ : (0, 1) → g is a function such that
φ(D)(u) exists for (Lebesgue) almost all u ∈ (0, 1). Assume further that
for every nontrivial character χ on X̄ and (Lebesgue) almost every
u ∈ (0, 1),

Aiφ
(1)(u) /∈ ker dχ for some 1 ≤ i ≤ d1. (3.2)

Then there exists W ⊂ (0, 1) with λ(W ) = 1 such that for all s0 ∈ W
the following holds: Let (`t)t≥1 be a family such that `t > 0, and `t →∞
and `tt

−1 → 0 as t→∞. Then

lim
t→∞

1

`tt−1

∫ s0+`tt−1

s0

f(exp ◦ρt ◦ φ(ξ) · x0) dξ =

∫
X

f dµ. (3.3)
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We defer the proof of this result to the next two sections. Before this,
we explain its use in completing the proof Theorem 1.3 and obtain some
of its immediate consequences.

Proof of Theorem 1.3. Let f ∈ C(G/Γ) be such that
∫
G/Γ

f dµ = 0,

and without loss of generality we can assume that ‖f‖∞ ≤ 1. Given
ε > 0, choose W ⊂ (0, 1) with λ(W ) = 1 as in Theorem 3.1. The
conclusion of Theorem 3.1 can be interpreted as follows: for every
s ∈ W , there exists `s ≥ 1 such that for any ` ≥ `s, there exists
ts,` > `(1− s)−1 such that for all t ≥ ts,`,∣∣∣∫ s+`t−1

s

f(exp ◦ρt ◦ φ(ξ) · x0) dξ
∣∣∣ ≤ `t−1ε. (3.4)

For L > 0, let
W (L) = {s ∈ W : `s ≤ L}.

By our choice of `s, there exists L > 0 such that λ(W \W (L)) ≤ ε.
For t ≥ 1, let

W (L, t) = {s ∈ W (L) : ts,L ≤ t}.
By our choice of ts,L, there exists TL ≥ 1 such that λ(W (L)\W (L, TL)) <
ε.

Pick a compact set W2 ⊂ W (L, TL) such that λ(W (L, TL)\W2) ≤ ε.
Let t ≥ TL. We cover W2 by disjoint intervals [si, si + Lt−1] for

0 ≤ i ≤ n, where s0 = minW2, and if si ∈ W2 is chosen for some i ≥ 0,
then choose

si+1 = min
(
W2 \ (0, si + Lt−1)

)
∈ W2, if si + Lt−1 ≤ max(W2),

otherwise put n = i and stop the induction. Since sn ∈ W (L, TL), and
t ≥ TL, we have sn + Lt−1 < 1. Therefore the intervals [si, si + Lt−1)
for 0 ≤ i ≤ n are disjoint and contained in (0, 1). Hence

(n+ 1)(Lt−1) ≤ 1.

Let W ′
2 =

⋃n
i=0[si, si + Lt−1). Then W2 ⊆ W ′

2 and by (3.4),∣∣∣∫
W ′2

f(exp ◦ρt ◦ φ(s) · x0) ds
∣∣∣ ≤ n∑

i=0

∣∣∣∫ si+Lt
−1

si

f(exp ◦ρt ◦ φ(s) · x0) ds
∣∣∣

≤ (n+ 1)(Lt−1)ε ≤ ε.

Since λ(W ′
2) ≥ λ(W2) ≥ 1− 3ε, for all t ≥ TL,∣∣∣∫ 1

0

f(exp ◦ρt ◦ φ(s) · x0) ds
∣∣∣ ≤ ε+ 3ε‖f‖∞ ≤ 4ε. �

The following special case of Theorem 1.3 is of interest:
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Corollary 3.2. Let κ ≥ 1 be such that ḡ(κ) = 0. Suppose that that for
1 ≤ k ≤ κ,

Qk ◦ ρt : g→ ḡ/ḡ(k) is a polynomial of degree at most k in t. (3.5)

Let φ : (0, 1) → g be such that φ(κ)(u) exists for almost all u ∈ (0, 1).
Suppose that the condition on χ ∈ X̄∗\{1} given in (1.11) holds. Then
the family of measures (µφ,x0,ρt)t≥0 is equidistributed on X as t→∞.

Note that the example of ρt being multiplication by t on g is an
example satisfying (3.5) and generalizing Corollary 1.4 to nilpotent
groups. Other natural examples of family of dilations (ρt)t∈R satisfying
the condition given in (3.5) are given in [2, 3, 8]. In particular, when
ρt is a Lie algebra automorphism of g, then ρt satisfies (3.5).

Proof of Corollary 3.2. Given the assumption in (3.5), the bound Dk

on the degree of the quotient map Qk ◦ ρt satisfies Dk = k for all
1 ≤ k ≤ κ. Therefore in (3.1), we have

n∑
m=1

Dkm =
n∑

m=1

km ≤ κ,

and hence D ≤ κ. Thus the result is a special case of Theorem 1.3. �

We also complete the proof of Theorem 1.2:

Proof of Theorem 1.2. Since φ is an analytic curve, the condition on
the χ given in (1.10) implies the condition given in (1.11). Therefore
the equidistribution follows from Theorem 1.3.

For the converse, suppose that the condition on the map given in
(1.10) fails to hold and A0 = 0. Then there exists a nontrivial character
χ on X̄ such that dχ(Aiφ

(1)(u)) = 0 for all u ∈ (0, 1) and all 1 ≤ i ≤ d1.
But then by analyticity of φ, for every 1 ≤ i ≤ d1, there exists zi ∈ R,
such that dχ(Aiφ(u)) = zi for all u ∈ (0, 1). Hence, since A0 = 0,

dχ(dq ◦ ρt ◦ φ(u)) =

d1∑
i=1

tidχ(Aiφ(u)) =

d1∑
i=1

tizi. (3.6)

Let f = χ ◦ q ∈ C(X). Then∫
X

f dµ =

∫
X̄

χd(q∗µ) = 0,

because χ is a nontrivial character on the torus X̄ and q∗µ is the in-
variant probability measure on X̄.

For any x0 ∈ X, by (1.8),

f(exp ◦ρt ◦ φ(u) · x0) = e2πidχ(dq◦ρt◦φ(u)) · χ(q(x0)). (3.7)
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If limt→∞
∫
f dµt exists, then by (3.6) and (3.7) limt→∞ e

2πi
∑d1

i=1 t
izi ex-

ists. We conclude that zi = 0 for all i. It follows that the limit is equal
to χ(q(x0)) 6= 0. Therefore the sequence µt does not converge to µ as
t→∞ with respect to the weak∗ topology. �

3.2. Equidistribution of expanding translates of shrinking curves.
First we describe a quantitative condition that we want for s0 ∈ (0, 1)
to hold, so that (3.3) holds.

Assume that φ : (0, 1)→ g is a function satisfying the hypotheses of
Theorem 3.1. That is, φ(D)(u) exists for almost all u ∈ (0, 1), where
D is defined as in (3.1), and for every χ ∈ X̄∗ \ {1}, for almost all
u ∈ (0, 1), there exists 1 ≤ i ≤ d1, such that Aiφ

(1)(u) 6∈ ker dχ.
Define a map ψt : {(u, ξ) : u+ ξ, u ∈ (0, 1)} → g/Lie(Γ0) by

ψt(u, ξ) = log[exp(ρt ◦ φ(u+ ξ)) · exp(−ρt ◦ φ(u))], (3.8)

where exp : g/Lie(Γ0) → G/Γ0 is the exponential map, and log is its
inverse.

Definition 3.3 (Property W(Γ0)). We say that s0 ∈ (0, 1) has prop-
erty W(Γ0) if the following holds: there exists α ≥ 1 such that for any
sequences tn → ∞ and `n → ∞ with `nt

−1
n → 0 and for any ε > 0,

there exists a compact set Iε ⊂ [0, 1] with λ([0, 1] \ Iε) < ε such that
the following holds: for any s ∈ Iε and ζ ∈ R, for each n ∈ N, if we put
un = s0 + s`nt

−1
n and ξn = ζt−αn , then

lim
n→∞

ψtn(un, ξn) = η(ζ), (3.9)

where η : R→ g/Lie(Γ0) is a non-constant polynomial map.
If Λ is any closed subgroup of G containing Γ, then let dp : ḡ =

g/Lie(Γ0)→ g/Lie(Λ0) be the natural quotient map. Then we replace
the dilations ρt with dp ◦ ρt : g→ g/Lie(Λ0). With these modification,
property W(Λ0) is also defined.

Proposition 3.4. Suppose that s0 ∈ (0, 1) has property W(Λ0) for
every closed subgroup Λ of G containing Γ. For all t ≥ 1, let `t > 0
be such that as t → ∞, `t → ∞ and `tt

−1 → 0. For all t ≥ 1 such
that s0 + `tt

−1 < 1, let νt be the probability measure on X such that all
f ∈ C(X),∫

X

f dνt =
1

`tt−1

∫ s0+`tt−1

s0

f(exp(ρt ◦ φ(ξ) · x0) dξ

=

∫ 1

0

f(exp ◦ρt ◦ φ(s0 + s`tt
−1) · x0) ds.

Then νt → µ with respect to the weak∗ topology as t→∞.
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Proof. The result is trivial if dim(G/Γ0) = 0. We intend to prove the
result by induction on dim(G/Γ0). In particular, we can assume that
the result is valid for all closed subgroups Λ of G containing Γ such that
dim(Λ0) > dim(Γ0). In other words, if p : G/Γ → G/Λ is the natural
quotient map, and p∗ denotes the corresponding pushforward of mea-
sures then as t → ∞, p∗(νt) converges to the G-invariant probability
measure on G/Λ with respect to the weak∗ topology.

Let tn → ∞ be any given sequence. It suffices to show that after
passing to a subsequence of {tn}, we have that νtn → µ in the weak∗

topology as n→∞, where µ denotes the G-invariant probability mea-
sure on G/Γ.

SinceG/Γ is compact, after passing to a subsequence, we may assume
that νtn → ν in the space of probability measures on G/Γ with respect
to the weak∗ topology as n→∞.

Claim 3.4.1. The measure ν is invariant under a connected subgroup
U of G properly containing Γ0.

Proof. Let f ∈ C(G/Γ). Since s0 has property W(Γ0), let α ≥ 1 be
such that (3.9) holds. For the remainder of the proof, we make use of
some shorthand to simplify formulas. For all n ∈ N, we write t = tn,
for all s ∈ [0, 1], we write u = s0 + s`tt

−1, and for all ζ ∈ R, we write
ξ = ζt−α. Then, since νtn → ν as n→∞, by (3.3) we have

∫
G/Γ

f(x) dν(x) = lim
n→∞

∫ 1

0

f(exp ◦ρtn ◦ φ(u) · x0) ds. (3.10)

Now ξ`−1
t t = ζ`−1

t t−(α−1) → 0, because α ≥ 1 and `t → ∞ as n → ∞.
Therefore (3.10) can be rewritten as

lim
n→∞

∫
Iε+ξ`−1

t t

f(exp ◦ρt ◦ φ(u) · x0) ds+O(‖f‖∞ε)

= lim
n→∞

∫
Iε+ξ`−1

t t

f(exp ◦ρt ◦ φ(s0 + s`tt
−1) · x0) ds+O(‖f‖∞ε)

= lim
n→∞

∫
Iε

f(exp ◦ρt ◦ φ(s0 + (s+ ξ`−1
t t)`tt

−1) · x0) ds+O(‖f‖∞ε)

= lim
n→∞

∫
Iε

f(exp ◦ρt ◦ φ(u+ ξ) · x0) ds+O(‖f‖∞ε).
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Applying (3.8), this becomes

lim
n→∞

∫
Iε

f(exp(ψt(u, ξ)) exp(ρt ◦ φ(u)) · x0) ds+O(‖f‖∞ε)

= lim
n→∞

∫
Iε

f(exp(η(ζ)) exp(ρt ◦ φ(u)) · x0) ds+O(‖f‖∞ε)

= lim
n→∞

∫
G/Γ

f(exp(η(ζ)) · x) dνtn(x) +O(2‖f‖∞ε),

where we have used (3.9) in the second to last step. Taking the limit,
in view of (3.10),∣∣∣∫

G/Γ

f(x) dν(x)−
∫
G/Γ

f(exp(η(ζ))x) dν(x)
∣∣∣ ≤ O(2‖f‖∞ε).

Thus ν is invariant under the action of U1, where U1 is the closure of
the subgroup of G/Γ0 generated by {exp(η(ζ)) : ζ ∈ R}. But ζ 7→ η(ζ)
is a non-constant polynomial map and so U1 is a nontrivial connected
subgroup of G/Γ0. Let U = π−1(U1). Then ν is U -invariant, U is
connected, and properly contains Γ0. �

Claim 3.4.2. The measure ν is invariant under a closed connected
normal subgroup F of G containing U such that FΓ/Γ is compact.

Proof. Let H be the collection of all closed connected subgroups H of
G containing Γ0 with HΓ/Γ is compact. Then H is countable. By
Lesigne [7, Theorem 2], or more generally Ratner’s Theorem [11], any
U -ergodic invariant probability measure on G/Γ is of the form gµH for
some H ∈ H, where µH denotes the H-invariant probability measure
on HΓ/Γ, and g ∈ G is such that UgΓ ⊂ gHΓ, or equivalently, g ∈
X(U,H), where

X(U,H) = {g ∈ G : g−1Ug ⊂ H}. (3.11)

Note that X(U,H) is an algebraic subvariety of G with respect to any
algebraic group structure on G.

Let F ∈ H be a subgroup of smallest possible dimension such that

ν(X(U, F )Γ/Γ) > 0. (3.12)

We note that

X(U,H)Z = X(U,H), (3.13)

where Z ⊂ G is the inverse image of the center of G/Γ0. Now Λ :=
ZΓ is closed and G/Λ is compact, see [10, Chapter II]. Consider the
natural quotient map p : G/Γ → G/Λ. Let p∗ denote corresponding
the pushforward map of measures. Then p∗(νtn)→ p∗(ν) as tn →∞.
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If G = Γ0, the lemma is trivial. So we assume that G/Γ0 is a nontriv-
ial connected nilpotent group. Therefore its center is of strictly positive
dimension. Therefore dim(G/Z) < dim(G/Γ0). So by our induction
hypothesis stated on the beginning of the proof of Proposition 3.4, we
conclude that p∗(ν) is the G-invariant probability measure on G/ZΓ.

By (3.12) and (3.13),

p∗(ν)(X(U, F )ZΓ/ZΓ) = ν(X(U, F )Γ/Γ) > 0.

Since X(U, F )Z = X(U, F ) and p∗(ν) is the G-invariant measure on
G/ZΓ, the Haar measure of X(U, F ) is strictly positive. As we noted
before, X(U, F ) is an algebraic subvariety of G. Therefore X(U, F ) =
G; that is, Ug ⊂ gF for all g ∈ G.

Now we show that that F is normal in G, and ν is F -invariant.
By minimality of F ,

ν(S(U, F )Γ/Γ) = 0,

where

S(U, F ) :=
⋃
{X(U,H) : H ∈ H, dimH < dimF}.

Therefore
ν(X(U, F )Γ/Γ \ S(U, F )Γ/Γ) = 1.

As a consequence, almost every U -ergodic component of ν is of the
form gµF for some g ∈ G.

Now G \ S(U, F ) 6= ∅. Let g ∈ G \ S(U, F ). We claim that UgΓ =
gFΓ. To see this note that Ug ⊂ gF and FΓ is closed, so UgΓ ⊂ gFΓ,
and by the orbit closure theorem (cf. Lesigne [7, Theorem 2]), UgΓ =
LgΓ and g−1Lg ∈ H. Therefore g−1Lg ⊂ F . Since g ∈ X(U, g−1Lg)
and g 6∈ S(U, F ), we conclude that dim(g−1Lg) ≥ dimF , and hence
g−1Lg = F , and so UgΓ = gFΓ.

Now let γ ∈ Γ. Since g, gγ ∈ G = X(F,U), we have that Ugγ ⊂
gγF , and hence gFΓ = UgΓ ⊂ gγFΓ. Therefore gFg−1 ⊂ gγFγ−1g−1,
and hence F = γFγ−1. This proves that F is normalized by Γ. But
Ad Γ is Zariski dense in AdG; see [10, Chapter 2]. Hence F is normal-
ized by G.

As we noted above, almost every U -ergodic component of ν is of the
form gµF for some g ∈ G, so it is gFg−1 = F -invartiant. Therefore ν
is F -invartiant. This completes the proof of the claim. �

Now it remains to prove that ν is G-invariant. Let p : G/Γ→ G/FΓ
be the natural quotient map, and let p∗ denote the corresponding push-
forward map of measures. Then p∗(νtn) → p∗(ν) as n → ∞. Since
U ⊂ F , we have that dim((FΓ)0) > dim(Γ0). Therefore by the induc-
tion hypothesis stated in the begining of the proof of Proposition 3.4,
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p∗(ν) is the G-invariant probability measure on G/FΓ. Since ν is F -
invariant, it follows that ν is G-invariant. Since the Haar measure is
the unique G-invariant probability measure on X, we have that ν = µ,
completing the proof of Proposition 3.4. �

4. Points with property W(Γ0)

Now we determine which points s0 ∈ (0, 1) satisfy the property
W(Γ0). For this purpose, we study the following function using Tay-
lor’s expansion and Baker-Campbell-Hausdorff formula: for u ∈ (0, 1)
and ξ ∈ (−1, 1) such that u+ ξ ∈ (0, 1), we have

ψt(u, ξ) = log[exp(ρt ◦ φ(u+ ξ)) · exp(−ρt ◦ φ(u))] ∈ ḡ. (4.1)

Let u ∈ (0, 1) be such that φ(D)(u) exists. By Taylor’s formula, for
any ξ ∈ R such that u+ ξ ∈ (0, 1), we have

φ(u+ ξ) =
D∑
l=0

1

l!
φ(l)(u)ξl + ε(u, ξ)ξD, (4.2)

where ε(u, ξ)→ 0 as ξ → 0.
Since ḡ(k) ⊂ ḡ(k−1) for all 1 ≤ k ≤ κ, we can choose a subspace

Vk ⊂ ḡ(k−1) such that ḡ(k−1) = Vk ⊕ ḡ(k). Then

ḡ = V1 ⊕ · · · ⊕ Vκ and ḡ(k) = Vk+1 ⊕ · · · ⊕ Vκ.
Let Pk : ḡ→ Vk denote the corresponding projection.

By the choice of the integers Dk (the polynomial Qk ◦ ρt is of degree
at most Dk), for all 1 ≤ k ≤ κ and for each 1 ≤ i ≤ Dk, there exists a
linear map Ai,k : g→ Vk, such that

Pk ◦ ρt =

Dk∑
i=0

tiAi,k. (4.3)

Then

ρt ◦ φ(u+ ξ) =
κ∑
k=1

(Pk ◦ ρt) ◦ φ(u+ ξ)

=
κ∑
k=1

Dk∑
i=0

(
D∑
l=0

tiξl
1

l!
Ai,kφ

(l)(u) + tiξDAi,kε(u, ξ)

)
. (4.4)

By the Baker-Campbell-Hausdorff formula, since ḡ(κ) = 0, using the
definition of ψt in (4.1), we have

ψt(u, ξ) =
κD∑
i=0

κD∑
l=0

tiξlZ(i,l)(u, ξ), (4.5)
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where the functions Z(i,l) can be expressed as

Z(i,l)(u, ξ) = Y(i,l)(u) + ε(i,l)(u, ξ), (4.6)

where Y(i,l)(u) is a fixed linear combination of nested commutators of
the form

[X1, [X2, [· · · , [Xn−1, Xn]]]], where 1 ≤ n ≤ κ. (4.7)

and
Xm = Aim,kmφ

(lm)(u) ∈ Vkm , for 1 ≤ m ≤ n, (4.8)

and ε(i,l)(u, ξ) is a fixed linear combination of similar nested commuta-
tors where one or more of the Xm’s with lm = D are replaced by

X̃m = Aim,kmε(u, ξ) ∈ Vkm . (4.9)

Claim 4.1. We have the following:

(1) limξ→0 ε(i,l)(u, ξ) = 0.
(2) For all i, Z(i,0) = 0.
(3) If l < D, then ε(i,l) = 0.
(4) If i > D, then Z(i,l) = 0.

In particular,

ψt(u, ξ) =
∑

(i,l)∈P

tiξlY(i,l)(u) +
D∑
i=0

κD∑
l=D

tiξlε(i,l)(u, ξ), (4.10)

where
P = {(i, l) : 0 ≤ i ≤ D, 1 ≤ l ≤ κD}. (4.11)

Proof. From the description of ε(i,l)(u, ξ) and (4.9), due to (4.2) we
conclude that (1) holds.

Next (2) holds, because ψt(u, 0) = 0.
In view of (4.4), the following relations hold between various indices

in (4.8) and (4.9):

1 ≤ km ≤ κ, 0 ≤ im ≤ Dkm , and 0 ≤ lm ≤ D. (4.12)

In view of equations (4.5)-(4.9), we get
n∑
i=1

im = i and
n∑

m=1

lm = l. (4.13)

For every commutator appearing in the expression for ε(i,l)(u, ξ), we
have lm = D for at least one m, and hence l ≥ D by (4.13). Therefore
if l < D then ε(i,l) = 0, which proves (3).

By (4.8) Xm ∈ Vkm , and by (4.9) X̃m ∈ Vkm . Also

Vkm ⊂ ḡ(km−1) and [ḡ(k−1), ḡ(k′−1)] ⊂ ḡ(k+k′)−1 for all k, k′.
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Therefore the nested commutator as in (4.7) and its analogue involving
X̃m’s belong to ḡ((

∑n
m=1 km)−1). Since ḡ(κ) = 0, if the nested commutator

is nonzero then
n∑

m=1

km ≤ κ. (4.14)

By (4.12) and (4.13), we have that if the nested commutator as in
(4.7) or its analogue involving X̃m’s is nonzero then

i =
n∑

m=1

im ≤
n∑

m=1

Dkm . (4.15)

Now in view of (4.7), (4.14) and (4.15), we recall (3.1):

D = max

{
n∑

m=1

Dkm :
n∑

m=1

km ≤ κ, 1 ≤ km ≤ κ, 1 ≤ n ≤ κ

}
.

Therefore by (4.15), if i > D then Z(i,l) = 0. This proves (4) �

Claim 4.2. For 0 ≤ i ≤ d1,

dq(Y(i,1)(u)) = Aiφ
(1)(u).

Proof. First note that dq = dq ◦ P1. Now

P1 ◦ Y(i,1)(u) = Ai,1φ
(1)(u), (4.16)

because l = 1 and by (4.7) and (4.8) we have n = 1, and hence by (4.7)
l1 = l = 1.

So by (4.3),

dq ◦ ρt = dq ◦ (P1 ◦ ρt) = dq ◦
( D1∑
i=0

tiAi,1

)
=

D1∑
i=0

tidq ◦ Ai,1. (4.17)

Therefore by (1.7), d1 ≤ D1 and

dq ◦ Ai,1 =

{
Ai if 0 ≤ i ≤ d1

0 if d1 < i ≤ D1.
(4.18)

Hence the claim follows from (4.16). �

Proposition 4.3. Given ε0 > 0, there exists a Borel measurable set
J1 ⊂ (0, 1) such that λ(J1) ≥ 1− ε0 and the following conditions hold:

(1) The derivative φ(κ)(u) exists and is uniformly continuous for
u ∈ J1 and it is bounded on J1. In particular, for each (i, l) ∈ P,
Y(i,l)(u) is uniformly continuous and bounded for u ∈ J1.
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(2) For every u ∈ J1 and every nontrivial unitary character χ on
the torus G/[G,G]Γ = X̄, we have

Aiφ
(1)(u) 6∈ ker dχ for some 0 ≤ i ≤ d1.

(3) For each (i, l) ∈ P, ε(i,l)(u, ξ) → 0 as ξ → 0, and this conver-
gence is uniform for u ∈ J1.

Proof. By our assumption, φ(κ)(u) exists for almost all u ∈ (0, 1), hence
by Lusin’s Theorem there exists a compact set J2 ⊂ (0, 1) such that
φ(κ) is uniformly continuous on J2 and λ(J2) ≥ 1− ε0/2.

By the condition given in (1.11), since X∗ \ {1} is countable, there
exists a Borel set J3 ⊂ J2 such that λ(J2 \ J3) = 0 and for every
χ ∈ X̄∗ \ {1} and every u ∈ J3, there exists 1 ≤ i ≤ d1 such that
Aiφ

(1)(u) 6∈ ker dχ.
Given p, q ≥ 1, define the set Jp,q to be

{u ∈ J3 : for all (i, l) ∈ P , |ε(i,l)(u, ξ)| ≤ 1/p for all |ξ| ≤ 1/q}.
Then by Claim 4.1((1)), the sets Jp,q form a nested sequence of sets
growing to J3 as q →∞. Choose, qp ≥ 1 such that

λ(J3 \ Jp,qp) < 2−p(ε0/2)

and set J1 =
⋂∞
p=1 Jp,qp . Then λ(J3\J1) ≤ ε0/2, and for every (i, l) ∈ P ,

εi,l(u, ξ)→ 0 as ξ → 0 uniformly for u ∈ J1. Also λ(J1) ≥ 1− ε0. �

Corollary 4.4. If J1 satisfies conditions (1),(2) and (3) of Proposi-
tion 4.3 for Γ, then J1 also satisfies the same three conditions when we
replace Γ by any closed subgroup Λ of G containing Γ and ρt by dp◦ρt,
where dp : g/Lie(Γ0)→ g/Lie(Λ0) it the natural quotient map.

Proof. When Λ replaces Γ, each Y(i,l) gets replaced by dp(Y(i,l)) and
ε(i,l) gets replaced by dp(ε(i,l)). Therefore it directly follows that Con-
ditions (1) and (3) hold.

Now X̄1 = G/[G,G]Λ is the abelianization ofG/Λ with t1 = Lie(G/[G,G]Λ0)
being its Lie algebra. Let dr1 : t→ t1 the natural quotient map. Then
dq gets replaced by dq1 : Lie(G/Λ0)→ t1 such that dq1 ◦ dp = dr1 ◦ dq.
Then in view of (1.7),

dq1 ◦ (dp ◦ ρt) = dr1 ◦ (dq ◦ ρt) =

d1∑
i=0

ti(dr1 ◦ Ai).

Thus in case of Λ replacing Γ, we have that Ai gets replaced by
dr1 ◦ Ai in Condition (2). To verify this condition, let χ1 ∈ X̄∗1 \ {1}
be given. Put χ = χ1 ◦ r1 ∈ X̄∗ \ {1}. Then

dχ1 ◦ (dr1 ◦ Ai) = dχ ◦ Ai.
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For any u ∈ J1, by Condition (2) for Γ, pick 0 ≤ i ≤ d1 such that
dχ(Aiφ

(1)(u)) 6= 0. Then dχ1((dr1 ◦ Ai)φ(1)(u)) 6= 0. �

Let FΓ denote the collection of all normal connected normal sub-
groups F of G such that F ⊃ Γ0 and FΓ is closed. In particular,
F/F ∩ Γ ∼= FΓ/Γ is compact. By [10, Chapter II], there exists a Q-
structure on G such that Γ0 is a Q-subgroup of G and the image of Γ
on G/Γ0 consists of integral points with respect to the Q-structure on
the quotient algebraic group G/Γ0. Moreover for any F ∈ FΓ, we have
that F/Γ0 must be an algebraic Q-subgroup of G/Γ0. Therefore FΓ is
countable.

For any F ∈ FΓ, let πF : G → G/F be the natural quotient map
and let dπF : g → g/f denote its differential, where f denotes the Lie
algebra of F .

For all (i, l) ∈ P and F ∈ FΓ, define

K(i,l),F = {u ∈ (0, 1) : φ(D)(u) exists and dπF (Y(i,l)(u)) = 0}. (4.19)

Let J1 be a Borel measurable set which satisfies the conditions (1),(2)
and (3) of Proposition 4.3.

For any (i, l) ∈ P and F ∈ FΓ, let

S(i,l),F = {s ∈ J1 ∩K(i,l),F :

s is not a Lebesgue Density point of J1 ∩K(i,l),F}. (4.20)

Then by the Lebesgue Density theorem, λ(S(i,l),F ) = 0. Let

SΓ =
⋃

(i,l)∈P, F∈FΓ

S(i,l),F . (4.21)

Since P is finite and FΓ is countable,

λ(SΓ) = 0. (4.22)

If Λ is a closed subgroup of G containing Γ, then Λ0 ∈ FΓ. Hence
FΛ ⊂ FΓ. Therefore using Corollary 4.4 and (4.21), we have that

SΛ ⊂ SΓ. (4.23)

Proposition 4.5. Let J1 be a Borel set which satisfies all the three
conditions of Proposition 4.3. Let s0 ∈ J1 \ SΓ. Then s0 has property
W(Γ0).

Proof. . Let
P ′ = {(i, l) ∈ P : Y(i,l)(s0) 6= 0}. (4.24)

In view of (4.19),

s0 ∈ J1 ∩K, where K :=
⋂

(i,l)∈P\P ′
K(i,l),Γ0 . (4.25)
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Set
α = max{i/l : (i, l) ∈ P ′}. (4.26)

We first show that α ≥ 1. It suffices to show that

Y(i,1)(s0) 6= 0 for some 1 ≤ i ≤ d1. (4.27)

Let χ be a nontrivial character on G/[G,G]Γ = X̄. Since s0 ∈
J1, by condition (2) of Proposition 4.3 pick 1 ≤ i ≤ d1 such that
dχ(Aiφ

(1)(s0)) 6= 0. Therefore Aiφ
(1)(s0) 6= 0. Therefore by Claim 4.2,

dq(Y(i,1)(s0)) = Aiφ
(1)(s0) 6= 0.

Therefore by (4.24) and (4.27), there exists 1 ≤ i ≤ d1 such that
(i, 1) ∈ P ′. Hence by (4.26)

α ≥ i/1 ≥ 1. (4.28)

Fix ε > 0. For every (i, l) ∈ P \ P ′, s0 ∈ J1 ∩K(i,l),Γ0 by (4.25), and
since s0 6∈ SΓ, s0 is a Lebesgue density point of J1 ∩K(i,l),Λ0 by (4.20).
For every n ≥ 1, we can choose kn ≥ n and a compact set In ⊂ [0, 1]
such that if we put t = tkn , then

s0 + s`tt
−1 ∈ J1 ∩K(i,l),Γ0 for all s ∈ In and (i, l) ∈ P \ P ′,

and
λ([0, 1] \ In) ≤ 2−nε.

Let Iε =
⋂∞
i=1 In. Then λ((0, 1) \ Iε) ≤ ε. For any s ∈ Iε, ζ ∈ R, and

n ≥ 1, put

t = tkn , u = s0 + s`tt
−1 ∈ J1 ∩K, and ξ = ζt−α. (4.29)

Then the following statements hold:

(1) For l > i, since α ≥ 1, by (1) of Proposition 4.3,

tiξlY(i,l)(u)→ 0 as n→∞. (4.30)

(2) For l ≥ D ≥ i, since α ≥ 1 and u ∈ J1, by (3) of Proposition 4.3,

tiξlε(i,l)(u, ξ) = ζ lt−(αl−i)ε(i,l)(u, ξ)→ 0 as n→∞. (4.31)

(3) For all (i, l) ∈ P \ P ′, u ∈ K ⊂ K(i,l),Γ0 , so by (4.19),

Y(i,l)(u) = 0. (4.32)

(4) Since s0, u ∈ J1, for each (i, l) ∈ P ′ we have that

Y(i,l)(u)→ Y(i,l)(s0) as n→∞, (4.33)

by continuity of Y(i,l) on J1.
(5) For each (i, l) ∈ P ′,

lim
n→∞

tiξl = lim
n→∞

ζ lti−αl =

{
ζ l, if i/l = α

0, if i/l < α.
(4.34)
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In view of (4.10), by the above list of observations

lim
n→∞

ψt(u, ξ) =
∑
l∈L

ζ lY(αl,l)(s0) := η(ζ), (4.35)

where L = {l : 1 ≤ l ≤ κD, (αl, l) ∈ P ′}, which is nonempty by the
definition of α. By (4.24), Y(αl,l) 6= 0 for all l ∈ L. Therefore s0 has
property W(Γ0). �

Proof of Theorem 3.1. Let ε > 0. Obtain J1 as in Proposition 4.3 such
that λ(J1) ≥ 1− ε. Let SΓ be as defined in (4.21). Then by (4.22) we
have λ(SΓ) = 0. Let Wε = J1 \ SΓ. Then λ(Wε) ≥ 1 − ε. Let s0 ∈
Wε. By Corollary 4.4 and (4.23), and Proposition 4.5, s0 has property
W(Λ0) for every closed subgroup Λ of G containing Γ. Therefore (3.3)
holds by Proposition 3.4. Now let W = ∪n∈NW1/n. Then λ(W ) = 1
and (3.3) is satisfied for every s0 ∈ W . �

5. Weak equidistribution does not imply equidistribution

In this section we provide different instances where weak equidistri-
bution of sequence of measures hold, but (strong) equidistribution does
not. As before let λ denote the Lebesgue measure on R restricted to
(0, 1).

Proposition 5.1. Let X = T = G/Γ, where G = R and Γ = Z.
Let ρt(v) = tv for all v ∈ R = Lie(G) and t ∈ R, and let x0 ∈ X.
There exists a measure ν on R such that the family of measures (µt :=
µν,x0,ρt)t≥0 is weakly equidistributed but not equidistributed on (X,µ),
where µ is the Haar measure on X.

Proof. We first construct a non-atomic probability measure ν on R such
µ3m = µ1 for all m ∈ N. To construct such a measure, let ψ : R → R
be the function defined by

ψ(u) =
∑

{n≥1: an(u)=1}

1

3n
(5.1)

for

u =
∞∑
n=1

an(u)

3n
mod 1, where an(u) ∈ {0, 1, 2},

and then take ν be the pushforward of λ under the map ψ to R =
Lie(G). We now check that it has the stated properties.

Note that if 0 < u1 < u2 < 1 and ψ(u1) = ψ(u2) then x2 − x1 =∑∞
n=1 an/3

n, where an ∈ {0, 2}. So u2 − u1 belongs to the standard
Cantor middle third set, which has zero Lebesgue measure. Therefore
λ(ψ−1({y})) = 0 for all y ∈ R. Hence ν is non-atomic.
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Let f ∈ C(T). Then for all t ∈ R,∫
X

f dµt =

∫ 1

0

f(tψ(u) + x0) du.

For any u ∈ [0, 1/3) and b ∈ {0, 1, 2},

3ψ(b/3 + u) ≡
∑

{n≥1: an(u)=1}

1

3n−1
≡ ψ(3u) mod Z. (5.2)

Thus it follows that for any x0 ∈ T,

∫ 1

0

f(3ψ(u) + x0) du =
2∑
b=0

∫ b/3+1/3

b/3

f(3ψ(u) + x0) du

=
2∑
b=0

∫ 1/3

0

f(ψ(3u) + x0) du

=
2∑
b=0

(1/3)

∫ 1

0

f(ψ(u) + x0) du

=

∫ 1

0

f(ψ(u) + x0) du.

From this we conclude that for any m ∈ N,∫ 1

0

f(3mψ(u) + x0) du =

∫ 1

0

f(3m−1ψ(u) + x0) du.

It follows that µ3m = µ1 for all m ≥ 0. Thus the measures ν and µt
satisfy the stated conditions.

Since µ1 differs from the Haar measure µ, the family of measures
(µt)t≥0 is not equidistributed with respect to µ. On the other hand,
since ker(dχ) is countable set for all nontrivial unitary characters χ,
we have that ν(ker(dχ) + v) = 0 for all v ∈ Lie(G) = R, since ν is
non-atomic. By Theorem 1.1, (µt)t≥0 is weakly equidistributed. �

This example can be generalized to higher dimensional tori:

Corollary 5.2. For every torus X = Td = G/Γ, where G = Rd,
Γ = Zd, let ρt(v) = tv for all v ∈ Lie(G) = Rd and t ∈ Rn. There exists
a measure σ on Rd such that for any x0 ∈ G/Γ, the family of measures
(µt := µσ,x0,ρt)t≥0 is weakly equidistributed but not equidistributed on
(X,µ), where µ is the Haar measure on X.

Proof. Let ν be the measure of R as defined in Proposition 5.1 and
define σ = ν × · · · × ν. We claim that σ satisfies these conditions.
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Suppose that x0 = (y1, . . . , yd). Then

µ3n = µν,y1,ρ3n
× · · · × µν,yd,ρ3n

= µν,y1,ρ3 × · · · × µν,yd,ρ3 ,

and so (µt)t≥0 is not equidistributed.
On the other hand, for every nontrivial unitary character χ on Td

and every v ∈ Lie(G) = Rd, there exist finitely many linear functionals
g1, . . . , gk : Rd−1 → R and some 1 ≤ i ≤ d such that

v + ker(dχ) =
k⋃

m=1

{(y1, . . . , yd) ∈ Rd : gm(y1, . . . , ŷi, . . . , yd) = yi}.

Assuming without loss of generality that i = d, for all 1 ≤ m ≤ k,

σ({(y1, . . . , yd) : gm(y1, . . . , yd−1) = yd})

=

∫
Rd−1

ν({yd ∈ g : yd = gm(y1, . . . , yd−1)}) dν(y1) . . . dν(yd−1)

= 0,

because ν is non-atomic. Thus σ(v+ker(dχ)) = 0 and by Theorem 1.1,
(µt)t≥0 is weakly equidistributed. �

Theorem 5.3. Let X = T2 = G/Γ, where G = R2 and Γ = Z2

and let ρt(v) = tv for all v ∈ Lie(G) = R2 and t ∈ R. There is a
function φ : (0, 1)→ g such that for any x0 ∈ T2, the family of measures
(µt := µφ,x0,ρt)t≥0 is weakly equidistributed but not equidistributed on X.

Proof. Let φ : (0, 1)→ Lie(G) = R2 be defined by

φ(u) = (u, ψ(u)), ∀u ∈ (0, 1),

where ψ : (0, 1)→ R is defined by (5.1). Let µt = µφ,x0,ρt .
We first show that (µt)t≥0 is weakly equidistributed.
Let ν be the probability measure on R2 which is the pushforward of

the Lebesgue measure on (0, 1) under the map φ. Let

C = {(u, ψ(u)) ∈ R2 : u ∈ (0, 1)}.

Let P1 : R2 → R denote the projection on the first factor. Then for any
E ⊂ R2 we have ν(E) = λ(P1(C ∩ E)). Then µφ,x0,ρt = µν,x0,ρt for all
t ∈ R. Therefore by Theorem 1.1, to prove the weak equidistribution
of (µν,x0,ρt)t≥0, it suffices to show that for all (p, q) ∈ Z2 \ {(0, 0)} and
z ∈ R, if we put

L(p, q, z) = {(x, y) : px+ qy = z}

then

ν(L(p, q, z)) = λ(P1(L(p, q, z) ∩ C) = 0.
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First suppose that p = 0. Then q 6= 0 and P1(L(p, q, z) ∩ C) =
ψ−1(z/q), which is contained in a translate of a Cantor middle set.
Therefore λ(P1(L(p, q, z) ∩ C)) = 0.

Now assume that p 6= 0. For N ∈ N and a1, . . . , aN ∈ {0, 1, 2}, set

Ba1,...,aN =

[
N∑
n=1

an
3n
,
N∑
n=1

an
3n

+
1

3N

)
×

[∑
an=1

1

3n
,
∑
an=1

1

3n
+

1

2 · 3N

]
.

Note that for bn ∈ {0, 1, 2} for all n ≥ N + 1,

u =
N∑
n=1

an
3n

+
∞∑

n=N+1

bn
3N

=⇒
∑
an=1

1

3n
≤ ψ(u) ≤

∑
an=1

1

3n
+

∞∑
n=N+1

1

3n
.

Also

(0, 1) ⊂
⋃

a1,...,aN∈{0,1,2}

[
N∑
n=1

an
3n
,

N∑
n=1

an
3n

+
1

3N

)
.

Therefore

C ⊂ BN =
⋃

a1,...,aN∈{0,1,2}

Ba1,...,aN .

Therefore it suffices to prove that

lim
N→∞

λ(P1(L(p, q, z) ∩BN)) = 0.

It is easy to see that there exist s1, . . . , s2N ∈ (0, 1) such that for all
a1, . . . , aN ∈ {0, 1, 2},

∑
an=1

1
3n

= si for some 1 ≤ i ≤ 2N . Let

Cj,N =
⋃

a1,...,aN∈{0,1,2},
∑

an=1
1

3n
=sj

Ba1,...,aN .

Then

BN =
2N⋃
j=1

Cj,N .

Now

P1(L(p, q, z) ∩ Cj,N) ⊂ {(z/p− (q/p)y : y ∈ [sj, sj + 1/(2 · 3N)]}.
Therefore

λ(P1(L(p, q, z) ∩ Cj,N)) ≤ |q/p|/(2 · 3N).

Hence

λ(P1((L(p, q, z) ∩BN)) ≤ 2N · |q/2p|/3N → 0 as N →∞.
Thus we can now conclude that the family of measures (µt)t≥0 is weakly
equidistributed.
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We now prove that (µt)t≥0 is not equidistributed. By definition, for
any continuous function f on T2, we have∫

T2

f dµt =

∫ 1

0

f((tu, tψ(u)) + x0) du.

Recall that by (5.2), For any u ∈ [0, 1/3) and b ∈ {0, 1, 2},

3ψ(u+ b/3) ≡
∑

{n≥1: an(u)=1}

1

3n−1
≡ ψ(3u) mod Z. (5.3)

Therefore, for any f ∈ C(T2), and b ∈ {0, 1, 2}∫ 1
3

+ b
3

b
3

f((3u, 3ψ(u)) + x0) du =

∫ 1/3

0

f((3u, ψ(3u)) + x0) du.

So ∫ 1

0

f((3u, 3ψ(u)) + x0) du = 3

∫ 1
3

0

f((3u, ψ(3u)) + x0) du

=

∫ 1

0

f((u, ψ(u)) + x0) du.

From this we can deduce that for any m ≥ 1,∫ 1

0

f((3mu, 3mψ(u)) + x0) du =

∫ 1

0

f((3m−1u, 3m−1ψ(u)) + x0) du.

Therefore, µ3m = µ3m−1 = µ1. Since µ1 is not a Haar measure on T2,
(µt)t≥0 is not equidistributed. �
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