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Abstract. The group of automorphisms of a symbolic dynamical system is

countable, but often very large. For example, for a mixing subshift of finite
type, the automorphism group contains isomorphic copies of the free group on

two generators and the direct sum of countably many copies of Z. In contrast,

the group of automorphisms of a symbolic system of zero entropy seems to
be highly constrained. Our main result is that the automorphism group of

any minimal subshift of stretched exponential growth with exponent < 1/2,

is amenable (as a countable discrete group). For shifts of polynomial growth,
we further show that any finitely generated, torsion free subgroup of Aut(X)

is virtually nilpotent.

1. Complexity and the automorphism group

Let (X,σ) be a subshift over the finite alphabet A, meaning that X ⊂ AZ is
closed and invariant under the left shift σ : AZ → AZ. The group of automorphisms
Aut(X) of (X,σ) is the group of homeomorphisms of φ : X → X such that φ ◦ σ =
σ ◦ φ. A classic result of Curtis, Hedlund, and Lyndon is that Aut(X) is always
countable, but a number of results have shown that Aut(X) can be quite large. For
example, for any mixing subshift of finite type, Aut(X) always contains (among
others) a copy of: every finite group, the direct sum of countably many copies of
Z, and the free group on two generators [11, 2]; every countable, locally finite,
residually finite group [13]; the fundamental group of any 2-manifold [13].

This extremely rich subgroup structure makes the problem of deciding when
two shifts have isomorphic automorphism groups challenging. Moreover, Kim and
Roush [13] showed that the automorphism group of any full shift is contained in the
automorphism group of any other full shift (and more generally is contained in any
mixing subshift of finite type), thereby dooming any strategy for distinguishing two
such groups that relies on finding a subgroup of one that does not embed into the
other. Even the question of whether the automorphism groups of the full 2-shift
and the full 3-shift are isomorphic remains a difficult open problem [2] (although,
as they remark, the automorphism groups of the full 2-shift and the full 4-shift are
not isomorphic). In all of these examples, the complicated nature of Aut(X) is a
manifestation of the relatively light constraints required on x ∈ AZ to be a member
of the shift space X. Another consequence of this fact is that these shifts always
have positive (although arbitrarily small) entropy. As a corollary, if G is a group
that embeds into the automorphism group of the full 2-shift, then for any h > 0
there is a subshift of topological entropy less than h into whose automorphism
group G also embeds.
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It is therefore natural to ask whether the automorphism group of a zero entropy
subshift is more highly constrained than its positive entropy relatives. Over the
past several years, the authors [4, 5] and others (e.g., [3, 7, 14, 15]) have shown that
the zero entropy case is indeed significantly more constrained, and we continue
this theme in the present work. Specifically, we study how the the growth rate of
the factor complexity PX(n), the number of nonempty cylinder sets of length n,
constrains the algebraic properties of group of automorphisms. For a shift whose
factor complexity grows at most linearly, we showed [5] that every finitely generated
subgroup of Aut(X) is virtually Zd for some d that depends on the growth rate. We
further showed [4] that for a transitive shift of subquadratic growth, the quotient of
Aut(X) by the subgroup generated by σ, is periodic. Further examples of minimal
shifts with polynomial complexity and highly constrained automorphism groups
were constructed by Donoso, Durand, Maass and Petite [7], and an example of a
minimal shift with subquadratic growth whose automorphism group is not finitely
generated was given by Salo [14].

Our main theorem provides a strong constraint on Aut(X) for any minimal
subshift of stretched exponential growth with exponent < 1/2. We show:

Theorem 1.1. If (X,σ) is a minimal shift such that there exists β < 1/2 satisfying

lim sup
n→∞

log(PX(n))

nβ
= 0, (1)

then Aut(X) is amenable. Moreover, every finitely generated, torsion free subgroup
of Aut(X) has subexponential growth.

For minimal shifts of polynomial growth, we show more:

Theorem 1.2. If (X,σ) is a minimal shift such that there exists d ∈ N satisfying

lim sup
n→∞

PX(n)

nd
= 0, (2)

then Aut(X) is amenable. Furthermore, every finitely generated, torsion free sub-
group of Aut(X) is virtually nilpotent with polynomial growth rate at most d − 1.

In particular, the step of the nilpotent subgroup is at most
⌊
−1+

√
8d−7

2

⌋
.

In particular, this shows that Zd does not embed in the automorphism group of
a minimal shift whose growth rate is o(nd).

In both the polynomial and stretched exponential cases, the amenability of
Aut(X) stands in stark contrast to the possible behavior of the automorphism
group of a shift of positive entropy. Furthermore, for shifts of positive entropy, we
are far from being able to characterize the groups that can arise as automorphism
groups, but we are approaching an answer for shifts with zero entropy.

This leaves open several natural questions. We are not able to provide examples
of minimal shifts showing that Theorems 1.1 and 1.2 can not be improved, in the
sense that the automorphism groups may be smaller. In particular, we can not
rule out the possibility that the automorphism groups are virtually Zd, as raised
in [7]. In fact, it suffices to show that the Heisenberg group does not embed in
the automorphism group, as any torsion free, nonabelian nilpotent group contains
an isomorphic copy of the Heisenberg group as a subgroup. However, for subcubic
growth, the control on the step of the nilpotent group in Theorem 1.2 implies:
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Corollary 1.3. If (X,σ) is a minimal shift such that

lim sup
n→∞

PX(n)

n3
= 0,

then every finitely generated, torsion free subgroup of Aut(X) is virtually abelian.

After writing this paper, Donoso, Durand, Maass, and Petite [8] shared with
us a proof that improves this corollary, showing that the same result holds with a
growth rate that is o(n5).

Furthermore, we believe that the amenability of Aut(X) from Theorem 1.1
should hold for 1/2 ≤ β ≤ 1 thus for all zero entropy shifts, but our methods
do not cover this case. Finally, we do not know if these results generalize to tran-
sitive or general shifts.

2. Background and Notation

2.1. Subshifts. Suppose A is a finite set with the discrete topology and let AZ

denote the set of bi-infinite sequences

AZ := {(. . . , x−2, x−1, x0, x1, x2, . . . ) : xi ∈ A for all i}

endowed with the product topology. The metric

d
(
(. . . , x−1, x0, x1, . . . ), (. . . , y−1, y0, y1, . . . )

)
:= 2−min{|i| : xi 6=yi}

generates this topology and makes AZ into a compact metric space. When conve-
nient, we denote an element of AZ by (xi)

∞
i=−∞.

The left shift is the map σ : AZ → AZ defined by

σ
(
(xi)

∞
i=−∞

)
:= (xi+1)∞i=−∞

and it is easy to verify that σ is a homeomorphism on AZ. A subshift of AZ is a
closed, σ-invariant subset X ⊂ AZ (endowed with the subspace topology).

If X is a subshift of AZ and f ∈ A{−n+1,...,−1,0,1,...,n−1} is given, then the central
cylinder set [f ]0 of size n in X determined by f is defined to be the set

[f ]0 := {x ∈ X : xi = f(i) for all − n < i < n}.

A standard fact is that the collection of central cylinder sets, taken over all f and
n, forms a basis for the topology of X. If g ∈ A{0,1,...,n−1}, then the one-sided
cylinder set [g]+0 of size n in X determined by g is defined to be the set

[g]+0 := {x ∈ X : xi = g(i) for all 0 ≤ i < n}.

For fixed n ∈ N, the words of length n in AZ is the set A{0,1,...,n−1} and is
denoted by Ln(AZ). An element w ∈ Ln(AZ) is written w = (w0, w1, . . . , wn−1) or,
when convenient, simply as a concatenation of letters: w = w0w1 . . . wn−1. A word
w naturally defines a one-sided central cylinder set [w]0, and in a slight abuse of
notation we write

[w]+0 = {x ∈ X : xj = wj for all 0 ≤ j < n}.

If X is a fixed subshift, then the set of words of length n in X is the set

Ln(X) := {w ∈ Ln(AZ) : [w]+0 ∩X 6= ∅}.
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The set of all words L(X) in X is given by

L(X) :=

∞⋃
n=1

Ln(X)

and is called the language of X. The complexity function PX : N→ N is defined to
be the map

PX(n) := |Ln(X)|,
meaning it assigns to each n ∈ N the number of words of length n in the language
of X. It follows from the Morse-Hedlund Theorem [12] that if PX is not increasing,
then the associated subshift is periodic.

If w ∈ Ln(X), then we say that w extends uniquely to its right if there is a
unique u ∈ Ln+1(X) such that ui = wi for all 0 ≤ i < n. Similarly, we say that
w extends uniquely to its left if there is a unique u ∈ Ln+1(X) such that ui = wi
for all 0 < i ≤ n. More generally, for N ∈ N, a word w ∈ Ln(X) extends uniquely
N times to its right if there is a unique u ∈ Ln+N (X) such that ui = wi for all
0 ≤ i < n, and similarly for extensions to the left.

2.2. Automorphisms. If (X,σ) is a subshift, then the group of automorphisms
of (X,σ) is the set of all homeomorphisms of X that commute with σ and this
group is denoted Aut(X). With respect to the compact open topology, Aut(X) is
discrete. A map ϕ : X → X is a block code of range R if for all x ∈ X the symbol
that ϕ(x) assigns to 0 is determined by the word (x−R, . . . , x0, . . . , xR). The basic
structure of an automorphism of (X,σ) is given by:

Theorem 2.1 (Curtis-Hedlund-Lyndon Theorem [11]). If (X,σ) is a subshift and
ϕ ∈ Aut(X), then there exists R ∈ N ∪ {0} such that ϕ is a block code of range R.

If ϕ is a block code of range R, then it is also a block code of range S for any
S ≥ R. Therefore we can speak of a range for ϕ or of the minimal range for ϕ. We
define

AutR(X) :=
{
ϕ ∈ Aut(X) : R is a range for ϕ and ϕ−1

}
.

The Curtis-Hedlund-Lyndon Theorem implies that

Aut(X) =

∞⋃
R=0

AutR(X).

We observe that it follows immediately from the definitions that if ϕ ∈ AutR(X)
for some R ∈ N, x ∈ X, and m < n are integers, then the restriction of ϕ(x) to
{m,m + 1, . . . , n} is uniquely determined by the restriction of x to {m − R,m −
R + 1, . . . , n + R − 1, n + R}. This motivates the definition of the action of an
automorphism on a word:

Definition 2.2. Suppose ϕ ∈ AutR(X) and w ∈ L(X) has length at least 2R+ 1.
We define the word ϕ(w) to be the unique u ∈ L|w|−2R(X) such that for all x ∈ [w]+0 ,

we have ϕ(x) ∈ σ−R[u]+0 .

Note that ϕ(w) depends on the choice of a range for ϕ, and so this definition
only makes sense for the pair (ϕ,R) and not simply for ϕ.

We record another useful consequence of these observations:
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Lemma 2.3. Let ϕ1, . . . , ϕm ∈ AutR(X), let i1, . . . , in ∈ {1, . . . ,m}, and let
e1, . . . , em ∈ {−1, 1}. Then

ϕe1i1 ◦ ϕ
e2
i2
◦ · · · ◦ ϕenin ∈ AutnR(X).

2.3. Growth in groups and amenability. We recall some standard definitions
and results; see, for example [6] for background. Suppose G is a finitely generated
group and S = {g1, . . . , gm} ⊂ G is a finite symmetric generating set for G, meaning
that every element of G can be written as a finite product of elements of S and
that S is closed under inverses. Then the growth function of the pair (G,S) is the
function

γSG(n) := |{gi1gi2 · · · gik : k ≤ n, i1, . . . , in ∈ {1, . . . ,m}}|,
which counts the number of distinct group elements that can be written as a product
of at most n elements of S. If x(n), y(n) : N → N are nondecreasing functions, we
write that x ≺ y if there constants λ ≥ 1 and C ≥ 0 such that x(n) ≤ λy(λn+C)+C
and we write that x ∼ y if x ≺ y and y ≺ x. A standard fact is that γSG is
submultiplicative, and that if S1,S2 are any two finite symmetric generating sets
for G, then γS1G ∼ γ

S2
G . Thus we define G to be a group of exponential growth if for

some (equivalently, for every) finite symmetric generating set S,

lim
n→∞

log(γSG(n))

n
> 0.

If the limit is zero, we say that G is a group of subexponential growth.
Similarly, G is a group of polynomial growth rate d if for some (equivalently, for

every) finite symmetric generating set S,

lim sup
n→∞

log(γSG(n))

log(n)
≤ d

and G is a group of weak polynomial growth rate d if for some (equivalently, for
every) finite symmetric generating set S,

lim inf
n→∞

log(γSG(n))

log(n)
≤ d.

Finally, we say that G is a group of polynomial growth if it is a group of polynomial
growth rate d for some d ∈ N, and it is a group of weak polynomial growth if it is a
group of weak polynomial growth rate d for some d ∈ N.

A countable, discrete group G is amenable if there exists a sequence (Fk)k∈N of
finite subsets of G such that:

(i) for all g ∈ G, we have g ∈ Fk for all but finitely many k;
(ii) for all g ∈ G,

lim
k→∞

|Fk4gFk|
|Fk|

= 0.

In this case, the sequence (Fk)k∈N is called a Følner sequence for G.

3. Constraints on the automorphism group

We start with a lemma which shows that if PX(n) grows slowly then there are
words that extend uniquely a large number of times to both sides:

Lemma 3.1. Suppose (X,σ) is a subshift and define

kn := min{k ∈ N : no word w ∈ Ln(X) extends uniquely k times to the right and left}.
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(i) (Polynomial growth) If there exists d ∈ N such that

lim sup
n→∞

PX(n)

nd
= 0, (3)

then there exists C > 0 such that for infinitely many n ∈ N we have
kn > Cn.

(ii) (Stretched exponential growth) Let 0 < β ≤ 1 be fixed. If

lim sup
n→∞

log(PX(n))

nβ
= 0, (4)

then for any C > 0 there are infinitely many n ∈ N such that kn > Cn1−β.

Proof. Without loss, it suffices to assume that PX(n) is nondecreasing, as otherwise
(X,σ) is a periodic system.

First assume that (X,σ) satisfies (3). For contradiction, suppose that for all
C > 0 there exists N = N(C) ∈ N such that kn ≤ Cn for all n ≥ N . Pick a
constant C such that 0 < C < (21/d − 1)/2. By the definition of kn, any word of
length n extends in at least two ways to a word of length n+2kn (adding kn letters
on each side), and any two words of length n extend to different words of length
n+2kn by this procedure. So we have PX(n+2kn) ≥ 2PX(n) for all n ∈ N. Since PX
is nondecreasing, it follows that for all n ≥ N we have PX(d(1 + 2C)ne) ≥ 2PX(n).
By induction, it follows that for any i ∈ N,

PX(d(1 + 2C)iNe) ≥ 2iPX(N). (5)

But by (3),

PX(d(1 + 2C)iNe) ≤
⌈
(1 + 2C)idNd

⌉
=
⌈(

(1 + 2C)d
)i
Nd
⌉

(6)

for all sufficiently large i. By choice of C, we have (1 + 2C)d < 2 and so (5) and (6)
are incompatible for all sufficiently large i. The first statement follows.

If (X,σ) satisfies (4), define

dn := min{m ∈ N : PX(n+m) ≥ 2PX(n)}

to be the sequence of doubling times for PX . As in the case of polynomial growth,
we have the trivial inequality that dn ≤ 2kn for all n ∈ N. Again we proceed by
contradiction and assume that there exists C > 0 and N = N(C) ∈ N such that
for all n ≥ N we have kn ≤ Cn1−β . Thus dn ≤ (2C)n1−β for all n ≥ N . If λ > 1,

then the doubling time for λn
β

is

Dn(λ) := min{m ∈ N : λ(n+m)β ≥ 2λn
β

} =
⌈
n ·
(
1 + log(2)/(nβ log(λ))

)1/β − n⌉ .
Expanding the first term as a binomial series, it follows that Dn(λ) is asymptotically

log(2)

β log(λ)
n1−β + o(n1−β).

Thus we can find 1 < λ < 21/2βC and M ≥ N such that dn < Dn(λ) for all n ≥M .
We recursively define a sequence {ai} by setting a0 := M and ai+1 = ai + dai . If

PX(ai) ≥ λa
β
i −a

β
0 · PX(a0), then

PX(ai+1) ≥ 2PX(ai) ≥ 2λa
β
i −a

β
0 · PX(a0) ≥ λa

β
i+1−a

β
0 · PX(a0)
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where the last inequality holds because ai+1 < ai+Dai(λ). By induction, PX(ai) ≥
λa

β
i −a

β
0 · PX(a0) for all i. But then

log(PX(ai)) ≥ log(λ) · aβi − log(λ) · aβ0 − log(PX(a0))

for all i, a contradiction of (4). �

Lemma 3.2. Suppose k ∈ N and β < 1/2 are fixed. Then for all sufficiently
large N ∈ N, if f : {1, 2, . . . , N} → N is a nondecreasing function and f(N) ≤
exp
(
Nβ/(1−β)), then there exists an integer M with N/3 ≤ M ≤ N − k and such

that

f(M + k) ≤ f(M) · exp
(
M (2β−1)/(2−2β)).

Proof. Suppose not. Then for infinitely many N , there exists fN : {1, . . . , N} → N
such that for all integers M satisfying N/3 ≤ M ≤ N − k, we have fN (M + k) >

fN (M) · exp(M
2β−1
2−2β ). Let Ñ be the largest multiple of 3k less than or equal to N .

Then for n ≤ 2Ñ/3k, we have

log
(
fN (Ñ/3 + kn)

)
> log

(
fN (Ñ/3)

)
+

n−1∑
m=0

(Ñ/3 + km)
2β−1
2−2β

> log
(
fN (Ñ/3)

)
+

∫ n

0

(Ñ/3 + kx)
2β−1
2−2β dx

= log
(
fN (Ñ/3)

)
+

2− 2β

k
·
(

(Ñ/3 + kn)
1

2−2β − (Ñ/3)
1

2−2β

)
.

Taking n = 2Ñ/3k,

log(fN (Ñ)) > log(fN (Ñ/3)) +
2− 2β

k
·
(
Ñ

1
2−2β − (Ñ/3)

1
2−2β

)
>

(2− 2β) · Ñ
1

2−2β

k
·
(

1− 1

31/(2−2β)

)
.

But 1
2−2β >

β
1−β , and so for all sufficiently large N , and thus sufficiently large Ñ ,

this contradicts

log(fN (Ñ)) ≤ Nβ/(1−β) ≤ (Ñ + 3k)β/(1−β). �

Lemma 3.3. Suppose (X,σ) is minimal and w ∈ L(X). Then the subgroup Gw of
Aut(X) generated by Sw, where

Sw :=
{
ϕ ∈ Autb|w|/2c(X) : ϕ[w]+0 ⊆ [w]+0

}
,

is finite.

Proof. Let ϕ ∈ Sw be fixed. By the definition of Sw, if u ∈ L(X) and x ∈ [wuw]+0 ,
then there exists vx ∈ L|u|(X) such that ϕ(x) ∈ [wvxw]+0 . However, since the range

of ϕ is at most b|w|/2c, the word vx does not depend on choice of x ∈ [wuw]+0 ,
meaning there exists v ∈ L|u|(X) such that for all x ∈ [wuw]+0 we have vx = v.

In other words, ϕ[wuw]+0 ⊆ [wvw]+0 . Since (X,σ) is minimal, we have that the
quantity

Kw := max{K ≥ 1: there exists x ∈ [w]+0 such that σkx /∈ [w]+0 for all 0 < k < K}
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is finite. Thus if x ∈ X, then there is a bi-infinite sequence of words of bounded

length . . . , u−2, u−1, u0, u1, u2, . . . ∈
⋃Kw
k=0 Lk(X) such that x has the form

· · ·wu−2wu−1wu0wu1wu2w · · · .
Since PX is nondecreasing, it follows from these observations that ϕPX(Kw)!(x) = x.
Since ϕPX(Kw)! is an automorphism of (X,σ) and the orbit of x is dense in X,
ϕPX(Kw)! is the identity map. Thus ϕ−1[w]+0 ⊆ [w]+0 .

Moreover, since ϕ ∈ Autb|w|/2c(X), we have ϕ−1 ∈ Autb|w|/2c(X), and so Sw
is closed under the operation of taking inverses. Let Gw denote the subgroup of
Aut(X) generated by Sw. It is immediate that if ψ ∈ Gw, then ψ[w]+0 ⊆ [w]+0
(but the range of ψ may not be bounded by b|w|/2c and so it is not necessarily
the case that ψ ∈ Sw). As before, if u ∈ L(X) and x ∈ [wuw]+0 , then there exists
vx ∈ L|u|(X) such that ϕ(x) ∈ [wvxw]+0 . We claim that the word vx is independent

of x for x ∈ [wuw]+0 . Writing ψ as a product of elements of Sw,

ψ = ϕk ◦ ϕk−1 ◦ · · · ◦ ϕ1

where ϕ1, . . . , ϕk ∈ Sw, there exist words v1, . . . , vk ∈ L|u|(X) such that

ϕi[wvi−1w]+0 ⊆ [wviw]+0

(here we take v0 := u). Thus ψ[wuw]+0 ⊆ [wvkw]+0 . Therefore, an element of Gw is
determined once we know the image of every cylinder set of the form [wuw]+0 with
|u| ≤ Kw. There are only finitely many such sets and only finitely many possible
images for each, and so Gw is finite. �

Theorem 3.4. Suppose (X,σ) is a minimal subshift and there exists β < 1/2 such
that

lim sup
n→∞

log(PX(n))

nβ
= 0. (7)

Then Aut(X) is amenable.

Proof. We show the amenability of Aut(X) by constructing a Følner sequence.

Step 1 (Extendable Words). By Lemma 3.1, there are infinitely many integers
n for which there exists a word of length n that extends uniquely at least n1−β many
times to both the right and the left. Let R ∈ N be fixed and find n > (4R)1/(1−β)

such that there exists a word w ∈ Ln(X) which extends uniquely at least 2R times to
both the right and to the left. Let w̃ ∈ Ln+4R(X) be the word obtained by extending
w exactly 2R times to both the right and to the left. Then if ϕ1, ϕ2 ∈ AutR(X)
are such that ϕ1(w̃) = ϕ2(w̃) (recall that ϕi(w̃) is a word of length n + 2R), we
have ϕ−11 (ϕ2(w̃)) = w (a word of length n). But by construction of w, we have
x ∈ σ−2R[w]+0 :

(x2R, x2R+1, . . . , x2R+|w|−1) = w

if and only if x ∈ [w̃]+0 . It follows that (ϕ−11 ◦ ϕ2)[w̃]+0 ⊆ [w̃]+0 . Since R ≤ b|w̃|/4c,
it follows from Lemma 3.3 that ϕ−11 ◦ ϕ2 is an element of the set Sw̃. If Gw̃ is
the subgroup of Aut(X) generated by Sw̃, then we have shown that for ϕ1, ϕ2 ∈
AutR(X),

ϕ1 and ϕ2 are in the same coset of Gw̃ if and only if ϕ1(w̃) = ϕ2(w̃). (8)

Consequently, AutR(X) is contained in the union of at most PX(|w̃| − 2R) many
cosets of Gw̃.
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Step 2 (Estimating Coset Growth). We claim that for any fixed k ∈ N, there
exists a finite set Fk ⊂ Aut(X) such that Autk(X) ⊂ Fk and furthermore, if
ϕ ∈ Autk(X) then

|Fk4ϕFk|
|Fk|

< 2 exp
(
k(2β−1)/(2−2β)

)
− 2.

The sequence (Fk)k∈N constructed in this way is then the desired Følner sequence.
To construct the sets, fix k ∈ N and find N > k sufficiently large that PX(n) ≤

exp
(

nβ

4β/(1−β)

)
for all n ≥ N . By Lemma 3.1, there are infinitely many n ≥ N for

which there exists a word w ∈ Ln(X) that extends uniquely at least n1−β times to
both the right and the left. By Lemma 3.2, for all sufficiently large R and for any
increasing f : {1, 2, . . . , 3R} → N, there exists R ≤M ≤ 3R− k such that

f(M + k) ≤ f(M) · exp
(
M (2β−1)/(2−2β)). (9)

Fix n ≥ N such that there exists w ∈ Ln(X) that extends at least n1−β times
to both the right and the left, and sufficiently large that if R := bn1−β/9c then (9)
holds and 6R < n1−β . Then w extends uniquely at least 6R times to both the right
and the left, and moreover we have |w| ≤ (9R)1/(1−β). Let w̃ be the word obtained
by extending w exactly 6R times to both the right and the left. Recall that if ϕ ∈
AutR(X), then ϕ may also be thought of as a range R+ 1 automorphism, meaning
there is a natural embedding AutR(X) ↪→ AutR+1(X). (The distinction between
AutR(X) and its embedded image is simply that an element of AutR(X) takes a
word of length n to a word of length n − 2R, whereas an element of AutR+1(X)
takes a word of length n to a word of length n − 2R − 2.) We use the notation
AutR(X) ↪→ AutS(X) to refer to the embedded image of AutR(X) in AutS(X) for
S ≥ R.

Define f : {1, 2, . . . , 3R} → N to be

f(n) =
∣∣{ϕ(w̃) ∈ L|w|+6R(X) : ϕ ∈ Autn(X) ↪→ Aut3R(X)

}∣∣.
From the inclusion Auti(X) ↪→ Auti+1(X), it follows that f(n) is nondecreasing.
Furthermore,

f(3R) ≤ PX(|w|+ 3R)

≤ PX(b(9R)1/(1−β)c+ 3R)

≤ PX

(⌊
(12R)1/(1−β)

⌋)
≤ exp

(
(3R)β/(1−β)

)
.

By (9), there exists R ≤ M ≤ 3R − k such that the inequality f(M + k) ≤
f(M) ·exp

(
M (2β−1)/(2−2β)) holds. Since f is nondecreasing, it follows immediately

that
f(M + i) ≤ f(M) · exp

(
M (2β−1)/(2−2β)) for all 1 ≤ i ≤ k

(note that we only make use of this for i = k). Since for all 1 ≤ i ≤ k, the set
AutM+i(X) is covered using (8) by at most f(M + i) cosets of Gw̃, we can define
Fk to be the set

Fk :=

f(M)⋃
i=1

ϕi ·Gw̃,

where ϕi ∈ AutM (X) for all i. It is immediate that AutM (X) ⊂ Fk and hence
Autk(X) ⊂ Fk. If ϕ ∈ Autk(X), then ϕ ◦ ϕi ∈ AutM+k(X) for all i. Since
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AutM+k(X) can be covered by f(M + k) ≤ f(M) · exp
(
M (2β−1)/(2−2β)) cosets of

Gw̃, it follows that at most f(M) ·
(
−1 + exp

(
M (2β−1)/(2−2β))) additional cosets

(beyond those that already appear in the definition of Fk) are needed to cover
AutM+k(X), and hence to also cover ϕ · Fk. Consequently,

|Fk4ϕFk|
|Fk|

≤ 2 exp
(
M (2β−1)/(2−2β))− 2 ≤ 2 exp

(
k(2β−1)/(2−2β)

)
− 2.

Since β < 1/2, this quantity tends to 0 as k → ∞. Therefore, (Fk)k∈N is a Følner
sequence and Aut(X) is amenable. �

We complete the proof of Theorem 1.1 with:

Theorem 3.5. Suppose (X,σ) is a minimal subshift and there exists β < 1/2 such
that

lim sup
n→∞

log(PX(n))

nβ
= 0.

Then every finitely generated and torsion free subgroup of Aut(X) has subexponen-
tial growth. Moreover, there are infinitely many n for which the growth function of
any such subgroup is at most exp(nβ/(1−β)).

Proof. Let G be a finitely generated, torsion free subgroup of Aut(X) and let R ∈ N
be fixed. We estimate the growth rate of |AutR·m(X)∩G| as m→∞. By the second
part of Lemma 3.1, there are infinitely many integers n for which there exists a word
wn ∈ Ln(X) that extends uniquely at least n1−β times to both the right and the
left. For each such n, let mn ∈ N be the largest integer for which R ·mn ≤ n1−β/2.
Then w extends uniquely at least 2R ·mn times to both the right and the left, and
|wn| ≤ (2R·mn+2R)1/(1−β). Let w̃n be the word obtained by extending wn exactly
2R · mn times to both the right and the left. Then, as in first step (Extendable
Words) of the proof of Theorem 3.4, we have that if ϕ1, ϕ2 ∈ AutR·mn(X)∩G and
ϕ1(w̃) = ϕ2(w̃), then ϕ1 and ϕ2 lie in the same coset of Gw̃. But by Lemma 3.3,
Gw̃ is finite and since G is torsion free, it follows that ϕ1 = ϕ2. Hence the size
of AutR·mn(X) ∩G is bounded by the number of words of the form ϕ(w̃n), where
ϕ ∈ AutR·mn(X) ∩G. So,

log |AutR·mn(X) ∩G| ≤ log (PX(|wn|+R))

≤ log
(
PX(d(2R ·mn + 2R)1/(1−β)e+R)

)
= o

((⌈
(2R ·mn + 2R)1/(1−β)e+R)

⌉
+R

)β)
= o

(
(mn)β/(1−β)

)
.

But mn → ∞ when n → ∞, and so this condition holds infinitely often. If
ϕ1, . . . , ϕm ∈ Aut(X) is a (symmetric) set of generators forG and if R is chosen such
that ϕ1, . . . , ϕm ∈ AutR(X), then for any k ∈ N and any i1, . . . , ik ∈ {1, . . . ,m},
we have

ϕi1 ◦ ϕi2 ◦ · · · ◦ ϕik ∈ AutR·k(X).

There are infinitely many k for which there exists n such that k = mn, and for
all such k we have that log of the number of reduced words of length at most Rk
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that may be written in ϕ1, . . . , ϕm is also o
(
kβ/(1−β)

)
. If γ : N → N is the growth

function of G, then

lim inf
k→∞

log γ(Rk)

Rk
= 0.

But since γ is submultiplicative, the limit converges, and so

lim
k→∞

γ(Rk)

Rk
= 0

and G has subexponential growth. The second claim in the theorem follows imme-
diately from the estimate of γ(Rmn). �

We complete the proof of Theorem 1.2 with:

Theorem 3.6. Suppose (X,σ) is a minimal subshift and there exists d ∈ N such
that

lim sup
n→∞

PX(n)

nd
= 0.

Then every finitely generated and torsion free subgroup of Aut(X) is virtually nilpo-

tent. Moreover, the step of the nilpotent subgroup is at most
⌊
−1+

√
8d−7

2

⌋
.

Proof. The proof is almost identical to that of Theorem 3.5. This time, by the
first part of Lemma 3.1, there exists C > 0 such that for infinitely many n there
is a word wn ∈ Ln(X) that extends uniquely at least Cn times to the right and
the left. As before, fix R ∈ N and for each such n define mn = bCn/2Rc. Then
wn extends uniquely at least 2R · mn times to both the right and the left and
|wn| ≤ 2R ·mn/C+ 2R. Then proceeding in the same way, if G is a finite subgroup
of Aut(X), then

|AutR·mn(X) ∩G| ≤ PX(|wn|+R)

≤ PX(d2R ·mn/C + 2Re)
= o

(
d2R ·mn/C + 2Red

)
= o((mn)d).

Proceeding as in the proof of Theorem 3.5, we have that

lim inf
k→∞

log γ(Rk)

(Rk)d
= 0.

By van den Dries and Wilkie’s [16] strengthening of Gromov’s Theorem [9] that
assumes that the complexity bound need only hold for infinitely many values, G is
virtually nilpotent and the nilpotent subgroup has polynomial growth rate at most

d− 1. By the Bass-Guivarc’h Formula [1, 10], the step is at most
⌊
−1+

√
8d−7

2

⌋
. �
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