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Abstract. We study the directional entropy of a dynamical system associated

to a Z2 configuration in a finite alphabet. We show that under local assump-
tions on the complexity, either every direction has zero topological entropy or

some direction is periodic. In particular, we show that all nonexpansive di-

rections in a Z2 system with the same local assumptions have zero directional
entropy.

1. Introduction

A classic problem in dynamics is to deduce global properties of a system from
local assumptions. A beautiful example of such a result is the Morse-Hedlund
Theorem [6]: a local assumption on the complexity of a system is equivalent to
the global property of periodicity of the system. Any periodic system trivially has
zero topological entropy. In higher dimensions, this local to global connection is
less well understood. Again, there is a natural local assumption on the system
that implies zero topological entropy, but now one can study the finer notion of
directional behavior and new subtleties arise: under this assumption some directions
may have positive directional entropy, while others do not. We prove that there
are natural local assumptions on the complexity of a Z2 system under which either
every direction has zero topological directional entropy or some direction is periodic.

To explain the results more precisely, for a finite alphabet A, we study functions
of the form η : Z2 → A which we view as colorings of Z2. For n ∈ Z2, define
the translation Tn : Z2 → Z2 by Tn(x) := x + n and for fixed η : Z2 → A, define
Tnη : Z2 → A by Tnη(x) := η(Tnx). If S ⊂ Z2, then an η-coloring of S is any
function of the form Tnη�S, where by η�S we mean the restriction of the coloring
η of Z2 to the set S. To simplify the notation, we define an η-coloring of S ⊂ R2 to
be an η-coloring of S ∩Z2. If K ⊂ R2 is compact, we define the complexity Pη(K)
to be the number of distinct η-colorings of K ∩ Z2:

Pη(K) =
∣∣{Tnη�K ∩ Z2 : n ∈ Z2}

∣∣,
where | · | denotes the cardinality. This is a generalization to two dimensions of the
usual one dimensional complexity Pα : N → N defined for α : Z → A, where Pα(n)
is defined to be the number of distinct words of length n appearing in α.

It follows immediately from the definition that Pη is monotonic: If A ⊆ B ⊂ R2

are compact sets, then Pη(A) ≤ Pη(B). When K is the rectangle [0, n− 1]× [0, k−
1] ⊂ Z2, we write Pη(n, k) instead of Pη(K).

There is a standard dynamical system associated to a configuration such as

η : Z2 → A. We endow A with the discrete topology and AZ2

with the product
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topology. For η : Z2 → A, we let Xη denote the orbit closure of η under the Z2

translations {Tn : n ∈ Z2}. Then Xη, endowed with a distance ρ defined by

ρ(x, y) = 2−min{‖m‖ : x(m)6=y(m)}

for x, y ∈ AZ2

, and with the Z2 action by translation, is a Z2 topological dynamical
system. We refer to an element of the system Xη as an η-coloring of Z2.

We say that η : Z2 → A is periodic if there exists m 6= 0 such that η(m + n) =
η(n) for all n ∈ Z2 (note that this means that η has a direction of periodicity, but it
is not necessarily doubly periodic). Again, this is a two dimensional generalization
of the usual notion of periodicity for α : Z→ A. It was conjectured by Nivat [7] that
for η : Z2 → A, if there exist n, k ∈ N such that Pη(n, k) ≤ nk, then η is periodic.
While there are partial results toward the conjecture, the question remains open.
We note that in [3], it is observed that a system with such a complexity bound has
zero topological entropy.

In this work, we study the finer notion of directional entropy, which was intro-
duced for cellular automata by Milnor [5] (see Section 2 for the definition). If the
directional entropy is finite in all directions, then the system has zero topological
entropy, but the converse is false: zero topological entropy does not imply anything
more than the existence of a single direction with finite directional entropy. We
study the directional entropy of a system under a low complexity assumption (this
assumption is made precise in Theorem 1.2).

Boyle and Lind [1] further analyzed directional entropy for topological dynamical
systems and related it to expansive subdynamics. We use their definition, but
restricted to our two dimensional setting:

Definition 1.1. If X is a dynamical system with a continuous Z2 action (Tn : n ∈
Z2), we say that a line ` ⊂ R2 is expansive if there exists r > 0 such that if x, y ∈ X
satisfy x(n) = y(n) for all n ∈ {n ∈ Z2 : ρ(n, `) < r}, then x = y. If ` is not an
expansive line, we say that it is nonexpansive.

For the full shift X = AZ2

with the Z2 action by translations, it is easy to check
that there are no expansive lines. However, restricting to a system of the form Xη

associated to some η : Z2 → A, there are more possibilities. If η is periodic, then
either the directional entropy h(u) = 0 for all u ∈ S1 or there is a single direction
of zero entropy. In the former case, η has an expansive direction with zero entropy
and in the latter case, the unique direction of zero entropy is nonexpansive.

Thus, assuming Nivat’s conjecture, if there exist n, k ∈ N such that Pη(n, k) ≤
nk, then the directional entropy of η is either zero in all directions or there is a
unique direction of zero directional entropy. We show that this conclusion holds
under the stronger hypothesis that the analogous complexity assumption holds for
infinitely many pairs ni, ki (as usual, e1 and e2 denote the standard basis vectors):

Theorem 1.2. Assume A is a finite alphabet and η : Z2 → A. If there exists an
infinite sequence ni, ki ∈ N such that lim

i→∞
niki = ∞ and Pη(ni, ki) ≤ niki, then

either

(i) h(u) = 0 for all u ∈ S1, or
(ii) there is a unique nonexpansive direction for η, which is either e1 or e2,

and η is periodic in this direction.

As an immediate consequence, we have:
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Corollary 1.3. Assume A is a finite alphabet and η : Z2 → A. If there exists an
infinite sequence ni, ki ∈ N such that lim

i→∞
niki = ∞ and Pη(ni, ki) ≤ niki, then η

has zero directional entropy along each of its nonexpansive directions.

Acknowledgment: We thank the referee for numerous helpful remarks that sub-
stantially improved the article.

2. Sufficient conditions for zero directional entropy

We start by reviewing some definitions from [3]. If S ⊂ R2, we denote the convex
hull of S by conv(S). We say S ⊂ Z2 is convex if S = conv(S)∩Z2. Define the area
of a convex set S ⊂ Z2 to be the area of its convex hull and define the boundary
∂(S) to be the boundary of conv(S). Note that when S is finite, ∂(S) is a polygon
or line segment. Given a convex set in Z2 of positive area, we endow its boundary
with the positive orientation, so that it consists of directed line segments. If S ⊂ Z2

is convex and has zero area, then conv(S) is a line segment in R2 and in this case,
we do not define an orientation on ∂(S).

For finite S ⊂ Z2 and η : Z2 → A, we define XS(η) to be the Z2 subshift of finite

type generated by the S words of η, meaning that XS(η) consists of all f ∈ AZ2

such that all f -colorings of S appear as η-colorings of S.

Definition 2.1. Suppose S ⊂ T ⊂ Z2 are nonempty, finite sets and that f : S → A
is an η-coloring of S. We say that f extends uniquely to an η-coloring of T if there
is exactly one η-coloring of T whose restriction to S coincides with f .

Definition 2.2. If S ⊂ Z2 is a nonempty, finite, convex set, then x ∈ S is η-
generated by S if every η-coloring of S \{x} extends uniquely to an η-coloring of S,
and S is an η-generating set if every boundary vertex of S is η-generated. When η
is clear from context, we refer to an η-generating set as a generating set.

Generating sets give rise to zero topological entropy:

Lemma 2.3 ([3], Lemma 2.15). If S ⊂ Z2 is a generating set for η : Z2 → A
and S ′ ⊃ S is finite, then the topological entropy of the Z2 dynamical system
(XS′(η), {Tn}n∈Z2) is zero.

We review the definition of directional entropy introduced by Milnor [5].

Notation 2.4. If T is a continuous Z2 action on the compact metric space (X, ρ),
E ⊂ R2 is a compact set, and ε > 0, set NT (E, ε) to be cardinality of the smallest
set Y ⊂ X such that for each x ∈ X there exists y ∈ Y with ρ(Tn(x), Tn(y)) < ε
for each n ∈ E ∩ Z2. For a compact set E and t > 0 , let

E(t) = {v : ‖v − u‖ < t for some u ∈ E}
denote the t-neighborhood of E and let tE = {tu : u ∈ E} denote the t-dilation of
E.

Definition 2.5. If Φ is a set of k linearly independent vectors and QΦ is the
parallelepiped spanned by Φ, then the k-dimensional topological directional entropy
hk(Φ) is defined to be

hk(Φ) = lim
ε→0

sup
t>0

lim
s→∞

logNT
(
(sQΦ)(t), ε

)
sk

.
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We compute the directional entropy for the Z2 action by translations on the
space Xη, in which case it is straightforward to recast the definition in terms of
complexity. As we are interested in one dimensional directional entropy, to simplify
notation, when Φ = {u} for some unit vector u, we write h(u), instead of h1(Φ).
Given v ∈ R2, let Lv denote the line segment connecting the origin to v, meaning
that Lv = {tv : 0 ≤ t ≤ 1}.

Lemma 2.6. Assume η : Z2 → A. If u is a unit vector, then the (1-dimensional)
topological directional entropy h(u) of the Z2 action by translation on Xη in the
direction of u is given by

h(u) = sup
t>0

lim sup
s→∞

logPη(L
(t)
su)

s
.

Proof. Let T denote the Z2 action by translation. Fix 0 < ε < 1 and let M =
b− log2 εc. If x, y ∈ Xη satisfy

(1) ρ
(
Tn(x), Tn(y)

)
< ε for all n ∈ L(t)

su ,

then x and y agree on L
(t+M)
su . Conversely, if x and y agree on L

(t+M+1)
su , they

satisfy (1). Thus,

Pη(L(t+M)
su ) ≤ NT (L(t)

su , ε) ≤ Pη(L(t+M+1)
su )

and so

lim
M→∞

sup
t>0

lim sup
s→∞

logPη(L
(t+M)
su )

s
≤ h(u) ≤ lim

M→∞
sup
t>0

lim sup
s→∞

logPη(L
(t+M+1)
su )

s
.

But since Pη(L
(t)
su) is non-decreasing in t,

sup
t>0

lim sup
s→∞

logPη(L
(t+M)
su )

s
= sup

t>0
lim sup
s→∞

logPη(L
(t+M+1)
su )

s

= sup
t>0

lim sup
s→∞

logPη(L
(t)
su)

s
. �

Given a generating set S ⊂ Z2 for some η : Z2 → A, applying Lemma 2.3 with
S ′ = S provides an upper bound on the entropy of the associated dynamical system
Xη. We use Lemma 2.6 to strengthen this result:

Proposition 2.7. Assume η : Z2 → A has an η-generating set and let Xη be the
associated dynamical system endowed with the Z2 action by translation. Then there
exists c > 0 such that h(u) < c for all unit vectors u ∈ R2.

Proof. Let S be an η-generating set. We claim that it suffices to assume that S
is not contained in a line. If instead S is contained in some line `, then since S
contains at least two (integer) points, this line has rational slope. Thus we can
choose a parallel line `′ of minimal (among all lines parallel to ` that contains at
least one integer point) distance to `. Let v be a vector of minimal length connecting
a point in S to an integer point on `′. If a1 and a2 are the endpoints of S, then
the vertices of S ∪ (S + v) are a1, a2, a1 + v, and a2 + v. Each of these vertices is
η-generated by S ∪ (S + v), and so this is also a generating set. Thus, replacing S
with this larger generating set, and the claim is proven.
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Thus we assume that S is not contained in a line. Set d = diam(S), and note
that d ≥ 1. Fix a unit vector u ∈ R2 and let t > 0. We claim that there exists

C > 0 such that for sufficiently large s > 0, we have Pη(L
(t)
su) ≤ C|A|2ds. Once this

claim is proven, the proposition follows from Lemma 2.6. Fix s > d. Since Pη(L
(t)
su)

is non-decreasing in t, we can assume that t > d. Then L
(t)
su contains a translate of

S. Let u⊥ be one of the two unit vectors perpendicular to u. Let `0 be the line
parallel to u⊥ passing through the origin, and for b ∈ R let `b = `0 + bu. Each of
the finitely many points in S lies on `b for some b ∈ R. Since S is not contained in
a line, it has nontrivial intersection with at least two different lines of the form `b.
Let δ = b1− b2 > 0, where b1 and b2 are the two largest such values of b. Let S ′ be
a translate of S that satisfies

S ′ ⊆ L(t)
(s+δ)u but S ′ 6⊆ L(t)

(s+ε)u for ε < δ,

and

S ′ ∩ (L(s+1)u − tu⊥) 6= ∅.

Fix a coloring of L
(t)
su∪conv(S ′). Since S is a generating set, this coloring extends

uniquely to a coloring of L
(t)
su ∪ (conv(S ′) + Lε1u⊥), where ε1 > 0 is the smallest ε

such that (conv(S ′) + Lεu⊥) ∩ Z2 contains a point not in L
(t)
su ∪ conv(S ′). This in

turn extends uniquely to a coloring of L
(t)
su ∪ (conv(S ′) + Lε2u⊥) for some ε2 > ε1.

Continuing to extend and using that diam(S) = d, each η-coloring of L
(t)
su∪conv(S ′)

extends uniquely to an η-coloring of L
(t)
su ∪ (conv(S ′) +L(2t−2d)u⊥). Repeating this

d1/δe times, it follows that each η-coloring of L
(t)
su ∪ (L

(t)
(s+1)u \ L

(t−d)
(s+1)u) extends

uniquely to L
(t)
(s+1)u. Since L

(t)
(s+1)u \L

(t−d)
(s+1)u contains at most 2d integer points, we

have that

Pη(L
(t)
(s+1)u) ≤ |A|2dPη(L(t)

su),

which completes the proof. �

It was shown in [9] that if a Z2 topological dynamical system has bounded
directional entropy in all directions, then it has zero topological entropy. Thus if
Xη is the system generated by some η : Z2 → A and the system Xη also has an η-
generating system (as in Proposition 2.7), then Xη has zero topological entropy. If
there exist n, k ∈ N such that Pη(n, k) ≤ nk, it is proven in [3] that then there is an
η-generating set. Thus for η satisfying such a complexity bound, the Z2 action by
translations on Xη has bounded directional entropy in all directions. In particular,
it has zero topological entropy.

However, the converse to this result fails even for a system Xη endowed with
translations, showing that Proposition 2.7 strengthens this result on the entropy of
Xη:

Example 2.8. Let α : Z → {0, 1} with Pα(n) = 2n and let A = {10n + i2 : i, n ∈
N, 1 ≤ i ≤ n}. Define η : Z2 → {0, 1} by

η(i, j) =

{
α(i+ 2j) if j ∈ A
α(i) otherwise.

Then the topological entropy of the Z2 action on Xη by translations is zero and
h(e1) =∞.
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Proof. Let β : Z → {0, 1} denote the indicator function of the set A. We first
compute a bound on the complexity function Pβ(k). Fix k ∈ N. Given m ∈ Z,
let I(m) = {m,m + 1, . . . ,m + k − 1}. Let n(m) be the smallest n ∈ N such that
10n + i2 ∈ I(m) for some 1 ≤ i ≤ n, and set n(m) = 0 if no such n exists. If
n(m) > 0, let i(m) be the minimal 1 ≤ i ≤ n(m) such that n(m) + i2 ∈ I(m), and
set i(m) = 0 if n(m) = 0. Finally, let a(m) = min(A ∩ I(m))−m.

If n = n(m) ≥ k, then (10n + 1) − (10n−1 + (n − 1)2) ≥ 8 · 10n−1 > n ≥ k

and similarly (10n+1 + 1) − (10n + n2) > k. Thus 10n
′

+ i2 6∈ I(m) for any
n′ 6= n(m), 1 ≤ i ≤ n′. Note also that if i = i(m) ≥ k > 1, then (i + 1)2 − i2 ≥
i2 − (i − 1)2 ≥ 2i − 1 > k, and so I(m) ∩ A = {10n(m) + i(m)}. Thus, if n(m) or
i(m) is strictly greater than k, then β�I(m) is equal to β�I(m′) for some m′ with

n(m′) ≤ k and i(m′) ≤ k. Hence, β�I(m) is determined by 0 ≤ min{n(m), k} ≤ k,

0 ≤ min{i(m), k} ≤ k, and 0 ≤ a(m) ≤ k, and so Pβ(k) ≤ (k + 1)3. Since I(m)

contains at most
√
k log10 k < k3/4 − 1 elements of A,

Pη(n, k) ≤ Pβ(k)(2n)k
3/4

= (k + 1)32nk
3/4

and so

lim
n→∞

logPη(n, n)

n2
≤ lim
n→∞

3 log(n+ 1) + n7/4 log 2

n2
= 0.

To show h(e1) =∞, we need to bound Pη(n, k) from below for large n. To obtain
this bound, we consider rectangles of the form [n0 +1, n0 +n]× [10n+1, 10n+k] for

n0 ∈ Z. When k ≤ n, there are exactly m
def
= b
√
kc elements of A in [10n+1, 10n+k].

Call these elements a1, . . . , am. We claim that given any m functions γi : [1, n] →
{0, 1}, there exists n0 such that η(n0 + j, ai) = γi(j) for 1 ≤ j ≤ n. For each i,
η(n0 + j, ai) = α(n0 + j + 2ai). Since each ai ≥ 10n + 1, we have that for i 6= i′

[2ai + 1, 2ai + n] ∩ [2ai′ + 1, 2ai′ + n] = ∅.

Thus, since Pα(N) = 2N for all N ∈ N, there exists n0 such that α(n0 + j + 2ai) =

γi(j) for each 1 ≤ i ≤ m and 1 ≤ j ≤ n. Hence, Pη(n, k) ≥ 2nm ≥ 2n(
√
k−1), and so

logPη([0, ne1](k/2))

n
≥ logPη(n, k)

n
≥ log 2n(

√
k−1)

n
= (
√
k − 1) log 2.

By Lemma 2.6, it follows that

h(e1) ≥ sup
k>0

(
√
k − 1) log 2 =∞. �

3. A sequence of complexity bounds

Notation 3.1. For a unit vector u ∈ R2 and a compact set K ⊂ R2, we let τu(K)
denote the thickness of the compact set K in the direction of u, defined by

τu(K) = sup{τ : L(1/2)
τu + n ⊂ K for some n ∈ Z2}.

We note that the choice of 1/2 in this definition could be replaced with any
λ > 0.

Proposition 3.2. Assume η : Z2 → A. The Z2 action by translation on Xη has
zero entropy in direction u ∈ R2 if and only if there exist compact sets Ki ⊂ R2

such that limi→∞
logPη(Ki)
τu(Ki)

= 0.
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Proof. Assume there exists such a sequence Ki and assume for contradiction that

h(u) = 4δ > 0. Since Pη(L
(t)
su) is non-decreasing in t (recall Notation 2.4), using

Lemma 2.6, there exists t0 > 1 such that whenever t ≥ t0,

lim sup
s→∞

logPη(L
(t)
su)

s
≥ 3δ.

Thus there exists a sequence (sm) such that logPη(L
(t0)
smu) ≥ 2δsm. Set τi = τu(Ki).

If sm ≤ s ≤ sm + τi and sm ≥ τi, then

logPη(L(t0)
su ) ≥ logPη(L(t0)

smu) ≥ 2δsm ≥ 2δs
sm
s
≥ 2δs

sm
sm + τi

≥ δs.

Hence, there exist infinitely many j ∈ N such that for all t ≥ t0,

logPη(L
(t)
jτiu

) ≥ δjτi.

But since Ki contains a translate of L
(1/2)
τiu , it follows that

logPη(Ki)
2t0j ≥ logPη(L

(t0)
jτiu

) ≥ δjτi,
and so

logPη(Ki)

τi
≥ δ

2t0
for all i ∈ N, a contradiction.

Conversely, if no such sequence exists, then setting Ki = L
(1/2)
iu , there exists a

constant c > 0 such that logPη(Kij ) ≥ cij for some increasing sequence (ij). By
Lemma 2.6, h(u) ≥ c. �

Corollary 3.3. For η : Z2 → A, if there exist ni, ki ∈ N with lim
i→∞

niki = ∞ and

such that Pη(ni, ki) ≤ niki and lim log(ni)
ki

= lim log(ki)
ni

= 0, then the Z2 action by
translation on Xη has zero entropy in all directions.

Proof. We apply Proposition 3.2 to the sets Ki = [0, ni − 1] × [0, ki − 1]. If u is
a unit vector, then τu(Ki) ≥ min(ni, ki) − 1. Without loss of generality, we can
assume that ki ≥ ni for all i ∈ N. Since ni tends to infinity, we may assume ni ≥ 2
for all i ∈ N, so that min(ni, ki)− 1 > 0. Then

lim
i→∞

logPη(Ki)

τu(Ki)
≤ lim
i→∞

log(niki)

ni − 1
≤ lim
i→∞

2
log(ki)

ni − 1
= 0. �

Remark 3.4. By passing to a subsequence, the conclusion of Corollary 3.3 holds
unless the rectangles for which we have complexity assumptions have eccentricity
unbounded either above or below. In particular, it holds unless there exists C > 1
such that either ki ≥ Cni for all i ∈ N or ni ≥ Cki for all i ∈ N. Applying the
transformation f(x, y) = (y, x) if necessary, we may assume the first of these holds,
and this is the setting studied in the next section.

4. Proof of Theorem 1.2

In this section, we state two main lemmas used to prove Theorem 1.2. Roughly
speaking, the idea of the proof is to use our assumptions to show that when the
first case in the statement of the theorem fails, we can produce a single rectangle
satisfying the stronger complexity bound Pη(n, k) ≤ nk/2, which then allows us
to apply results from [3]. To do this, we consider a fixed rectangle with given
complexity bound and use it to find a larger rectangle, dependent on the first
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one, with the stronger complexity bound. This analysis naturally leads to the
dichotomy of Theorem 1.2, with an exponential relation between the relative sides
of the rectangle leading to the second case and all other situations leading to the
first case.

Lemma 4.1. Suppose η : Z2 → A satisfies Pη(n1, k1) ≤ n1k1 for some n1, k1 ∈ N
and set Bm,k to be the integer points in [0,m− 1]× [3mk1, k− 1− 3mk1]. For any
k,m ∈ N with k > 7mk1, any η-coloring of [0, n1 − 1]× [0, k − 1] either

(i) extends uniquely to an η-coloring of Bm,k, or
(ii) extends only to vertically periodic (with period independent of k and m)

η-colorings of Bm,k.

To bound the number of colorings of the second type, we use the following lemma:

Lemma 4.2. If η : Z2 → A is not vertically periodic and there exist ni, ki ∈ N such
that lim

i→∞
niki = ∞ and Pη(ni, ki) ≤ niki, then for any p ∈ N and λ > 1, there

exist w0, h0 ∈ N such that for any h ≥ h0 and w ≥ w0, the number of η-colorings
of [0, w− 1]× [0, h− 1] that are vertically periodic with period at most p is less than
λw.

The proofs of these two lemmas require several auxiliary lemmas and definitions,
and are deferred to the next section. We show how they can be used to deduce our
main theorem:

Proof of Theorem 1.2. By Corollary 3.3 and Remark 3.4, without loss of generality
we can assume that there exists C > 1 such that ki ≥ Cni for all i ∈ N. In
particular, we may assume ni ≤ ki and so

log(Pη(ni, ki))

ki
≤ 2 log(ki)

ki
→ 0.

Thus by Proposition 3.2, h(e2) = 0. Applying Theorem 6.3, Part (4) in [1], if
e2 is an expansive direction then we have that the directional entropy is zero in
all directions. Thus we can assume that e2 is nonexpansive, and we are left with
showing that this is the unique nonexpansive direction and η is periodic in this
direction.

For any m, k ∈ N, the complexity of Bm,k can bounded by the sum of the number
of colorings of [0, n1 − 1]× [0, k− 1] that extend uniquely to Bm,k plus the number
of colorings of Bm,k that do not arise as the unique extension of a coloring of the
rectangle [0, n1 − 1]× [0, k− 1]. The number of colorings of the first type is clearly
bounded above by Pη(n1, k). By Lemma 4.1, each of the colorings of Bm,k of the
latter type is vertically periodic with period independent of m and k. Applying
Lemma 4.2, we see that for sufficiently large m and k, the number of such colorings
is at most (C1/8)m. Set k = ki and m = 8ni for i large enough such that this
bound holds and also sufficiently large such that 48nik1 ≤ ki/2. Then the number
of such colorings is at most

(C1/8)m ≤ niCni ≤ niki.
Thus

Pη(Bm,k) ≤ Pη(n1, ki) + (C1/8)m ≤ Pη(ni, ki) + niki ≤ 2niki.

But by the choice of i,

|Bm,k| = 8ni(ki − 6(8ni)k1) ≥ 8ni(ki/2) = 4niki,
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and so Pη(Bm,k) ≤ |Bm,k|
2

. Hence, by Theorems 1.4 and 1.5 in [3], vertical is the

unique nonexpansive direction for η, and η is vertically periodic. �

5. Proofs of Lemmas 4.2 and 4.1

We say two vectors v,w ∈ R2 \ {0} are parallel if v = cw for some c > 0, and
we say they are antiparallel if v = cw for some c < 0. We define these terms
analogously for directed lines and line segments.

Recall that we endow the boundary of a convex set S ⊂ Z2 with positive ori-
entation. Given v ∈ R2 \ {0}, a v-plane is a closed half-plane whose boundary is
parallel to v. For example, {(x, y) : x ≤ 2} is an e2-plane, while {(x, y) : x ≥ 2} is
a (−e2)-plane.

Notation 5.1. If S ⊂ Z2 is convex and ` is a directed line, we write E(`,S) = `′∩S,
where `′ is the boundary of the intersection of all `-planes containing S.

Note that E(`,S) is the set of integer points on some edge of ∂(S), and it may
reduce to a single vertex.

We recall a definition from [3]:

Definition 5.2. Suppose ` ⊂ R2 is a directed line. A finite, convex set S ⊂ Z2 is
`-balanced for η if

(i) The endpoints of E(`,S) are η-generated by S;
(ii) The set S satisfies Pη(S \ E(`,S)) > Pη(S)− |E(`,S)|;
(iii) Every line parallel to ` that has nonempty intersection with S intersects

S in at least |E(`, S)| − 1 integer points.

We also call such a set v-balanced for η whenever v is a vector v parallel to `.

We note that the endpoints of E(`,S) could consist of a single endpoint. The
following lemma allows us to avoid the degenerate case where our balanced set is a
line segment.

Lemma 5.3. Suppose η : Z2 → A and S ⊂ Z2 is a discrete line segment (the
intersection of a line segment with Z2, which contains at least two integer points)
whose endpoints are η-generated by S. Then η is periodic with period vector parallel
to the line determined by S.

Proof. It suffices to show this when S is a vertical line segment, as otherwise we
can change coordinates by composing η with an appropriate element of SL2(Z).
Thus suppose S = {(0, y) ∈ Z2 : 0 ≤ y < h} and that (0, 0) and (0, h) are both
η-generated by S. There are at most |A|h distinct colorings of S that arise in η. So
for all x ∈ Z, there exist y1(x), y2(x) ∈ {0, 1, . . . , |A|h} such that the coloring of S
that arises from the restriction of η to S + (x, y1(x)) is that same as that from the
restriction of η to S + (x, y2(x)). Since the endpoints of S are η-generated by S,
the restriction of η to the line x = x0 must be periodic of (not necessarily minimal)
period |y1(x0)− y2(x0)| ≤ |A|h. Therefore (0, (|A|h)!) is a period vector for η. �

Remark 5.4. In light of Lemma 5.3, our main theorem is easily deduced if there
is a discrete line segment whose endpoints are η-generated. Thus, it suffices to
assume for the remainder of this work that any balanced set for η (Definition 5.2)
has positive area (in the sense that its convex hull has positive area).
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Lemma 5.5. Suppose η : Z2 → A satisfies Pη(n1, k1) ≤ n1k1 for some n1, k1 ∈ N.
Then there exist n′1, k

′
1 ∈ N with n′1 ≤ n1 and k′1 ≤ k1 and there exist ai, bi ∈ Z

with 0 ≤ ai ≤ bi < k1 for i = 1, 2 and 0 ≤ aj ≤ bj < n1 for j = 3, 4 such that if

S1 :=
(
[0, n′1 − 2]× [0, k1 − 1] ∪ {n′1 − 1} × [a1, b1]

)
∩ Z2

S2 :=
(
[1, n′1 − 1]× [0, k1 − 1] ∪ {0} × [a2, b2]

)
∩ Z2

S3 :=
(
[0, n1 − 1]× [0, k′1 − 2] ∪ [a3, b3]× {k′1 − 1}

)
∩ Z2

S4 :=
(
[0, n1 − 1]× [1, k′1 − 1] ∪ [a4, b4]× {0}

)
∩ Z2

then S1 is e2-balanced, S2 is −e2-balanced, S3 is −e1-balanced, and S4 is e1-
balanced.

Each of the sets Si is a rectangle with an interval of points added either on the
line one to the right or one to the left (for i = 1, 2) or on the line above or the
line below (for i = 3, 4). This is essentially proved in Lemma 4.7 in [3]. There,
the assumption that there exist n, k with Pη(n, k) ≤ nk is replaced by the stronger

assumption that we can find n, k with Pη(n, k) ≤ nk

2
, but this hypothesis is not

necessary in the case of a horizontal or vertical line, which are the only ones needed
here. We include a proof for completeness.

Proof. We only prove the case that S1 is e2-balanced, as the other three cases are
analogous.

Let n′1 ≤ n1 be the minimal positive integer such that Pη(n′1, k1) ≤ n′1k1. First
suppose n′1 = 1 and let k′1 be the minimal positive integer such that Pη(1, k′1) ≤
n′1k

′
1. Note that Pη(1, 1) = |A| > 1 and so k′1 > 1. Since

k′1 − 1 < Pη(1, k′1 − 1) ≤ Pη(1, k′1) ≤ k′1,

it follows that Pη(1, k′1 − 1) = Pη(1, k′1) and so the points (0, 0) and (0, k′1 − 1)
are both η-generated by the set S =

(
{0} × [0, k′1 − 1]

)
∩ Z2. Our assumption, as

justified in Remark 5.4, is that we do not need to consider the case of a discrete line
segment whose endpoints are η-generated. Thus for the remainder of this proof we
assume that n′1 > 1.

Let R := [0, n′1 − 1] × [0, k1 − 1] and R̃ := [0, n′1 − 2] × [0, k1 − 1] denote the

integer points in these rectangles . By choice of n′1, we have that Pη(R̃) > |R̃| and
Pη(R) ≤ |R|. Therefore there exist a and b with 0 ≤ a ≤ b < k1 such that the set
(of integer points)

Ra,b := R̃ ∪ {n′1 − 1} × [a, b]

satisfies Pη(Ra,b) ≤ |Ra,b|, but there is no set S such that R̃ ⊆ S ⊂ Ra,b and
Pη(S) ≤ |S|. In particular, the points (n′1 − 1, b) and (n′1 − 1, a) are both η-
generated by Ra,b. We claim that S1 := Ra,b is an e2-balanced set. We have just
shown that S1 satisfies Property (i) of Definition 5.2. Next observe that

Pη(S1)− |E(e2,S1)| ≤ |S1| − |E(e2,S1)| = |R̃| < Pη(R̃) = Pη(S1 \ E(e2,S))

and so S1 satisfies Property (ii) of Definition 5.2. Finally observe that every line
parallel to e2 that has nonempty intersection with S1 has intersection in either k1

places or in |E(e2,S1)| places (and the only line that intersects in |E(e2,S1)| places
is the line containing E(e2,S1)). Thus S1 satisfies Property (iii) of Definition 5.2.

�



COMPLEXITY AND DIRECTIONAL ENTROPY IN TWO DIMENSIONS 11

We define ways to extend a rectangle in each of the four cardinal directions,
starting with a description. For example, the extension of a rectangle R over its
boundary edge parallel to e2 is obtained by adding the integer points on a line
segment adjacent to this edge with length decreased by 2p + k1 − |E(e2,S1)| for
some choice of the integer parameter p. Then for successively higher choices of
the integer parameter m, we add another line segment with length decreased by
another 2p + k1 − |E(e2,S1)|. Overall, extm1 (R, p) \ R is the set of integer points
in a trapezoid whose nonvertical edges have slope a1 + p and −(k1 − 1 − b1 + p),
respectively. Extensions across the other three cardinal directions can be described
analogously. In the case p = 0, we write extmi (R, 0) = extmi (R).

We now give explicit formulas for these extensions. Let n′1, k′1, Si, ai, bi for
1 ≤ i ≤ 4 be as in Lemma 5.5. Let

R1 = ([0, n′ − 1]× [0, k′ − 1]) ∩ Z2

and
R2 = ([0, n′′ − 1]× [0, k′′ − 1]) ∩ Z2,

where n′ ≥ n′1 − 1, k′ ≥ k1, n′′ ≥ n1, and k′′ ≥ k′1 − 1. Let m, p ≥ 0 and define the
sets

Am1 (R1, p) := {(x, y) ∈ Z2 : n′ ≤ x ≤ n′ − 1 +m,

(x− n′ + 1)(a1 + p) ≤ y ≤ k′ − 1− (x− n′ + 1)(k1 − 1− b1 + p)}
Am2 (R1, p) := {(x, y) ∈ Z2 : −m ≤ x ≤ −1,

− x(a2 + p) ≤ y ≤ k′ − 1 + x(k1 − 1− b2 + p)}
Am3 (R2, p) := {(x, y) ∈ Z2 : k′′ ≤ y ≤ k′′ − 1 +m,

(y − k′′ + 1)(a3 + p) ≤ x ≤ n′′ − 1− (y − k′′ + 1)(n1 − 1− b3 + p)}
Am4 (R2, p) := {(x, y) ∈ Z2 : −m ≤ y ≤ −1,

− y(a4 + p) ≤ x ≤ n′′ − 1 + y(n1 − 1− b4 + p)}
and set

extm1 (R1, p) := R1 ∪Am1 (R1, p)

extm2 (R1, p) := R1 ∪Am2 (R1, p)

extm3 (R2, p) := R2 ∪Am3 (R2, p)

extm4 (R2, p) := R2 ∪Am4 (R2, p).

We also define the border of the mth extension of a rectangle. Maintaining the
notation for rectangles R1 and R2 and m, p, q ≥ 0, define the boundaries

∂m1 (R1, p, q) :=

[n′ − n′1 + 1 +m,n′ − 1 +m]× [m(a1 + p) + q, k′ − 1−m(k1 − 1− b1 + p)− q],
∂m2 (R1, p, q) :=

[−m,n′1 − 2−m]× [m(a2 + p) + q, k′ − 1−m(k1 − 1− b2 + p)− q],
∂m3 (R2, p, q) :=

[m(a3 + p) + q, n′′ −m(n1 − 1− b3 + p)− q]× [k′′ − k′1 + 1 +m, k′′ − 1 +m],

∂m4 (R2, p, q) :=

[m(a4 + p) + q, n′′ −m(n1 − 1− b4 + p)− q]× [−m, k′1 − 2−m].
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where in each case we take the convention that the boundary only consists of integer
points (strictly speaking, each of these sets should be intersected with Z2).

Thus ∂m1 (R, p, 0) is the rectangle of width n′1 − 2 that shares an edge parallel
to e2 with extm1 (R, p), while ∂m1 (R, p, q) is a subset of this rectangle with vertical
length decreased by 2q. For the case p = q = 0, we write ∂mi (R, 0, 0) = ∂mi (R) and
for the case m = 0, we write ∂0

i (R, p, q) = ∂i(R, p, q). Note that if we translate
the balanced set S1 such that its edge parallel to e2 is placed on the line closest to
the edge of R parallel to e2 but outside of R, then the translated edge is contained
in ext1

1(R) \ R and the rest of the translated balanced set is contained in ∂1(R1).

More generally, setting S̃1 = S1 \ E(e2,S1) and

Jm−1
1 (R, p, q) = {j ∈ Z2 : S̃1 ⊂ ∂m−1

1 (R, p, q)},
then it follows directly from the definitions that

(2) extm1 (R, p)\extm−1
1 (R, p) = ∂m1 (R, p, 0)\∂m−1

1 (R, p, 0) ⊂
⋃

j∈Jm−1
1 (R,p,p)

(S1+j).

The analogous statements hold for i = 2, 3, 4. If R′ = R + t is a translate of
R = [0, n − 1] × [0, k − 1], we define extmi (R′, p) = extmi (R, p) + t, ∂mi (R′, p, q) =
∂m(R, p, q) + t, and Jmi (R′, p, q) = Jmi (R, p, q) + t.

Given two sets S, R ⊂ Z2, we say that f : R → A is an (S, η)-coloring of R
if f = g�R for some g : Z2 → A such that g�S + j is an η-coloring of S for each

j ∈ Z2. Note that every η-coloring of R is also an (S, η)-coloring of R, but the
converse does not always hold.

To prove the next lemma, we recall a finite version of the Morse-Hedlund Theo-
rem.

Definition 5.6. If a ∈ Z and f : {a, a + 1, . . . , a + i − 1} → A, define Tf : {a −
1, a, . . . , a+i−2} → A by (Tf)(n) := f(n+1) and define Pf (n) to be the number of
distinct functions of the form (Tmf)�{a, a+ 1, . . . , a+ n− 1}, where 0 ≤ m ≤ i−n
and 0 ≤ n ≤ i.

The following is essentially due to Morse and Hedlund [6], and appears with this
formulation in [4]:

Theorem 5.7. Let a ∈ Z and f : {a, a + 1, . . . , a + i − 1} → A and suppose there
exists n0 ∈ N such that Pf (n0) ≤ n0. If i > 3n0, then the restriction of f to the
set {a+ n0, a+ n0 + 1, . . . , a+ i− n0} is periodic of period at most n0.

Lemma 5.8. Suppose η : Z2 → A and Pη(n1, k1) ≤ n1k1 for some n1, k1 ∈ N.
Let S1 and n′1 be as in Lemma 5.5. Fix m ∈ N and suppose the rectangle R of
integer points in [0, n − 1] × [0, k − 1] is such that k ≥ 4mk1 and n ≥ n′1 − 1. If
f is an η-coloring of extm1 (R) such that f�extm−1

1 (R) does not extend uniquely to

an (S1, η)-coloring of extm1 (R), then f is vertically periodic on ∂m−1
1 (R, 0, k1), with

period at most |E(e2,S1)| − 1.
Analogous statements hold for −e2, e1,−e1 and their corresponding balanced

sets, with the roles of n and k interchanged in the latter two cases.

Proof. We prove the first statement; the analogs for the other three cardinal di-
rections are proved similarly. By definition, ∂m−1

1 (R) is a rectangle I × J ⊂ Z2

with |I| = n′1 − 1 and L
def
= |J | = k −m(k1 − |E(e2,S1)|). For convenience, write

J = [j0, j0 +L−1]∩Z and J ′ = [j0, j0 +L−k1]∩Z. Let S̃1 = S1 \E(e2,S1). Since
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S̃1 = ([0, n′1−2]× [0, k1−1])∩Z2, by replacing it, if needed, by one of its translates,

we can assume without loss of generality that ∂m−1
1 (R) =

⋃
j∈J′

(
S̃1 + (0, j)

)
. The

assumptions imply that for each j ∈ J ′, f�S̃1 + (0, j) does not extend uniquely to

an η-coloring of S1 + (0, j). Indeed, if it did extend uniquely for some j, then since
the endpoints of E(e2,S1) are η-generated, an induction argument (on the position
of the balanced set) shows that f�extm−1

e2
(R) extends uniquely to an (S1, η)-coloring

of extme2
(R).

Since S1 is e2-balanced, Pη(S̃1) > Pη(S1)− |E(e2,S1)|. Thus there are at most

|E(e2,S1)|−1 distinct η-colorings of S̃1 that do not extend uniquely to an η-coloring
of S1. Thus, at most |E(e2,S1)| − 1 such colorings appear as a coloring of the form
f�S̃1 + (0, j) for j ∈ J ′.

Set C = {(i, j) ∈ S̃1 : (i, j − 1) 6∈ S̃1}. Again, since S̃1 is a translate of ([0, n′1 −
2]× [0, k1− 1])∩Z2, we have that C is a horizontal line segment and C+ (0, j) ⊂ S̃1

for each 0 ≤ j < k1. Let B be the set of A-colorings of C and define g : J → B
by g(j) = f�C + (0, j). Then since J = J ′ + {0, 1, . . . , k1 − 1}, the one-dimensional

complexity Pg(|E(e2,S1)| − 1) is bounded above by the number of colorings of

S̃1 ⊃
⋃

0≤j<k1(C + (0, j)) that arise as a coloring of the form f�S̃1 + (0, j) with

j ∈ J ′, and so Pg(|E(e2,S1)| − 1) ≤ |E(e2,S1)| − 1. Since

L ≥ k −mk1 ≥ 4mk1 −mk1 > 3(|E(e2,S1)| − 1),

we can apply Theorem 5.7. Thus g is periodic on

{j0 + |E(e2,S1)| − 1, j0 + |E(e2,S1)|, . . . , j0 + L− (|E(e2,S1)| − 1)}
with period at most |E(e2,S1)| − 1. Since |E(e2,S1)| − 1 < k1, this implies that
f�∂m−1

1 (R, 0, k1) is vertically periodic with period at most |E(e2,S1)| − 1. �

In fact, the proof gives a slightly stronger result that we note for use in the
sequel:

Lemma 5.9. Let S1 be as in Lemma 5.5, let S̃1 = S1 \E(e2,S1), and let J be the
set of integers in an interval [j0, j0+L−k1], with L > 3(|E(e2,S1)|−1). If for some
t ∈ Z2, f is an η-coloring of S1 +({0}×J)+t such that for all j ∈ J , the restriction

of f to S̃1 + (0, j) + t does not extend uniquely to an η-coloring of S1 + (0, j) + t,

then f is vertically periodic on S̃1 + t + {(0, j) ∈ Z2 : j0 + k1 ≤ j ≤ j0 + L − 2k1}
with period at most |E(e2,S1)| − 1.

Analogous statements hold for −e2, e1,−e1 and their corresponding balanced
sets, with the roles of n and k interchanged in the latter two cases.

Lemma 5.10. Let η,R,m be as in Lemma 5.8. Suppose f is an η-coloring of R
which is vertically periodic on R of period p and set P := max{p, 2|E(e2,S1)|}.
Then any extension of f to an η-coloring of extm1 (R, k1) must be vertically periodic

on ∂m
′

1 (R, k1, 0) with period at most P for each 0 ≤ m′ ≤ m, and therefore vertically
periodic on extm1 (R, k1) with period at most P !.

Analogous statements hold for −e2, e1,−e1 and their corresponding balanced
sets, with the roles of n and k interchanged in the latter two cases.

We note that the proof is similar in spirit to the proof of Proposition 4.8 in [3].

Proof. We prove the stated version, by induction on m′. Again, the other three
cases are proved similarly. Let f̃ be an extension of f to an η-coloring of extm1 (R, k1)
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and suppose that the restriction of f̃ to ∂m
′′

1 (R, k1, 0) is periodic of period p′ ≤ P
for each 0 ≤ m′′ ≤ m′ < m. Then there are two possibilities: either there exists
j ∈ Jm′1 (R, k1) such that the restriction of f̃ to S̃1 + j extends uniquely to an η-
coloring of S1, or no such j exists. We claim that in either case, f�∂m

′+1
1 (R, k1, 0)

is vertically periodic of period at most p. For convenience, set Jm′′ = Jm
′′

1 (R, k1, 0)
for each 0 ≤ m′′ < m.

Case 1: There exists j ∈ Jm′ such that the restriction of f̃ to S̃1 + j extends
uniquely to an η-coloring of S1. By the periodicity of f̃ on ∂m

′

1 (R, k1, 0), we have

that the restrictions of f̃ to S̃1 + j + (0, ip′) and S̃1 + j coincide for any i ∈ Z such

that j + (0, ip′) ∈ Jm′ . Since j has the property that this η-coloring of S̃1 extends

uniquely to an η-coloring of S1, we have that the restrictions of f̃ to S1 + j and
S1 + j + (0, ip′) coincide whenever j + (0, ip′) ∈ Jm′ . As S1 is e2-balanced, we have
(using Definition 5.2 (i)) that the endpoints of E(S1, e2) are η-generated by S1.
A simple induction argument then shows that for any 0 < t < p′, the restrictions
of f̃ to S1 + j + (0, t) and S1 + j + (0, t + ip′) coincide whenever both j + (0, t)

and j + (0, t+ ip′) are elements of Jm′ . By (2), it follows that f̃�∂m
′+1

1 (R, k1, 0) is

periodic of period p′ ≤ P .
Case 2: There does not exist j ∈ Jm′ such that the restriction of f̃ to S̃1 + j

extends uniquely to an η-coloring of S1. Let S̃1 := S1 \ E(e2,S1). By Lemma 5.9,

f̃ is vertically periodic on ∂m
′

1 (R, k1, k1) of period at most h := |E(e2,S1)| − 1.
Let N be the number of η-colorings α of S1 such that α�S̃1

extends in more than
one way to an η-coloring of S1. We claim that N ≤ 2h. For each such α, let Cα be
the η-colorings α′ of S1 such that α�S̃1

= α′�S̃1
. Since S1 is e2-balanced for η,

Pη(S̃1) + h ≥ Pη(S1) = Pη(S̃1) +
∑
Cα

(|Cα| − 1).

In particular, α�S̃1
extends in more than one way exactly when |Cα| > 1.

Enumerating the colorings of S̃1 that extend in more than one way to a coloring
of S1 as α1, . . . , αr (where r ≤ h), we have that

N =

r∑
i=1

|Cα′i | =
r∑
i=1

(|Cα′i | − 1) +

r∑
i=1

1 ≤ h+ r ≤ 2h,

where α′i is a choice of a coloring of S1 that restricts to αi on S̃1. By the pigeonhole
principle, there exist integers m(a1 + k1) ≤ i < j < m(a1 + k1) + 2h such that

f�S1 + (0, i) = f�S1 + (0, j). Since f̃�∂m
′

1 (R, k1, k1) is vertically periodic of period

at most h and each vertical line intersecting S1 intersects it in at least h points (since
S1 is a vertically balanced set), it follows that f�S̃1 + (0, i+ t) = f�S̃1 + (0, j + t)

for each t such that (S̃1 + (0, i + t)) ∪ (S̃1 + (0, j + t)) ⊂ ∂m
′

1 (R, k1, k1). But since
each endpoint of E(e2,S1) is η-generated, an easy induction argument shows that

f̃�S1 + (0, i+ t) = f̃�S1 + (0, j + t). By (2), the union of all such translates of S1

contains ∂m
′+1

1 (R, k1, 0), so f̃ is periodic of period at most 2h ≤ P on this set. �

We have now assembled the tools to prove Lemma 4.1:

Proof of Lemma 4.1. Let R = ([0, n1−1]× [0, k− 1])∩Z2 and let Tm,k = extm1 (R).
Note that Bm,k ⊂ Tm,k. Fix an η-coloring f of Tm,k. Let S1,S2 be the sets
defined in Lemma 5.5; meaning that S1 is e2-balanced and S2 is −e2-balanced.
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Let S̃1 = S1 \ E(e2,S1) and S̃2 = S2 \ E(−e2,S2). Suppose the restriction of f
to [0, n1 − 1] × [0, k − 1] does not extend uniquely to an η-coloring of Tm,k, so
that (i) does not hold for this restriction (since Bm,k ⊂ Tm,k). Then there exists

0 ≤ i ≤ m − n′1 such that the restriction of f to Wi
def
= ∂i1(R) does not extend

uniquely to an η-coloring of Wi ∪ Wi+1 = ext1
1(Wi). Since the height of Wi is

k − 1 − i(k1 − 1 − b1 − a1) ≥ k −mk1 − 1 ≥ 4mk1 − 1, Lemma 5.8 implies that
f�∂1(Wi, 0, k1) is vertically periodic with period at most |E(e2,S1)| − 1 ≤ k1.

Let R′ = ∂1(Wi, 0, k1). Since |E(−e2,S2)| ≤ k1, by Lemma 5.10 we have that f
is vertically periodic, with period at most (2k1)!, on extt2(R′, k1) and extt1(R′, k1)

for each t ≤ k −mk1 − 2k1

4k1
. Now, Bm,k is a subset of the union of these two sets

for t = m, and since 4k1m = 7k1m− 3k1m ≤ k − 3k1m ≤ k −mk1 − 2k1, we have

m ≤ k −mk1 − 2k1

4k1
, so f is vertically periodic on Bm,k, with period independent

of m and k. �

The proof of Lemma 4.2 requires the following technical lemma:

Lemma 5.11. Let η, ni, ki, and p be as in Lemma 4.2, and let w ∈ N. Let n∗i =
bni/3c for i ∈ N, hi = 2(p+ ki), Ri,w be the integer points in [0, w− 1]× [0, hi − 1]
and Si be the integer points in [0, n∗i − 1]× [0, hi − 1].

There exists a constant C independent of w and i such that for any i ∈ N with
ki > 4p, there exist η-colorings g1, . . . , gC of Si such that if ni ≤ w, (x0, y0) ∈ Z2,
and η�Ri,w + (x0, y0) is vertically periodic with period at most p, then the following

hold:

(a) Either there exists minimal y1 ≥ y0 +hi such that for some x1 ∈ {x0, x0 +
1, . . . , x0 + w − 1}, η(x1, y1) 6= η(x1, y1 − p), or

(b) there exists maximal y1 < y0 such that η(x1, y1) 6= η(x1, y1 + p) for some
x1 ∈ {x0, x0 + 1, . . . , x0 + w − 1},

and exactly one of the following holds:

(i) x1 can be chosen to lie in {x0 + n1, x0 + n1 + 1, . . . , x0 + w − n1 − 1}, in
which case η is horizontally periodic on [x0 +(2p+1)n1, x0 +w−1− (2p+
1)n1]× [0, hi − 1] with period at most (2n1)!,

(ii) x1 cannot be chosen to lie in {x0 + n1, x0 + n1 + 1, . . . , x0 + w − n1 − 1}
but can be chosen to lie in {x0, x0 + 1, . . . , x0 + n1 − 1}, in which case
η�Si + (x0, y0) = gj for some 1 ≤ j ≤ C, or

(iii) x1 can only be chosen to lie in {x0+w−n1, x0+w−n+1+1, . . . , x0+w−1},
in which case η�Si + (x0 + w − n∗i , y0) = gj for some 1 ≤ j ≤ C.

Proof. If η is vertically periodic on some strip of width n1, then by Lemma 5.10 it
is periodic on all such strips, with bounded period, and so η is vertically periodic.
Hence, η is not periodic on any vertical strip of width n1, meaning that either (a)
or (b) holds. We assume throughout the rest of the proof that (a) holds; the
argument in the other case is similar.

Let p′ ≤ p be the vertical period of η�Ri,w + (x0, y0), and for convenience set

R = Ri,w, S = Si, and h = hi. Let S3 be the −e1 balanced set of Lemma 5.5.
First suppose x1 may be chosen to lie in {x0 +n1, x0 +n1 + 1, . . . , x0 +w−n1−1}.
Then the restriction of η to [x0, x0 +w− 1]× [y1 − k1, y1 − 1] extends nonuniquely
to an η-coloring of ext1

3([x0, x0 +w− 1]× [y1 − k1, y1 − 1]), and hence also extends
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nonuniquely to an (S, η)-coloring of that set. By Lemma 5.8, it follows that η is

horizontally periodic on R′
def
= ∂3([x0, x0 +w−1]× [y1−k1, y1−1], 0, n1) with period

at most |E(−e1,S3)|−1 < n1. Therefore by Lemma 5.10, it is horizontally periodic
with period at most (2n1)! on extp4(R′, n1). It follows that η is horizontally periodic
with period at most (2n1)! on the rectangle

[x0 + (2p+ 1)n1, x0 + w − 1− (2p+ 1)n1]× [y1 − p, y1 − 1].

Thus by the vertical periodicity assumption, η is horizontally periodic on

[x0 + (2p+ 1)n1, x0 + w − 1− (2p+ 1)n1]× [0, h− 1]

with period at most (2n1)!.
Otherwise, x1 cannot be chosen to lie in {x0 +n1, x0 +n1 +1, . . . , x0 +w−n1−1}

but can be chosen to lie in either {x0, x0 + 1, . . . , x0 +n1− 1} or {x0 +w−n1, c0 +
w−n1+1, . . . , x0+w−1}. Let us assume it is the former; the argument in the other
case is similar. Let x′0, y

′
0 be other integers such that η�R+ (x′0, y

′
0) is vertically

periodic with period p′. Assume that (a) holds for (x′0, y
′
0) as well and that y′1 is

as in (a). Suppose also that x′1 cannot be chosen in {x′0 + n1, x
′
0 + n1 + 1, . . . , x′0 +

w − n1 − 1} but can be chosen in {x′0, x′0 + 1, . . . , x′0 + n1 − 1}. Assume further
that x′1 − x′0 = x1 − x0. We claim that η(x0 + x, y1 + y) = η(x′0 + x, y′1 + y) for
(x, y) ∈ [0, n∗i − 1]× [−p+ 1, 0]. Indeed, let B = [0, ni − 1]× [0, ki − 1] and, for an
integer vector t ∈ [0, ni − n∗i − 1] × [1, ki − p − 1], let Bt = B + (x0, y1 − ki) + t
and B′t = B + (x′0, y

′
1 − ki) + t. For a coloring α : B → A, define y(α) to be

the minimal integer p′ ≤ y ≤ ki − 1 such that α(x, y) 6= α(x, y − p′) for some
0 ≤ x ≤ ni − 1, and let x(α) be the maximal such x. If we set αt = η�Bt

then
(x(αt), y(αt)) = (x(αt′), y(αt′)) if and only if t = t′ and so the colorings αt are all
distinct. Similarly, setting α′t = η�B′t these colorings of B are also distinct from

one another. Since there are (ni − n∗i )(ki − p) choices of t, we have αt = α′t′ for
some t 6= t′. If not, instead we have

2(ni − n∗i )(ki − p) ≥ 4/3ni(ki − p) > 4/3ni(ki − ki/4) = niki

distinct η-colorings of B, a contradiction. However, since we assume that x1−x0 =
x′1 − x′0, we can have αt = α′t′ only if t = t′. Since [x0, x0 + n∗i − 1] × [y1 −
p + 1, y1] ⊂ Bt for all t, it follows that η(x0 + x, y1 + y) = η(x′0 + x, y′1 + y) for
(x, y) ∈ [0, n∗i −1]× [−p+1, 0], as claimed. By the vertical periodicity assumptions,
there exists 0 ≤ j ≤ p′ such that η(x0 + x, y0 + y) = η(x′0 + x, y′0 + y + j) for all
(x, y) ∈ [0, n∗i − 1] × [0, h − p − 1]. Thus, for a pair (x0, y0) such that (a) and (ii)
hold, η�S + (x0, y0) is determined by

• the vertical period p′ ≤ p of η�R+ (x0, y0),

• the integer x1 − x0 ∈ [0, n1 − 1], and
• the integer (y1 − y0) mod p′ ∈ [0, p− 1].

Thus, there are at most p2n1 possibilities for η�S + (x0, y0). Arguing similarly, we

can bound the number of possibilities if (b) and (ii) hold, and if (iii) holds, all
independent of w and i. Taking C to be the sum of these bounds completes the
proof. �

We now use this to complete the proof of Lemma 4.2:

Proof of Lemma 4.2. Again for convenience, write R = Ri,w, S = Si, and h = hi.
Let f be an η-coloring of R that is vertically periodic with period p′ ≤ p, and let
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x0, y0 be such that f(x, y) = η(x + x0, y + y0) for all (x, y) ∈ R. Define a finite
sequence of rectangles in the following way. Let R0 = R = Ri,w. For each 0 ≤ j
until the process terminates, apply Lemma 5.11 to Rj + (x0, y0). If case (i) holds,
terminate the process. If case (ii) holds, let R′j+1 be the translate of Si that shares
a left edge with Rj and let Rj+1 = Rj \ R′j+1, which is a rectangle to which the
claim also applies, so long as w− (j+ 1)n∗i ≥ ni. (If this inequality fails, terminate
the process instead.) If case (iii) holds, let R′j+1 be the translate of Si that shares
a right edge with Rj and let Rj+1 = Rj \R′j+1, which is also a rectangle to which
the claim applies for w − (j + 1)n∗i ≥ ni. The coloring f is completely determined
by the following data:

• The lengthm of the sequence of rectangles, which satisfiesm ≤
⌊
w − ni
n∗i

⌋
+

1.
• Whether R′j+1 is on the right or left side of Rj for each 0 ≤ j < m.
• The indices 1 ≤ aj ≤ C for which η�R′j + (x0, y0) = gaj for 1 ≤ j ≤ m.

• The restriction of η to Rm + (x0, y0).

Since

⌊
w − ni
n∗i

⌋
+ 1 ≤ 4w/ni, the number of colorings f with these properties is

at most
4w

ni
24w/niC4w/ni max{C1, C2},

where C1 is the number of η-colorings of R that are horizontally periodic on [x0 +
(2p + 1)n1, x0 + w − 1 − (2p + 1)n1] × [0, h − 1] with period at most (2n1)! and
vertically periodic on R with period at most p and C2 is the number of η-colorings
of [0, ni − 1]× [0, h− 1]. Clearly we have

C1 ≤ p(2n1)!|A|p(2n1)!+2(2p+1)n1h

and

C2 ≤ |A|nih.
In particular, C1 and C2 are independent of w, and so the number of η-colorings
of R that are vertically periodic with period at most p is at most Kiw(2C)4w/ni ,
where Ki is independent of w and C is independent of both w and i. Choose i
large enough such that (2C)4/ni <

√
λ. Then for large enough w, the number of

colorings f of R that are vertically periodic with period at most p is less than

Kiw(2C)4w/ni < Kiwλ
w/2 < λw.

Now note that for h ≥ max{hi, p+ 1}, the number of such colorings of [0, w− 1]×
[0, h− 1] is nonincreasing in h, so the lemma follows. �

6. Further directions

We conjecture a stronger result than Theorem 1.2, namely that it holds under
the same assumption as that in Nivat’s Conjecture:

Conjecture 6.1. For η : Z2 → A, if there exist n, k ∈ N such that Pη(n, k) ≤ nk,
then the directional entropy of every nonexpansive direction of Xη is zero.

If the answer is no, this would provide a counterexample to the Nivat Conjecture,
and if the answer is yes, this is further evidence in favor of the conjecture. A
weaker conjecture would be that under the same hypothesis, Xη has some direction
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with zero directional entropy. Both statements follow from Theorem 1.2 under the
stronger assumptions on the complexity.

Alternately it is likely easier to show that a generalization of Nivat’s Conjecture,
but with a stronger complexity assumption, holds (recall Notation 3.1):

Conjecture 6.2. If there exist Ki ⊂ R2 compact and convex with limi→∞
logPη(Ki)
τu(Ki)

=

0, then η is periodic.

Closely related, we ask:

Question 6.3. Say that η has an isolated, rational direction of zero directional
entropy and that Pη(n, k) ≤ nk. Must η be periodic?

The following example shows that if the complexity assumption is removed, then
the answer is no:

Example 6.4. Let α : Z → {0, 1} such that Pα(n) = 2n for all n ∈ N. Define
η : Z2 → {0, 1, 2, 3} by η(n, k) = α(n) for each k 6= 0, and η(n, 0) = α(n) + 2. Then
for the Z2 action on Xη by translations, h(e2) = h(−e2) = 0, but h(u) > 0 for all
other unit vectors u.

Proof. We first prove h(e2) = 0 (the proof that h(−e2) = 0 is analogous). Fix
t > 0. There are 22t+1 α-colorings of [−t, t]. For each of these α-colorings f , there
are at most s+ 2t+ 2 η-colorings of [−t, t]× [−t, s+ t] for which η(i, j) = f(i) for
some −t ≤ j ≤ s+ t. Hence,

Pη(L(t)
se2

) ≤ Pη([−t, t]× [−t, s+ t]) ≤ 22t+1(s+ 2t+ 2).

Thus,

lim sup
s→∞

logPη(L
(t)
se2)

s
≤ lim sup

s→∞

(2t+ 1) log 2 + log(s+ 2t+ 2)

s
= 0.

By Lemma 2.6, it follows that h(e2) = 0.
For u 6= ±e2, let m = 1

‖ proje1 u‖ where projv is the projection onto the direction

v. By assumption m < ∞. Then ‖ proje1
mu‖ = 1, and so L

(1)
msu ∩ {i} × Z 6= ∅

for each 0 ≤ i ≤ s. For any set K ⊂ R2, if |{i ∈ Z : K ∩ {i} × Z 6= ∅}| = k1 and
|{j ∈ Z : K ∩ Z× {j} 6= ∅}| = k2, then Pη(K) = (k2 + 1)2k1 . Hence,

lim sup
s→∞

logPη(L
(1)
msu)

ms
≥ lim sup

s→∞

log(2s)

ms
=

log 2

m
. �

Finally, we can ask how much of this holds in higher dimensions. While there are
examples [8] showing that the analog Nivat’s Conjecture is false for dimension d ≥ 3,
it is possible that the results on directional entropy generalize. We remark that
Cassaigne [2] constructed aperiodic examples in higher dimensions which satisfy
the higher dimensional analog of the complexity assumptions used in our results.
These all have zero directional entropy in all directions, and so do not rule out a
higher dimensional version of our theorem:

Question 6.5. Does the analog of Theorem 1.2 hold for η : Zd → A, where d ≥ 3?
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