
UNIFORMITY SEMINORMS ON `∞ AND APPLICATIONS

BERNARD HOST AND BRYNA KRA

Abstract. A key tool in recent advances in understanding arithmetic progres-

sions and other patterns in subsets of the integers is certain norms or semi-

norms. One example is the norms on Z/NZ introduced by Gowers in his proof
of Szemerédi’s Theorem, used to detect uniformity of subsets of the integers.

Another example is the seminorms on bounded functions in a measure preserv-

ing system (associated to the averages in Furstenberg’s proof of Szemerédi’s
Theorem) defined by the authors. For each integer k ≥ 1, we define seminorms

on `∞(Z) analogous to these norms and seminorms. We study the correlation

of these norms with certain algebraically defined sequences, which arise from
evaluating a continuous function on the homogeneous space of a nilpotent Lie

group on a orbit (the nilsequences). Using these seminorms, we define a dual

norm that acts as an upper bound for the correlation of a bounded sequence
with a nilsequence. We also prove an inverse theorem for the seminorms, show-

ing how a bounded sequence correlates with a nilsequence. As applications, we
derive several ergodic theoretic results, including a nilsequence version of the

Wiener-Wintner ergodic theorem, a nil version of a corollary to the spectral

theorem, and a weighted multiple ergodic convergence theorem.

1. Introduction

1.1. Norms and seminorms. In his proof of Szemerédi’s Theorem, Gowers [G]
introduced norms for functions defined on Z/NZ that count parallelepiped configu-
rations and can be used to detect certain patterns (such as arithmetic progressions)
in subsets of the integers. In [HK1], we defined seminorms on bounded measurable
functions on a measure preserving system, that can be viewed as averages over par-
allelepipeds and use them to control the norm of multiple ergodic averages (such
as one evaluated along arithmetic progressions). Although the original definitions
were quite different, it turns out that the Gowers norms and the ergodic seminorms
are almost the same object, but are defined on different spaces: one on the space of
functions on Z/NZ and the other on the space of bounded functions on a measure
space. We used the ergodic seminorms to define factors of a measure space, and
then showed that these factors have algebraic structure. This algebraic structure is
the main ingredient in proving convergence of multiple ergodic averages along arith-
metic progressions, and along other sequences. Gowers norms have since been used
in other contexts, including the proof of Green and Tao [GT1] that the primes con-
tain arbitrarily long arithmetic progressions. The connection between nilsystems
in ergodic theory and the algebraic nature of analogous combinatorial objects has
yet to be fully understood. The beginning of this is carried out by Green and Tao
(see [GT2], [GT3] and [GT4]), including an inverse theorem for the third Gowers
norm.

The second author was partially supported by NSF grant DMS-0555250.
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In this article, we define related seminorms on bounded sequences and prove
a structure theorem and an inverse theorem for it. We also give some ergodic
theoretic applications of these constructions. These applications include a version
of the Wiener-Wintner ergodic theorem extended to nilsequences, a spectral type
theorem for nilsequences, and a weighted ergodic theorem. Polynomial versions of
these results are contained in a forthcoming article. All these properties depend
on the connection to algebraic structures and we describe these structures more
precisely.

1.2. Nilsystems and nilsequences. In the inverse and structure theorems de-
scribed above, a key role is played by algebraic objects, the nilsystems:

Definition 1.1. Assume that G is a k-step nilpotent Lie group and Γ ⊂ G is a
discrete, cocompact subgroup of G. The compact manifold X = G/Γ is called a
k-step nilmanifold. The Haar measure µ of X is the unique probability measure
invariant under the action x 7→ g.x of G on X by left translations. Letting T
denote left multiplication by the fixed element τ ∈ G, we call (X, µ, T ) a k-step
nilmanifold1.

Loosely speaking, the Structure Theorem of [HK1] states that if one wants to
understand the multiple ergodic averages

1
N

N−1∑
n=0

f1(Tnx) . . . fk(T knx) ,

where k ≥ 1 is an integer, (X, µ, T ) is a measure preserving system, and f1, . . . , fk ∈
L∞(µ), one can replace each function by its conditional expectation on some nilsys-
tem. Thus one can reduce the problem to studying the same average in a nilsystem,
reducing averaging in an arbitrary system to a more tractable question.

A related problem is study of the multicorrelation sequence

cn :=
∫

Tnf · T 2nf · . . . · T knf dµ ,

where k ≥ 1 is an integer, (X, µ, T ) is a measure preserving system, and f ∈ L∞(µ).
In [BHK], we defined sequences that arise from nilsystems (the nilsequences) and
show that a multicorrelation sequence can be decomposed into a sequence that is
small in terms of density and a k-step nilsequence. We define this second term
precisely:

Definition 1.2. Let (X, µ, T ) be a k-step nilsystem, f : X → C a continuous
function, τ ∈ G, and x0 ∈ X. The sequence (f(τnx0) : n ∈ Z) is a basic k-
step nilsequence. If, in addition, the function f is smooth, then the sequence
(f(τnx0) : n ∈ Z) is called a smooth k-step nilsequence. A k-step nilsequence is
a uniform limit of basic k-step nilsequences.

The family of k-step nilsequences forms a closed, shift invariant subalgebra of se-
quences in `∞(Z). One step nilsequences are exactly the almost periodic sequences.
An example of a 2-step nilsequence is the sequence (exp(πin(n − 1)α) : n ∈ Z),
where α lies in the torus T = R/Z. (The collection of all 2-step nilsequences is
described fully and classified in [HK2].)

1X is endowed with its Borel σ-algebra X . In general, we omit the associated σ-algebra from our

notation, writing (X, µ, T ) for a measure preserving probability system rather than (X,X , µ, T ).
We implicitly assume that all measure preserving systems are probability systems.
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1.3. Direct theorems and inverse theorems. We define a new seminorm on
bounded sequences and use this seminorm, an associated dual norm, and nilse-
quences to derive direct and inverse theorems. These seminorms on `∞(Z) arise
via an averaging process, and there is more than one natural way to take such an
average. The first is looking along a particular sequence of intervals of integers
whose lengths tend to infinity, and taking the average over these intervals. This
corresponds, in some sense, to a local point of view, as such an averaging scheme
does not take into account what happens outside this particular sequence of inter-
vals. A second way to take an average is to allow all choices of intervals. This
uniform point of view gives us further information on the original sequence.

Averaging in Z, the first version gives rise to the classic notion of density, taking
the proportion of a set relative to the sequence of intervals [1, . . . , N ], while the
second gives rise to the slightly different notion of Banach density, where the density
is computed relative to any sequence of intervals whose lengths tend to infinity.
Each type of averaging gives rise for each integer k ≥ 1 to some sort of uniformity
measurement (seminorm, norm, or a version thereof) on bounded sequences.

We use the seminorms associate to each of these averaging methods to address
analogs of combinatorial results. A classical problem in combinatorics is to start
with a finite set A of integers (for example) and say something about properties of
sets that can be built from A, such as the sumset A + A or product set A ·A. Such
results are referred to as direct theorems. Inverse theorems start with the sumset,
product set, or other information derived from a finite set, and then try to deduce
information about the set itself.

We prove both a direct theorem and an inverse theorem. For the direct theorem,
we show that there is a dual norm that acts as an upper bound on the correlation of
a bounded sequence with a nilsequence. We also prove an inverse theorem for the
seminorms, showing how a bounded sequence correlates with a nilsequence. This
is an `∞ version of the Gowers Inverse Conjecture made by Green and Tao [GT3].
This conjecture was resolved by them for the third Gowers norm in [GT4].

Using the direct theorems, we derive a weighted multiple ergodic convergence
theorem. We believe that one should be able to use these methods to derive other
combinatorial results.

The tools used in this paper have several sources. One is a version of the Fursten-
berg Correspondence Principle (see [F]), used to translate the problems into ergodic
theoretic statements. Another is the connection of the seminorms we define with
the algebraic structure of nilsystems, using properties of the ergodic seminorms
developed in [HK1]. Throughout, we use some harmonic analysis on nilmanifolds.

This article can be viewed as an ergodic perspective on the development of a
“higher order Fourier analysis” that has been proposed by Green and Tao [GT3].
Our direct results develop harmonic analysis relative to the standard Fourier ana-
lytic methods and our local inverse results lend support to Green-Tao conjecture
of an inverse theorem for the Gowers norms.

1.4. Organization of the paper. In the next section, we define the seminorms
on `∞(Z) and give their basic properties. We then state the main results first for
k = 2 and then for general k, with the intention of clarifying the objects under
study. Section 3 gives the background on ergodic seminorms and nilsystems. In
Section 4, we give a presentation of the Correspondence Principle that allows us to
prove the properties of the `∞(Z) seminorms introduced in Section 2. In Section 5,
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we study the dual norm associated to these seminorms and use it to prove the direct
theorems on the seminorms. We prove the inverse theorems in Section 6, using an
extension of the Correspondence Principle and in Section 7 we give some ergodic
theoretic consequences of these results. Throughout we make use of the connection
with the ergodic seminorms.

2. Summary of the results

We introduce seminorms on `∞(Z) corresponding to the Gowers norms [G] in
the finite setting and to the seminorms in ergodic theory introduced in [HK1]. We
begin with some definitions and statements of the main properties. After defining
the relevant seminorms, we give the statements of the results, beginning with the
sample case of k = 2.

Notation. We write sequences as a = (an : n ∈ Z) and we write the uniform norm
of this sequence as ‖a‖∞.

By an interval, we mean an interval in Z. If I is an interval, |I| denotes its
length.

We write z 7→ Cz for complex conjugation in C. Thus Ckz = z if k is an even
integer and Ckz = z̄ if k is an odd integer.

For every k ≥ 1, points of Zk are written h = (h1, . . . , hk). For ε = (ε1, . . . , εk) ∈
{0, 1}k and h = (h1, . . . , hk) ∈ Zk, we define

|ε| = ε1 + . . . + εk and ε · h = ε1 · h1 + . . . + εk · hk .

Further notation on averages of sequences of intervals is given at the end of this
Section.

2.1. The local “seminorms” and the uniformity seminorms on `∞(Z). We
define two quantities that are measurements on bounded sequences. The proofs
rely on material from a variety of sources (summarized in Section 3) and some
machinery that we develop, and so we postpone them until Section 4. In fact,
some of the properties stated in this section can be proved via direct computations.
However, we prefer proofs relying on the Furstenberg correspondence principle, as
we use a modification of this principle to prove stronger results.

We introduce the property that allows us to define certain “seminorms.”

Definition 2.1. Let k ≥ 1 be an integer, a = (an : n ∈ Z) be a bounded sequence,
and I = (Ij : j ≥ 1) be a sequence of intervals whose lengths tend to infinity. We
say that the sequence a satisfies property P(k) on I if for all h = (h1, . . . , hk) ∈ Zk,
the limit

lim
j→+∞

1
|Ij |

∑
n∈Ij

∏
ε∈{0,1}k

C |ε|an+h·ε

exists. We denote this limit by ch(I,a).

Given a bounded sequence a and a sequence of intervals whose lengths tend to
infinity, one can always pass to a subsequence on which a satisfies P(k).

Proposition 2.2. Let k ≥ 1 be an integer, I = (Ij : j ≥ 1) be a sequence of
intervals whose lengths tend to infinity, and let a be a bounded sequence satisfying
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property P(k) on I. Then then limit

lim
H→+∞

1
Hk

H−1∑
h1,...,hk=0

ch(I,a) ,

exists and is non-negative.

Using this proposition, we define:

Definition 2.3. For an integer k ≥ 1, a sequence of intervals I = (Ij : j ≥ 1), and
a bounded sequence a satisfying property P(k) on I, define

‖a‖I,k =
(

lim
H→+∞

1
Hk

H−1∑
h1,...,hk=0

ch(I,a)
)1/2k

.

We call ‖·‖I,k a local “seminorm” (with quotes on the word seminorm), because
the space of sequences satisfying property P(k) on I is not a vector space. On the
other hand, we do have:

Proposition 2.4. Assume that k ≥ 1 is an integer, a and b are bounded sequences,
and I is a sequence of intervals whose lengths tend to infinity. If a,b and a + b
satisfy property P(k) on I, then ‖a + b‖I,k ≤ ‖a‖I,k + ‖b‖I,k.

The “seminorms” are also non-increasing with k:

Proposition 2.5. If the bounded sequence a satisfies properties P(k) and P(k +1)
on the sequence of intervals I, then ‖a‖I,k ≤ ‖a‖I,k+1.

We use the “seminorm” to define a measure of uniformity (a uniformity semi-
norm) on bounded sequences:

Definition 2.6. Let a = (an : n ∈ Z) be a bounded sequence and let k ≥ 1 be
an integer. We define the k-uniformity seminorm ‖a‖U(k) to be the supremum of
‖a‖I,k, where the supremum is taken over all sequences of intervals I on which a
satisfies property P(k).

Using Proposition 2.4, by passing, if necessary, to subsequences of the sequences
of intervals, we immediately deduce:

Proposition 2.7. For every integer k ≥ 2, ‖·‖U(k) is a seminorm on `∞(Z).

2.2. Comments on the definitions.

2.2.1. The definitions of ‖a‖I,k and ‖a‖U(k) are very similar to those of the Gowers
norms introduced in [G] in the finite setting (meaning, for sequences indexed by
Z/NZ). In the sequel, we establish analogs of properties of Gowers norms for the
`∞(Z) seminorms. The `∞(Z) seminorms are also close relatives of the ergodic
seminorms of [HK1]. In the sequel we show that this resemblance is not merely
formal; the link between the `∞(Z) seminorms and the ergodic seminorms is a
basic tool of this paper.

2.2.2. It can be shown that in Proposition 2.2 the averages on [0,H − 1]k can be
replaced by averages on any sequence of “rectangles” (IH,1×. . . IH,k : H ≥ 1), where
IH,j is an interval for every j ∈ {1, . . . , k} and every H and minj |IH,j | → +∞ as
H → +∞; more generally we could also average over any Følner sequence in Zk.
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2.2.3. For clarity, we explain what the definitions mean when k = 1. (We discuss
k = 2 in the next section.) Let a = (an : n ∈ Z) be a bounded sequence and let
I = (Ij : j ≥ 1) be a sequence of intervals whose lengths tend to infinity.

Property P(1) says that for every h ∈ Z, the averages

1
|Ij |

∑
n∈Ij

anan+h

converge as j → +∞ and the definition of ‖a‖I,1 is

‖a‖I,1 =
(

lim
H→+∞

1
H

H−1∑
h=0

lim
j→+∞

1
|Ij |

∑
n∈Ij

anan+h

)1/2

.

Furthermore,

‖a‖I,1 ≥ lim sup
j→+∞

∣∣∣ 1
|Ij |

∑
n∈Ij

an

∣∣∣
and

‖a‖U(1) = lim
N→+∞

sup
M∈Z

∣∣∣ 1
N

M+N−1∑
n=M

an

∣∣∣ .

The first property follows easily from the van der Corput Lemma (see Appendix A)
and probably the second can also be proved directly. Both properties also follow
from the discussion in Section 4.2.

2.2.4. The difference between the local “seminorms” and the uniformity seminorms
is best illustrated by considering a randomly generated sequence. Let a = (an : n ∈
Z) be a random sequence, where the an are independent random variables, taking
the values +1 and −1 each with probability 1/2. Let I = (Ij : j ≥ 1) be a sequence
of intervals whose lengths tend to infinity. Then for every integer k, the sequence a
satisfies property P(k) on I almost surely and ‖a‖I,k = 0. On the other hand, we
have that ‖a‖U(k) = 1 almost surely. Indeed, for every integer j ≥ 1 there exists an
interval Ij of length j on which the sequence a is constant and equal to 1; taking
I to be this sequence of intervals, we have that ‖a‖I,k = 1 for every integer k ≥ 1.
The apparent contradiction only arises because of the choice of uncountably many
sequences of intervals.

2.2.5. There are nontrivial bounded sequences for which the uniformity seminorm
is 0. This is illustrated by the following particular case of Corollary 3.11.

Proposition 2.8. Let k ≥ 1 be an integer and assume that (X, T ) is a uniquely
ergodic system with invariant measure µ) that is weakly mixing. If f is a function
on X with

∫
f dµ = 0, then for every x ∈ X, the sequence (f(Tnx) : n ∈ Z) has 0

k-uniformity seminorm.

2.3. The case k = 2. To further clarify the statements, we explain some of our
general results in the particular case that k = 2. These results are prototypes for
the general case, but are simpler to state and prove. Most of these results can be
proved without resorting to any significant machinery and we include one of the
simpler proofs here.

Notation. We write T = R/Z. For t ∈ T, e(t) = exp(2πit).
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The first result explains the role of the local “seminorm”, namely that it acts as
an upper bound:

Proposition 2.9. If a = (an : n ∈ Z) is a bounded sequence satisfying P(2) on the
sequence of intervals I = (Ij : j ≥ 1), then

lim sup
j→+∞

sup
t∈T

∣∣∣ 1
|Ij |

∑
n∈Ij

ane(nt)
∣∣∣ ≤ ‖a‖I,2 .

Proof. We can assume that ‖a‖∞ ≤ 1. By the van der Corput Lemma (Appen-
dix A), Cauchy-Schwartz Inequality, and another application of the van der Corput
Lemma, we have that for all integers j,H ≥ 1, and all t ∈ T,∣∣∣ 1

|Ij |
∑
n∈Ij

ane(nt)
∣∣∣4 ≤ ( cH

|Ij |
+

∣∣∣ H∑
h=−H

H − |h|
H2

1
|Ij |

∑
n∈Ij

anan+h

∣∣∣)2

≤ c′H

|Ij |
+

H∑
h=−H

H − |h|
H2

∣∣∣ 1
|Ij |

∑
n∈Ij

anan+h

∣∣∣2
≤ c′′H

|Ij |
+

H∑
`=−H

H∑
h=−H

H − |`|
H2

H − |h|
H2

∣∣∣ 1
|Ij |

∑
n∈Ij

anan+h an+`an+h+`

∣∣∣ ,

where c, c′, c′′ are universal constants. Taking the limit as j → +∞ first (recall that
the sequence a satisfies P(2) on the sequence of intervals I), and then as H → +∞,
we have the announced result. �

We use this to show how such a sequence a correlates with almost periodic
sequences. First a definition:

Definition 2.10. A sequence of the form (e(nt) : n ∈ Z) is called a complex expo-
nential sequence. A sequence is a trigonometric polynomial if it is a finite linear
combination of complex exponential sequences. An almost periodic sequence is a
uniform limit of trigonometric polynomials.

By approximation, it follows immediately from Proposition 2.9 that:

Corollary 2.11. Let b = (bn : n ∈ Z) be an almost periodic sequence. Then for
every δ > 0, there exists a constant c = c(b, δ) such that if a bounded sequence
a = (an : n ∈ Z) satisfies property P(2) on a sequence of intervals I = (Ij : j ≥ 1),
then

lim sup
j→+∞

∣∣∣ 1
|Ij |

∑
n∈Ij

anbn

∣∣∣ ≤ c‖a‖I,2 + δ‖a‖∞ .

For some almost periodic sequences we have more precise bounds. A smooth
almost periodic sequence b = (bn : n ∈ Z) (that is, a smooth 1-step nilsequence)
can be written as

bn =
∞∑

m=1

λme(ntm) ,

where tm, m ≥ 1, are distinct elements of T and λm ∈ C, m ≥ 1, satisfy
∞∑

m=1

|λm| < +∞ .
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We define

|||b|||∗2 =
( ∞∑

m=1

|λm|4/3
)3/4

and we have that:

Proposition 2.12. Let a = (an : n ∈ Z) be a bounded sequence satisfying property
P(2) on the sequence of intervals I = (Ij : j ≥ 1) and b = (bn : n ∈ Z) be a smooth
almost periodic sequence. Then,

lim sup
j→+∞

∣∣∣ 1
|Ij |

∑
n∈Ij

anbn

∣∣∣ ≤ ‖a‖I,2 |||b|||∗2 .

The constant |||b|||∗2 here is the best possible. Undoubtedly, one could prove this
result without resorting to special machinery, but we do not attempt this method
as this is a particular case of a general result (Theorem 2.13). In fact we show that
the norm ||| · |||∗2 acts as the dual of the seminorm ‖·‖U(2).

2.4. Main results. Let k ≥ 2 be an integer. In section 5.3, for every (k − 1)-step
nilmanifold X we define a norm ||| · |||∗k on the space C∞(X) of smooth functions
on X. We defer the precise definition, as it requires development of some further
background. Let b be a smooth (k − 1)-step nilsequence. Then there exists an
ergodic (k − 1)-step nilsystem (Corollary 3.3), a smooth function f on x, and a
point x0 ∈ X with

bn = f(Tnx0) for every n ∈ Z .

The same sequence b can be represented in this way in several manners, with
different systems, different starting points, and different functions, but we show
(Corollary 5.8) that all associated functions f have the same norm ||| · |||∗k. Therefore
we can define |||b|||∗k = |||f |||∗k where f is any of the possible functions.

2.4.1. Direct results. Using this norm, we have generalizations of the results already
given for k = 2:

Theorem 2.13 (Direct Theorem). Let a = (an : n ∈ Z) be a bounded sequence
that satisfies property P(k) on the sequence of intervals I = (Ij : j ≥ 1). For all
(k − 1)-step smooth nilsequences b, we have

lim sup
j→+∞

∣∣∣ 1
|Ij |

∑
n∈Ij

anbn

∣∣∣ ≤ ‖a‖I,k |||b|||∗k .

By density, Theorem 2.13 immediately implies:

Corollary 2.14. Let b = (bn : n ∈ Z) be a (k−1)-step nilsequence and δ > 0. There
exists a constant c = c(b, δ) such that for every bounded sequence a = (an : n ∈ Z)
satisfying property P(k) on a sequence of intervals I = (Ij : j ≥ 1), we have

lim sup
j→+∞

∣∣∣ 1
|Ij |

∑
n∈Ij

anbn

∣∣∣ ≤ c‖a‖I,k + δ‖a‖∞ .

Using these results, we immediately deduce uniform versions:
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Corollary 2.15. Let b = (bn : n ∈ Z) be a smooth (k − 1)-step nilsequence and
a = (an : n ∈ Z) be a bounded sequence. Then

lim
N→+∞

sup
M∈Z

∣∣∣ 1
N

N+M−1∑
n=M

anbn

∣∣∣ ≤ ‖a‖U(k) |||b|||∗k .

Let b = (bn : n ∈ Z) be a (k − 1)-step nilsequence and let δ > 0. There exists a
constant c = c(b, δ) such that for every bounded sequence a = (an : n ∈ Z),

lim
N→+∞

sup
M∈Z

∣∣∣ 1
N

N+M−1∑
n=M

anbn

∣∣∣ ≤ c‖a‖U(k) + δ‖a‖∞ .

We refer to these results as direct results, meaning that we start with a sequence
and derive its correlation with nilsequences. One can view them as upper bounds,
because they give an upper bound between the correlation of a sequence with a
nilsequence.

2.4.2. Inverse results. The next results are in the opposite direction of the direct
results of the previous section, and we refer to them as “inverse results”.

Theorem 2.16 (Inverse Theorem). Let a = (an : n ∈ Z) be a bounded sequence.
Then for every δ > 0, there exists a (k−1)-step smooth nilsequence b = (bn : n ∈ Z)
such that

|||b|||∗k = 1 and lim
N→+∞

sup
M∈Z

∣∣∣ 1
N

M+N−1∑
n=M

anbn

∣∣∣ ≥ ‖a‖U(k) − δ .

Summarizing this theorem and Corollary 2.15 we have

Corollary 2.17. For every bounded sequence a = (an : n ∈ Z),

‖a‖U(k) = sup
b=(bn) is a smooth

nilsequence and |||b|||∗k=1

lim
N→+∞

sup
M∈Z

∣∣∣ 1
N

N+M−1∑
n=M

anbn

∣∣∣ .

This means that we can view the norm ||| · |||∗k as the dual norm of the uniformity
seminorm ‖·‖U(k).

Corollary 2.18. For a bounded sequence a = (an : n ∈ Z), the following properties
are equivalent:

(i) ‖a‖U(k) = 0.

(ii) lim
N→+∞

sup
M∈Z

∣∣∣ 1
N

N+M−1∑
n=M

anbn

∣∣∣= 0 for every (k − 1)-step smooth nilsequence

b = (bn : n ∈ Z).

(iii) lim
N→+∞

sup
M∈Z

∣∣∣ 1
N

N+M−1∑
n=M

anbn

∣∣∣= 0 for every (k − 1)-step nilsequence b =

(bn : n ∈ Z).

For k = 2, Corollary 2.18, Proposition 2.9, and a density argument imply that
the three equivalent conditions of Corollary 2.18 are also equivalent to

(iv) For every t ∈ T, lim
N→+∞

sup
M∈Z

∣∣∣ 1
N

N+M−1∑
n=M

ane(nt)
∣∣∣= 0.
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(v) lim
N→+∞

sup
t∈T

sup
M∈Z

∣∣∣ 1
N

M+N−1∑
n=M

ane(nt)
∣∣∣ = 0.

2.4.3. A counterexample. It is important to note that the inverse results have no
version involving local “seminorms” and we give here an example illustrating this
point.

Let (Nj : j ≥ 1) be an increasing sequence of integers with N1 = 0 and tending
sufficiently fast to +∞. For j ≥ 1 let Ij = [Nj , Nj+1 − 1] and let I = (Ij : j ≥ 1).
Let the sequence a be defined by an = e(n/j) if Nj ≤ |n| < Nj+1. Then ‖a‖I,2 = 1
and for every t ∈ T, the average of ane(nt) on the interval Ij converges to zero as
j → +∞. Therefore, for every almost periodic sequence b, the average of anbn on
Ij also converges to zero.

This highlights a difference between the finite case, where the norms are defined
on Z/NZ, and the infinite case. One can not construct such a sequence where the
behavior worsens as one tends to infinity.

2.5. A condition for convergence.

Theorem 2.19. For a bounded sequence a = (an : n ∈ Z), the following are equiv-
alent.

(i) For every δ > 0, the sequence a can be written as a′ + a′′ where a′ is a
(k − 1)-step nilsequence and ‖a′′‖U(k) < δ.

(ii) For every (k − 1)-step nilsequence c = (cn : n ∈ Z), the averages of ancn

converge, meaning that the limit

lim
j→+∞

1
|Ij |

∑
n∈Ij

ancn

exists for every sequence (Ij : j ≥ 1) of intervals whose lengths tend to
infinity.

In Proposition 7.1, we give a method to build sequences satisfying the (equiva-
lent) properties of Theorem 2.19, checking that the sequences verify the first prop-
erty. As this proposition uses material not yet defined, we do not state it here but
only give two examples of its application.

A generalized polynomial is defined to be a real valued function that is obtained
from the identity function and real constants by using (in arbitrary order) the
operations of addition, multiplication, and taking the integer part. We have:

Proposition 2.20. Let p be a generalized polynomial and for every n ∈ Z, let
{p(n)} be the fractional part of p(n). Then the sequences ({p(n)} : n ∈ Z) and
(e(p(n)) : n ∈ Z) satisfy the (equivalent) properties of Theorem 2.19.

The Thue-Morse sequence a = (an : n ∈ Z) is given by an = 1 if the sum of the
digits of |n| written in base 2 is odd and an = 0 otherwise. In Section 7.2 we show:

Proposition 2.21. The Thue-Morse sequence satisfies the properties of Theo-
rem 2.19.

A similar method can be used for other sequences, for example for all sequences
associated to primitive substitutions of constant length (see [Q] for the definition).

2.6. An application to ergodic theory.
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2.6.1. We recall a classical result in ergodic theory.

Theorem (Wiener-Wintner ergodic theorem [WW]). Let (X, µ, T ) be an ergodic
system and φ ∈ L∞(µ). Then there exists X0 ⊂ X with µ(X0) = 1 such that

1
N

N−1∑
n=0

φ(Tnx) e(nt)

converges for every x ∈ X0 and every t ∈ T.

The important point here is that the set X0 does not depend on the choice of t.
We also recall an immediate corollary of the spectral theorem:

Corollary (of the spectral theorem). Let a = (an : n ∈ Z) be a bounded sequence
and assume that

lim
N→+∞

N−1∑
n=0

ane(nt)

exists for every t ∈ T. Then for every system (Y, ν, S) and every f ∈ L2(ν), the
averages

1
N

N−1∑
n=0

anSnf

converge in L2(ν) as N → +∞.

Putting these two results together, we have:

Corollary. Assume that (X, µ, T ) is an ergodic system and φ ∈ L∞(µ). There
exists X0 ⊂ X with µ(X0) = 1 such that for every x ∈ X0, every system (Y, ν, S),
and every f ∈ L2(ν), the averages

1
N

N−1∑
n=0

φ(Tnx)Snf

converge in L2(µ) as N → +∞.

The strength of this result is that the set X0 does not depend either on Y or
on f . We say that for every x ∈ X0, the sequence (φ(Tnx)) is a universally good
for the convergence in mean of ergodic averages. In fact, for almost every x, this
sequence is also universally good for the almost everywhere convergence [BFKO],
but we do not address this strengthening here.

2.6.2. We generalize these results for multiple ergodic averages. We start with a
generalization of the Wiener-Wintner Theorem, where we can replace the exponen-
tial sequence e(nt) by an arbitrary nilsequence.

Theorem 2.22 (A generalized Wiener-Wintner Theorem). Let (X, µ, T ) be an
ergodic system and φ be a bounded measurable function on X. Then there exists
X0 ⊂ X with µ(X0) = 1 such that for every x ∈ X0, the averages

1
N

N−1∑
n=0

φ(Tnx) bn

converge as N → +∞ for every x ∈ X0 and every nilsequence b = (bn : n ∈ Z).
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We give a sample application. Generalized polynomials were defined in Sec-
tion 2.5.

Corollary 2.23. Let (X, µ, T ) be an ergodic system, φ be a bounded measurable
function on X, and X0 be the subset of X introduced in Theorem 2.22. Then for
every x ∈ X0 and every generalized polynomial p, the averages

1
N

N−1∑
n=0

φ(Tnx){p(n)} and
1
N

N−1∑
n=0

φ(Tnx)e(p(n))

converge.

(Recall that {p(n)} denotes the fractional part of p(n).) For standard polynomial
sequences, this result was proven by Lesigne [Les2].

We next have a version of the spectral result for higher order nilsequences:

Theorem 2.24 (A substitute for the corollary of the Spectral Theorem). Let k ≥ 1
be an integer and a = (an : n ∈ Z) be a bounded sequence such that the averages

1
N

N−1∑
n=0

anbn

converge as N → +∞ for every k-step nilsequence b = (bn : n ∈ Z). Then for every
system (Y, ν, S) and every f1, . . . , fk ∈ L∞(ν), the averages

(1)
1
N

N−1∑
n=0

an Snf1.S
2nf2. · · · .Sknfk

converge in L2(ν).

Combining these theorems, we immediately deduce:

Theorem 2.25. Let (X, µ, T ) be an ergodic system and φ ∈ L∞(µ). Then there
exists X0 ⊂ X with µ(X0) = 1 such that for every x0 ∈ X, every system (Y, ν, S),
every integer k ≥ 1, and all functions f1, . . . , fk ∈ L∞(ν), the averages

1
N

N−1∑
n=0

φ(Tnx) Snf1.S
2nf2. · · · .Sknfk

converge in L2(ν) as N → +∞.

In short, for every x ∈ X0, the sequence (φ(Tnx)) is universally good for the
convergence in mean of multiple ergodic averages.

While Theorems 2.22 and 2.24 are results about nilsequences, nilsequences do
not appear in the statement of Theorem 2.25: they occur only as tools in the proof,
playing the role of complex exponentials in the classical results.

By successively using Theorems 2.19 and 2.24, we obtain further examples of
universally good sequences for the convergence in mean of multiple ergodic averages.
For example, by Proposition 2.20, for every generalized polynomial p the sequence
({p(n)} : n ∈ Z) is a universally good sequence for the convergence in mean of
multiple ergodic averages, as is the sequence (e(p(n)) : n ∈ Z). By Proposition 2.21,
so is the Thue-Morse sequence.
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2.7. Some notation for averages. In this paper we continuously take limits of
averages on sequences of intervals. Writing the cumbersome formulas or replacing
them by long explanations would make the paper unreadable and so we introduce
some short notation. However, we continue using explicit formulas in the main
statements.

We have several different notions of averaging for a sequence in `∞(Z): over a
particular sequence of intervals or uniformly over all intervals.

For averaging over a particular sequence of intervals, we define:

Definition 2.26. Let a = (an : n ∈ Z) be a bounded sequence and let I = (Ij : j ≥
1) be a sequence of intervals whose lengths |Ij | tend to infinity. Define

limsup |averagesI(an)| = lim sup
j→+∞

∣∣∣ 1
|Ij |

∑
n∈Ij

an

∣∣∣ .

The averages of the sequence a on I converge if the limit

lim
j→+∞

1
|Ij |

∑
n∈Ij

an

exists. We denote this limit by lim averagesI
(
an

)
and call this the average over I

of the sequence a.

For taking a uniform average, we define:

Definition 2.27. Let a = (an : n ∈ Z) be a bounded sequence. The upper limit of
the averages of the sequence a is defined to be

limsup |averages(an)| = lim
N→+∞

sup
M∈Z

∣∣∣ 1
N

M+N−1∑
n=M

an

∣∣∣ .

(Note that this limit exists by subadditivity.)
The averages of the sequence a converge if the limit lim averagesI

(
an

)
exists for

all sequences of intervals I = (Ij : j ≥ 1) whose lengths |Ij | tend to infinity. We
denote this (common) limit by lim averages

(
an

)
and call this the uniform average

of the sequence a.

Assuming the existence of the uniform average, it follows that

lim
N→+∞

sup
M∈Z

∣∣∣lim averages
(
an

)
− 1

N

M+N−1∑
n=M

an

∣∣∣ = 0 .

3. Some tools

3.1. Nilmanifolds and nilsystems.

3.1.1. The definitions. Short definitions were given in the introduction and we re-
peat them here in a more complete form.

Let G be a group. For g, h ∈ G, we write [g, h] = ghg−1h−1 for the commutator
of g and h and we write [A,B] for the subgroup spanned by {[a, b] : a ∈ A, b ∈ B}.
The commutator subgroups Gj , j ≥ 1, are defined inductively by setting G1 = G
and Gj+1 = [Gj , G]. Let k ≥ 1 be an integer. We say that G is k-step nilpotent if
Gk+1 is the trivial subgroup.

Let G be a k-step nilpotent Lie group and Γ a discrete cocompact subgroup of
G. The compact manifold X = G/Γ is called a k-step nilmanifold. The group G
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acts on X by left translations and we write this action as (g, x) 7→ g.x. The Haar
measure µ of X is the unique probability measure on X invariant under this action.

Let τ ∈ G and T be the transformation x 7→ τ.x of X. Then (X, T, µ) is called
a k-step nilsystem. When the measure is not needed for results, we omit and write
that (X, T ) is a k-step nilsystem.

Nilsystems are distal topological dynamical systems. This means that, if dX is
a distance on X defining its topology, then for every x, x′ ∈ X,

if x 6= x′, then inf
n∈Z

dX(Tny, Tny′) > 0 .

Let f be a continuous (respectively, smooth) function on X and x0 ∈ X. The se-
quence (f(Tnx0) : n ∈ Z) is called a basic (respectively, smooth) k-step nilsequence.
A k-step nilsequence is a uniform limit of basic k-step nilsequences. Therefore,
smooth k-step nilsequences are dense in the space of all k-step nilsequences under
the uniform norm.

The Cartesian product of two k-step nilsystems is again a k-step nilsystem. It
follows that the space of k-step nilsequences is an algebra under pointwise addition
and multiplication. Moreover, this algebra is invariant under the shift.

As an example, 1-step nilsystems are translations on compact abelian Lie groups
and 1-step nilsequences are exactly almost periodic sequences. For examples of
2-step nilsystems and a detailed study of 2-step nilsequences, see [HK2].

A general reference on nilsystems is [AGH] and the results summarized in the
next few sections are contained in the literature. See, for example [Les1] and [Lei].

3.1.2. Ergodicity.

Theorem 3.1. Let k ≥ 1 be an integer. For a k-step nilsystem (X = G/Γ, T ) with
Haar measure µ, the following properties are equivalent:

(i) (X, T ) is transitive, meaning that it admits a dense orbit.
(ii) (X, T ) is minimal, meaning that every orbit is dense.
(iii) (X, T ) is uniquely ergodic.
(iv) (X, µ, T ) is ergodic.

When these properties are satisfied, we say that the system is ergodic, even in
statements of topological nature (that is, without mention of the measure).

Theorem 3.2. Let k ≥ 1 be an integer, (X = G/Γ, T ) be a k-step nilsystem where
T is the translation by τ ∈ G. Let x0 ∈ X and let Y be the closed orbit of x0,
meaning that Y is the closure of the orbit {Tnx0 : n ∈ Z}. Then (Y, T ) is a k-step
nilsystem. More precisely, there exist a closed subgroup G′ of G containing τ , such
that Γ′ = Γ ∩G′ is cocompact in G′ and Y = G′/Γ′.

If (f(Tnx0) : n ∈ Z) is a basic (respectively, smooth) nilsequence, by substituting
the closed orbit of x0 for X, we deduce:

Corollary 3.3. For every basic (respectively, smooth) k-step nilsequence a =
(an : n ∈ Z), there exists an ergodic k-step nilsystem (X, T ), x0 ∈ X, and a contin-
uous (respectively, smooth) function f on X with an = f(Tnx0) for every n ∈ Z.

Corollary 3.4. Let a = (an : n ∈ Z) be a nilsequence. Then the averages of a
converge.
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Proof. By density, we can restrict to the case that a is a basic nilsequence, and we
write it as in Corollary 3.3. By unique ergodicity of (X, T ), the averages converge
to

∫
f dµ, where µ is the Haar measure of X. �

3.1.3. A criteria for ergodicity.

Theorem 3.5. Let k ≥ 1 be an integer, (X = G/Γ, T ) be a k-step nilsystem, and
assume that T is translation by τ ∈ G. Assume that

(*) The group G is spanned by the connected component G0 of its unit and
by τ .

Then (X, T ) is ergodic if and only if the translation induced by τ on the compact
abelian group Z = G/G2Γ is ergodic.

Conversely, let (X = G/Γ, T ) be an ergodic nilsystem where T is the translation
by τ ∈ G. Let G1 be the subgroup spanned by G0 and τ and set Γ1 = Γ ∩ G1.
Then G1 is an open subgroup of G, Γ1 is a discrete cocompact subgroup of G1,
and by ergodicity, the image of G1 in X under the natural projection is onto. We
can therefore identify X with G1/Γ1. Thus we can assume that hypothesis (*) of
Theorem 3.5 is satisfied. Throughout this paper, we implicitly assume that this
hypothesis holds.

3.1.4. The case of several commuting transformations. Let X = G/Γ be a nilman-
ifold and let τ1, . . . , τ` be commuting elements of G. For 1 ≤ i ≤ ` let Ti : X → X
be the translation by τi. Then the results of Section 3.1.2 still hold, modulo the
obvious changes. We do not give the modified statements here, with the exception
of Theorem 3.5:

Theorem 3.6. Let X = G/Γ be a nilmanifold, τ1, . . . , τ` be commuting elements
of G, and for 1 ≤ i ≤ ` let Ti : X → X be the translation by τi. Assume that:

(**) The group G is spanned by the connected component G0 of its unit and
by τ1, . . . , τ`.

Then X is ergodic under the action of T1, T2, . . . , T` if and only if the action induced
by these transformations on the compact abelian group Z = G/G2Γ is ergodic.

3.2. The measures µ[k] and HK-seminorms.
In the rest of this section we consider arbitrary ergodic systems and we assume

that k ≥ 1 is an integer. We review the construction and properties of certain
objects on X2k

defined in [HK1].

3.2.1. Some notation. We introduce some notation to keep track of the 2k copies
of X. If X is a set, we write X [k] = X2k

and index these copies of X by {0, 1}k.
An element of X [k] is written as

x = (xε : ε ∈ {0, 1}k) .

We recall that for ε ∈ {0, 1}k and h ∈ Zk, we write |ε| = ε1 + · · · + εk and ε · h =
ε1h1 + · · ·+ εkhk.

We write the element with all 0’s of {0, 1}k as 0 = (0, 0, . . . , 0). We often give
the 0-th coordinate of a point of X [k] a distinguished role and we write

X [k] = X ×X
[k]
∗ , where X

[k]
∗ = X2k−1 .
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The coordinates of X
[k]
∗ are indexed by the set

{0, 1}k
∗ = {0, 1}k \ {0}

and a point of X [k] is often written

x = (x0, x∗) , where x∗ = (xε : ε ∈ {0, 1}k
∗) .

When (X, µ, T ) is a measure preserving system, we also have notation for some
transformations that are naturally defined on X [k]. Namely, we write T [k] for the
transformation T × T × . . . × T , taken 2k times. Moreover, if i ∈ {1, . . . , k}, we
define

(Ti
[k]x)ε =

{
T (xε) if εi = 1
xε otherwise .

For convenience, we also write X [0] = X and T [0] = T .

3.2.2. Measures and HK-seminorms. Throughout the rest of this section, (X, µ, T )
denotes an ergodic system.

By induction, for every integer k ≥ 0 we define a measure µ[k] on X [k] that
is invariant under T [k]. We set µ[0] = µ. For k ≥ 1, making the natural identi-
fication of X [k] with X [k−1] × X [k−1], we write x = (x′, x′′) for a point of X [k],
with x′, x′′ ∈ X [k−1]. Let I [k−1] denote the invariant σ-algebra of the system
(X [k], µ[k−1], T [k−1]). We define µ[k] to be the relatively independent joining of
µ[k−1] with itself over I [k−1], meaning that if F,G are bounded functions on X [k−1],
then∫

X[k]
F (x′)G(x′′) dµ[k](x) =

∫
X[k−1]

E(F | I [k−1])(y) · E(G | I [k−1])(y) dµ[k−1](y) .

By induction, all the marginals of µ[k] (that is, the images of this measure under
the natural projections X [k] → X) are equal to µ.

Since (X [0], µ[0], T [0]) = (X, µ, T ) is ergodic, I [0] is the trivial σ-algebra and
µ[1] = µ × µ. But for k ≥ 2 the system (X [k−1], µ[k−1], T [k−1]) is not necessarily
ergodic and µ[k] is not in general the product measure.

For k ≥ 1 and every f ∈ L∞(µ),∫
X[k]

∏
ε∈{0,1}k

C |ε|f(xε) dµ[k](x)

=
∫

X[k−1]

∣∣∣E( ∏
η∈{0,1}k−1

C |η|f(yη)
∣∣∣I [k−1]

)∣∣∣2 dµ[k−1](y) ≥ 0

and so we can define the HK-seminorm

|||f |||k =
(∫

X[k]

∏
ε∈{0,1}k

C |ε|f(xε) dµ[k](x)
)1/2k

.

To avoid ambiguities when several measures are present, we sometimes write |||f |||µ,k

instead of |||f |||k.
In [HK1], we show that ||| · |||k is a seminorm on L∞(µ). These seminorms satisfy

an inequality similar to the Cauchy-Schwartz-Gowers inequality for Gowers norms.



UNIFORMITY SEMINORMS ON `∞ AND APPLICATIONS 17

Namely, let fε, ε ∈ {0, 1}k, be 2k bounded functions on X. Then

(2)
∣∣∣∫ ∏

ε∈{0,1}k

fε(xε) dµ[k](x)
∣∣∣ ≤ ∏

ε∈{0,1}k

|||fε|||k .

We also have that consecutive HK-seminorms satisfy |||f |||k+1 ≥ |||f |||k, and by an
application of the ergodic theorem,

(3) |||f |||k+1 = lim
H→+∞

( 1
H

H−1∑
h=0

|||Thf · f |||2
k

k

)1/2k+1

.

Using the definition and the fact that the marginals of µ[k] are equal to µ, we
have that for all f ∈ L2k

(µ),

(4) |||f |||k ≤ ‖f‖L2k (µ) .

In fact, the definition of the seminorm ||| · |||k can be extended to L2k

(µ) with the
same properties.

3.3. Convergence results.

3.3.1. Averaging along parallelepipeds. These seminorms and a geometric descrip-
tion of the factors they define are used to show:

Theorem 3.7 ([HK1], Theorem 13.1). Let fε, ε ∈ {0, 1}k
∗ be 2k − 1 functions in

L∞(µ). Then the averages

1
Hk

H−1∑
h1,...,hk=0

∏
ε∈{0,1}k

∗

T ε·hfε

converge in L2(µ) and the limit g of these averages is characterized by∫
h g dµ =

∫
h(x0)

∏
ε∈{0,1}k

∗

fε(xε) dµ[k](x)

for every h ∈ L∞(µ).

In fact, we could replace the averages on [0,H − 1]k by averages over any Følner
sequence in Zk. Applying Theorem 3.7 to the case that fε = C |ε|f for every ε, we
obtain:

Corollary 3.8. For every f ∈ L∞(µ), the averages

(5)
1

Hk

H−1∑
h1,...,hk=0

∏
ε∈{0,1}k

∗

C |ε|f(T ε·hx)

converge in L2(µ) as H → +∞.

This leads us to a definition:

Definition 3.9. We denote the limit of (5) by Dkf and call this function the dual
function of f .
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It follows that the dual function Dkf satisfies:

(6)
∫
Dkf . h dµ =

∫
h(x0)

∏
ε∈{0,1}k

∗

C |ε|f(xε) dµ[k](x)

for every h ∈ L∞(µ). In particular, we have

(7) |||f |||2
k

k =
∫
Dkf . f dµ = lim

H→+∞

1
Hk

H−1∑
h1,...,hk=0

∫ ∏
ε∈{0,1}k

C |ε|T ε·hf dµ .

The notion of a dual function is implicit in [HK1] and this notation is not used
there. However, the notation is coherent with that used in several papers of Green
and Tao, where similar functions (in the finite setting) are called dual functions.

The definition extends to functions in L2k

(µ), for which we use the same nota-
tion. Indeed, by (2), (4), and density, for f ∈ L2k

(µ) the convergence (5) holds in
L2k/(2k−1)(µ); the limit function Dkf belongs to L2k/(2k−1)(µ) with

‖Dkf‖
L2k/(2k−1)(µ)

≤ ‖f‖2
k−1

L2k (µ)

and formula (6) holds for every h ∈ L2k

(µ). Moreover, Dk is a continuous map
from L2k

(µ) to L2k/(2k−1)(µ).

3.3.2. Application to sequences. Let f be a bounded function on X. We consider
the quantities associated to the bounded sequence (f(Tnx) : n ∈ Z) for a generic
point x of X, as in Section 2.1. ¿From the definition of the ergodic seminorms, the
pointwise ergodic theorem, and (7), we immediately deduce:

Corollary 3.10. Let k ≥ 2 be an integer and let I be the sequence of intervals
([0, N − 1] : N ≥ 1). Let (X, µ, T ) be an ergodic system and let f ∈ L∞(µ). Then
for almost every x ∈ X, the sequence (f(Tnx) : n ∈ Z) satisfies property P(k) on I
and

(8) ‖(f(Tnx) : n ∈ Z)‖I,k = |||f |||k .

Corollary 3.11. Let k ≥ 2 be an integer, let (X, T ) be a uniquely ergodic system
with invariant measure µ, and let f be a Riemann integrable function on X. Then
for every x ∈ X and every sequence of intervals I whose lengths tend to infinity,
the sequence (f(Tnx) : n ∈ Z) satisfies property P(k) on I and equality (8) holds.

In particular, for every x ∈ X,

‖(f(Tnx) : n ∈ Z)‖U(k) = |||f |||k .

Proof. The hypothesis means that for every δ > 0 there exists two continuous
functions g, g′ on X with g ≤ f ≤ g′ and

∫
(g′ − g) dµ < δ. This implies that

for every h ∈ Zk the function in the last integral of formula (7) is also Riemann
integrable. Therefore the ergodic averages of this function converge everywhere to
its integral. �

3.4. The structure Theorem. We use the following version of the Structure
Theorem of [HK1], which is a combination of statements in Lemma 4.3, Definition
4.10 and Theorem 10.1 of that paper.

Theorem (Structure Theorem). Let (X, µ, T ) be an ergodic system. Then for
every k ≥ 2 there exists a system (Zk, µk, T ) and a factor map πk : X → Zk with
the following properties:
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(i) (Zk, µk, T ) is the inverse limit of a sequence of (k − 1)-step nilsystems.
(ii) For every function f ∈ L∞(µ), |||f − E(f | Zk) ◦ πk|||k = 0 .

Since |||f |||k+1 ≥ |||f |||k for every f ∈ L∞(µ), the factors Zk are nested: Zk is a
factor of Zk+1.

We use this theorem via the following immediate corollary.

Corollary 3.12. Let (X, µ, T ) be an ergodic system and f ∈ L∞(µ). Then for every
δ > 0, there exists a (k − 1)-step ergodic nilsystem (Y, S, ν), a (measure theoretic)
factor map p : X → Y , and a continuous function h on Y with |||f − h ◦ p|||µ,k < δ.

4. The correspondence principle and the “seminorms”

4.1. The classic Correspondence Principle. In translating Szemerédi’s Theo-
rem into a problem in ergodic theory, Furstenberg introduced the Correspondence
Principle in [F]. We give a not completely classical presentation of this principle,
which is amenable to modification in the sequel.

By a separable subalgebra of `∞(Z), we mean a unitary subalgebra of `∞(Z),
invariant under the shift and under complex conjugation, closed in `∞(Z) and
separable for the uniform norm written ||| · |||∞. In the sequel, we mostly consider
the case of the separable subalgebra A(a) spanned by a bounded sequence a =
(an : n ∈ Z).

We write σ for the shift on `∞(Z), and thus for a sequence a = (an : n ∈ Z), σa
denotes the sequence (an+1 : n ∈ Z). We use a to denote the conjugate sequence
(a : n ∈ Z). In the sequel, A denotes a separable subalgebra of `∞(Z).

4.1.1. The pointed dynamical system associated to an algebra. Let X be the Gelfand
spectrum of A, meaning X consists of the set of unitary homomorphisms from A to
the complex numbers. Letting C(X) denote the algebra of continuous functions on
X, we have that there exists an isometric isomorphism of algebras Φ: C(X) → A.
For b ∈ A, the function Φ−1(b) is called the function associated to b.

Since A is separable, X is a compact metric space. We write dX for a distance
on X defining its topology.

The map b 7→ b0 is a character of the algebraA. Thus there exists a point x0 ∈ X
with f(x0) = Φ(f)0 for all f ∈ C(X). The shift on A induces a homeomorphism
T : X → X with Φ(f ◦ T ) = Φ(f) ◦ σ for all f ∈ C(X). Therefore, for every
f ∈ C(X), Φ(f) is the sequence

Φ(f) =
(
f(Tnx0) : n ∈ Z

)
.

In particular, if f ∈ C(X) satisfies f(Tnx0) = 0 for all n ∈ Z, then the sequence
given by Φ(b) = f is identically zero and so f itself is identically zero. It follows
that the point x0 of X is transitive, meaning that its orbit {Tnx0 : n ∈ Z} is dense
in X.

We encapsulate this construction in the following definition:

Definition 4.1. The triple (X, T, x0) is called the pointed topological dynamical
system associated to the algebra A.

4.1.2. Averaging schemes and invariant measures. We first introduce a definition
that allows us to average any sequence in a subalgebra over a sequence of intervals:
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Definition 4.2. Let A be a separable subalgebra of `∞(Z) and I = (Ij : j ≥ 1) be
a sequence of intervals whose lengths tend to infinity. We say that I is an averaging
scheme for A if the limit

lim averagesI
(
b
)

:= lim
j→+∞

1
|Ij |

∑
n∈Ij

bn

exists for all b ∈ A.

Since A is separable with respect to the norm of `∞(Z), for every sequence of
intervals whose lengths tend to infinity, we can always pass to a subsequence that is
an averaging scheme for A. The classical case is when I is taken to be the sequence
([0, j − 1] : j ≥ 1), or some subsequence of this sequence.

Given an averaging scheme I for A, we can associate an invariant probability
measure µ on X defined by:

(9)
∫

f dµ = lim averagesI
(
f(Tnx0)

)
:= lim

j→+∞

1
|Ij |

∑
n∈Ij

f(Tnx0)

for all f ∈ C(X).
We claim that all ergodic invariant probability measures on X are obtained by

this procedure. Namely, let µ be such a measure. Let x1 ∈ X be a generic point
for µ, meaning that for all f ∈ C(X),

lim
j→+∞

1
j

j−1∑
n=0

f(Tnx1) =
∫

f dµ .

(By the ergodic theorem, µ-almost every point x1 ∈ X is generic.) Since x0 is a
transitive point, there exists a sequence (kj : j ≥ 1) of integers such that

sup
0≤n<j

dX(T kj+nx0, T
nx1) → 0 as j → +∞ .

So for any continuous function f on X, we then have

lim
j→+∞

(1
j

j−1∑
n=0

f(Tnx1)−
1
j

j−1∑
n=0

f(T kj+nx0)
)

= 0 .

Let I be the sequence of intervals (Ij = [kj , kj + j − 1] : j ≥ 1). If b ∈ A and f is
the associated function on X, we have

lim averagesI
(
bn

)
= lim averagesI

(
f(Tnx0)

)
=

∫
f dµ .

Therefore the sequence of intervals I is an averaging scheme for A corresponding
to the measure µ, and the claim follows.

4.2. Proofs of properties of the “seminorms”. We use this presentation of the
Correspondence Principle to derive the properties of the “seminorms.” We start
with the non-negativity that makes the definition possible. Recall that the bounded
sequence a = (an : n ∈ Z) satisfies property P(k) on the sequence of intervals I if
for all h = (h1, . . . , hk) ∈ Zk, the limit

ch(I,a) = lim averagesI
( ∏
ε∈{0,1}k

C |ε|an+ε·h
)
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exists. We show that for a sequence a satisfying this, the limit

lim
H→+∞

1
Hk

H−1∑
h1,...,hk=0

ch(I,a)

exists and is non-negative:

Proof of Proposition 2.2. Let k ≥ 2 be an integer and a = (an : n ∈ Z) be a
bounded sequence that satisfies property P(k) on a sequence of intervals I. Let
A = A(a), (X, T, x0) be the pointed topological dynamical system associated to
the algebra A, and f ∈ C(X) be the function associated to the sequence a. Starting
with the sequence of intervals I, by passing to a subsequence J, we extract an
averaging scheme for A. Let µ be the associated measure on X. For every h ∈ Zk,
we have

(10) ch(I,a) = ch(J,a) =
∫ ∏

ε∈{0,1}k

C |ε|f(T ε·hx) dµ(x) .

Let

µ =
∫

Ω

µω dP (ω)

be the ergodic decomposition of the measure µ. The integral (10) can be rewritten
as ∫ (∫ ∏

ε∈{0,1}k

C |ε|f(T ε·hx) dµω(x)
)

dP (ω) .

By Theorem 3.7,

lim
H→+∞

1
Hk

H−1∑
h1,...,hk=0

ch(a, I) =
∫
|||f |||2

k

µω,k dP (ω) .

Therefore, the announced limit exists and is non-negative and we have the state-
ment. �

Maintaining notation used in the proof, we note that:

(11) ‖a‖I,k =
(∫

|||f |||2
k

µω,k dP (ω)
)1/2k

.

We now prove the versions of subadditivity that are satisfied by the “seminorms”:

Proof of Propositions 2.4 and 2.5. Assume that the bounded sequence a satisfies
properties P(k) and P(k + 1) on the sequence of intervals I. By (11), the Cauchy-
Schwartz inequality, and equality (3), we have

‖a‖2
k+1

I,k ≤
∫
|||f |||2

k+1

µω,k dP (ω) ≤
∫
|||f |||2

k+1

µω,k+1 dP (ω) = ‖a‖2
k+1

I,k+1 .

Thus ‖a‖I,k ≤ ‖a‖I,k+1 and Proposition 2.5 follows.
Now assume that a and b are bounded sequences and assume that the three

sequences a,b, and a + b satisfy property P(k) for some sequence of intervals I.
We proceed as in the proof of Proposition 2.2, taking A to be the algebra spanned
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by a and b. If f and g are the functions on X associated respectively to a and b,
we have that

‖a‖2
k

I,k =
∫
|||f |||2

k

µω,k dP (ω) ; ‖b‖2
k

I,k =
∫
|||g|||2

k

µω,k dP (ω) ;

‖a + b‖2
k

I,k =
∫
|||f + g|||2

k

µω,k dP (ω) .

Therefore
‖a + b‖I,k ≤ ‖a‖I,k + ‖b‖I,k

and Proposition 2.4 follows. �

4.3. A Cauchy-Schwartz-Gowers type result. We have an inequality similar
to that satisfied by the Gowers norms in the finite setting and by the HK-seminorms,
as given in (2):

Proposition 4.3. For every ε ∈ {0, 1}k, let a(ε) =
(
an(ε) : n ∈ Z

)
be a bounded

sequence. Let I be a sequence of intervals whose lengths tend to infinity such that

ch := lim
j→+∞

1
|Ij |

∑
n∈Ij

∏
ε∈{0,1}k

an+ε·h

exists for every h ∈ Zk. Then the limit

lim
H→+∞

1
Hk

H−1∑
h1,...,hk=0

ch

exists.
Moreover, if all the sequences a(ε) satisfy property P(k) on I, then

(12)
∣∣∣ lim
H→+∞

1
Hk

H−1∑
h1,...,hk=0

ch

∣∣∣ ≤ ∏
ε∈{0,1}k

‖a(ε)‖I,k .

Proof. The proof of the convergence is similar to the proof of Proposition 2.2, but we
set A to be the algebra spanned by the 2k sequences a(ε), ε ∈ {0, 1}k. Maintaining
notation as that proof, for every ε ∈ {0, 1}k we let fε denote the function associated
to the sequence a(ε). It follows from inequality (2) that∣∣∣ lim

H→+∞

1
Hk

H−1∑
h1,...,hk=0

ch

∣∣∣ =
∣∣∣∫ (∫ ∏

ε∈{0,1}k

fε(xε) dµ[k]
ω (x)

)
dP (ω)

∣∣∣
≤

∫ ∏
ε∈{0,1}k

|||fε|||µω,k dP (ω) ≤
∏

ε∈{0,1}k

(∫
|||fε|||2

k

µω,k dP (ω)
)1/2k

=
∏

ε∈{0,1}k

‖a(ε)‖I,k .

�

Using relations (3) and (11), we deduce that:

Proposition 4.4. Assume that the bounded sequence a satisfies property P(k + 1)
on I. Then

lim
H→+∞

1
H

H−1∑
h=0

‖σha.a‖2
k

I,k = ‖a‖2
k+1

I,k+1 .

Note that the hypothesis implies that for every integer h ≥ 1, the sequence σha.a
satisfies property P(k) on I.



UNIFORMITY SEMINORMS ON `∞ AND APPLICATIONS 23

4.4. The uniformity seminorms. We also use the Correspondence Principle to
derive properties of the uniformity seminorms:

Proposition 4.5. Let k ≥ 1 be an integer, a be a bounded sequence, (X, T, x0) the
associated pointed dynamical system, and f ∈ C(X) be the function associated to a.
Then

‖a‖U(k) = sup
µ ergodic

|||f |||µ,k ,

where the supremum is taken over all ergodic measures µ on X.

Proof. It follows from (11) that if we raise the left hand side to the power 2k,
then it is bounded by the right hand side raised to the power 2k. Conversely, in
Section 4.1.2 we showed that every ergodic measure µ on X is associated to an
averaging scheme I for the algebra A(a). By applying (11) again, we have that
|||f |||µ,k = ‖a‖I,k ≤ ‖a‖U(k). �

Proposition 2.7 follows immediately; it could also be derived directly from Propo-
sition 2.4.

Remark 4.1. We note that there are important differences between the uniformity
seminorms and the HK-seminorms. For example, the formula given by Proposi-
tion 4.4 comes from, and is similar to, formula (3) for the HK-seminorms. We
deduce that

‖a‖2
k+1

U(k+1) ≤ lim inf
H→+∞

1
H

H−1∑
h=0

‖ā.σha‖2
k

U(k) .

But in general, the lim inf on the right hand side of this equation is not a limit and
equality does not hold.

5. A duality in nilmanifolds and direct results

5.1. Measures and norms for nilsystems. Throughout this section, we assume
that k ≥ 2 is an integer and (X = G/Γ, µ, T ) is an ergodic (k − 1)-step nilsystem,
where T is the translation by τ ∈ G. As explained in Section 3, we reduce to the
case that G is spanned by its connected component G0 of the identity and by τ .

We review properties of the measure µ[k] and of the seminorm ||| · |||k in this
particular case. Most of these properties are established in [HK1] or [GT2], but
often in a very different context and with very different terminology from that used
here. We include some proofs for completeness, but as they are far from the main
topics of the article, we defer them to Appendix B. This appendix also includes
some properties we need that are not stated elsewhere.

We use the notation for 2k-Cartesian powers introduced in Section 3. We sum-
marize the properties that we need:

Theorem 5.1.

(i) The measure µ[k] is the Haar measure of a sub-nilmanifold Xk of X [k].
The transformations T [k] and T

[k]
i , 1 ≤ i ≤ k, act on Xk by translation

and Xk is ergodic (and thus uniquely ergodic and minimal) under these
transformations.

(ii) Let Xk∗ be the image of Xk under the projection x 7→ x∗ from X [k] to
X

[k]
∗ = X2k−1. There exists a smooth map Φ: Xk∗ → Xk such that

Xk =
{
(Φ(x∗), x∗) : x ∈ Xk∗

}
.
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(iii) ||| · |||k is a norm on C(X).
(iv) For every x ∈ X, let Wk,x = {x ∈ Xk : x0 = x}. Then Wk,x is uniquely

ergodic under the transformations T
[k]
i , 1 ≤ i ≤ k.

(v) For every x ∈ X, let ρx be the invariant measure of Wk,x. Then for
every x ∈ X and g ∈ G, ρg.x is the image of ρx under the translation by
g[k] = (g, g, . . . , g).

The nilmanifold Xk is defined independently of the transformation T and it only
depends on the structure of the nilmanifold X. This implies that the measure µ[k]

and the norm ||| · |||k do not depend on the transformation T on X, provided that T
is an ergodic transformation. These are geometric, and not dynamical, objects.

5.2. Uniform convergence. Using part (iv) of Theorem 5.1 we deduce:

Corollary 5.2. Let fε, ε ∈ {0, 1}k
∗ be 2k−1 continuous functions on X. For every

x ∈ X we have

1
Hk

H−1∑
h1,...,hk=0

∏
ε∈{0,1}k

∗

fε(T ε·hx) →
∫ ∏

ε∈{0,1}k
∗

fε(xε) dρx(x)

as H → +∞. Moreover, the convergence is uniform in x ∈ X.

Proof. The corollary follows easily from part (iv) of Theorem 5.1 by a classical
argument. Let (xj : j ≥ 1) be a sequence in X converging to some x ∈ X and let
(Hj : j ≥ 1) be a sequence of integers tending to infinity.

For every j, let νj be the measure

νj :=
1

Hk
j

Hj−1∑
h1,...,hk=0

⊗
ε∈{0,1}k

δT ε·hxj

on X [k] and let ν be any weak limit of this sequence of measures. For every j, the
measure νj is concentrated on Wk,xj

. Since Xk is closed in X [k], the measure ν
is concentrated on Wk,x. Moreover, for every j and for 1 ≤ i ≤ k, the difference
between the measures νj and T

[k]
i νj are at a distance ≤ 2/Hj in the norm of total

variation. It follows that ν is invariant under T
[k]
i for i = 1, . . . , k. By unique

ergodicity of Wk,x, we have that ν is the invariant measure ρx of Wk,x.
We have shown that the sequence (νj : j ≥ 1) of measures converges weakly to

the measure ρx. It follows that if fε, ε ∈ {0, 1}k
∗, are continuous functions on X,

then

1
Hk

j

Hj−1∑
h1,...,hk=0

∏
ε∈{0,1}k

∗

fε(T ε·hxj) =
∫ ∏

ε∈{0,1}k
∗

fε(xε) dνj(x)

→
∫ ∏

ε∈{0,1}k
∗

fε(xε) dρx(x)

as j → +∞ and the result follows. �

We apply this result when f is a continuous function on X and fε = C |ε|f for
every ε ∈ {0, 1}k

∗. From Corollary 3.8, we have that the averages in Corollary 5.2
converge in L2(µ) to the function Dkf . Therefore:
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Corollary 5.3. Let f be a continuous function on X. Then

Dkf(x) =
∫ ∏

ε∈{0,1}k
∗

C |ε|f(xε) dρx(x)

and the function Dkf is the uniform limit of the sequence

1
Hk

H−1∑
h1,...,hk=0

∏
ε∈{0,1}k

∗

fε(T ε·hx) .

Thus Dkf is a continuous function on X.

In particular, the function Dkf is a geometric object: it does not depend on the
transformation T on X.

Corollary 5.4. If f is a smooth function on X, then Dkf is a smooth function on
X.

Proof. Let x0 ∈ X. Then, by Corollary 5.3 and part (v) of Theorem 5.1, for every
g ∈ G we have

Dkf(g.x0) =
∫ ∏

ε∈{0,1}k
∗

C |ε|f(g.xε) dρx0(x) .

Thus the function g 7→ Dkf(g.x0) is a smooth function on G and the result follows.
�

Remark 5.1. Let x ∈ X. Since the measure ρx is invariant under the transforma-
tions T

[k]
i , it follows that the image of this measure under the projection x 7→ xε

for every ε ∈ {0, 1}k is invariant under T and thus is equal to µ. Therefore if fε,
ε ∈ {0, 1}k

∗, are continuous functions on X, the Hölder inequality gives:∣∣∣∫ ∏
ε∈{0,1}k

∗

fε(xε) dρx(x)
∣∣∣ ≤ ∏

ε∈{0,1}k
∗

‖fε‖L2k−1(µ) .

By density we deduce that for every f ∈ L2k−1(µ) the function Dkf is continuous
on X and that

‖Dkf‖∞ ≤ ‖f‖2
k−1

L2k−1(µ)
.

5.3. The dual norm.

Definition 5.5. Let the space C(X) of continuous functions on X be endowed with
the norm ||| · |||k. Since |||f |||k ≤ ‖f‖L2k (µ) for every f ∈ C(X), the dual of this space

can be identified with a subspace of L2k/(2k−1)(µ). We call this space the dual space
and denote it by C(X)∗k. We write |||h|||∗k for the dual norm of a function h ∈ C(X)∗k.

In other words, a function h ∈ L2k/(2k−1)(µ) belongs to the dual space C(X)∗k if
there exists a constant C with

(13)
∣∣∣∫ f h dµ

∣∣∣ ≤ C |||f |||k

for every f ∈ C(X) and |||f |||∗k is the smallest constant C with this property.
We note that the dual space and the dual norm ||| · |||∗k are geometric, not dynam-

ical, objects.
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We give two methods to build functions in the dual space. Let f be a func-
tion on X, belonging to L2k

(µ). By characterization (5) of the dual function and
inequality (2), we have that for every h ∈ C(X),∣∣∣∫ h.Dkf dµ

∣∣∣ ≤ |||h|||k |||f |||2
k−1

k .

Thus Dkf belongs to the dual space and |||Dkf |||∗k ≤ ‖f‖2
k−1

k . On the other hand,

|||f |||k |||Dkf |||∗k ≥
∫

f Dkf dµ = |||f |||2
k

k

and we conclude that

(14) |||Dkf |||∗k = |||f |||2
k−1

k .

We now show:

Proposition 5.6. The dual space C(X)∗k contains all smooth functions on X.

Proof. Let f be a smooth function on X and let Xk∗ and Φ be the set and the map
defined in part (ii) of Theorem 5.1.

Then f ◦ Φ is a smooth function on Xk∗ and there exists a smooth function F

on X
[k]
∗ whose restriction to Xk∗ is equal to f ◦Φ. This function can be written as

F (x∗) =
∞∑

j=1

∏
ε∈{0,1}k

∗

fj,ε(xε) ,

where the functions fj,ε, j ≥ 1 and ε ∈ {0, 1}k
∗, are continuous functions on X

satisfying
∞∑

j=1

∏
ε∈{0,1}k

∗

‖fj,ε‖∞ < +∞ .

For every continuous function h on X, we have∣∣∣∫ f h dµ
∣∣∣ =

∣∣∣∫ h(x0) . f ◦ Φ(x∗) dµ[k](x)
∣∣∣ =

∣∣∣∫ h(x0) . F (x∗) dµ[k](x)
∣∣∣

≤
∞∑

j=1

∣∣∣∫ h(x0)
∏

ε∈{0,1}k
∗

hj,ε(xε) dµ[k](x)
∣∣∣

≤
∞∑

j=1

|||h|||k
∏

ε∈{0,1}k
∗

|||hj,ε|||k

≤|||h|||k
∞∑

j=1

∏
ε∈{0,1}k

∗

‖hj,ε‖∞ .

where the next to last inequality follows from (2). The announced statement follows.
�

A similar proof is used in [GT2] in the finite setting.
The hypothesis of smoothness is too strong and could be replaced by weaker

assumptions. It is probably sufficient to assume that f is Lipschitz with respect to
some smooth metric on X. Computing the dual norm of f , or even bounding it in
an explicit way seems to be difficult. The regularity of the map Φ should play a
role, but in order to define this, we would first need to choose a metric on X.
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Proposition 5.7. The unit ball of C(X)∗k is the closure in L2k/(2k−1)(µ) of the
convex hull of the set

{Dkf : f ∈ C(X), |||f |||k ≤ 1} .

Proof. Let B be the set in the statement. By (14), for f ∈ C(X) with |||f |||k ≤ 1,
we have that Dkf belongs to the unit ball of C(X)∗k. Since this ball is closed in the
norm of L2k/(2k−1)(µ), it contains B.

On the other hand, let f be a nonzero function belonging to L2k

(µ) and let
h = |||f |||−1

k .f . As the map Dk : L2k

(µ) → L2k/(2k−1)(µ) is continuous, by density
we have that Dkh ∈ B. As

∫
f.Dkh dµ = |||f |||k, the Hahn-Banach Theorem gives

the opposite inclusion. �

5.4. Direct theorem (upper bound). We now have assembled the ingredients
to prove Theorem 2.13. As we have not yet defined the norm |||b|||∗k of a smooth
nilsequence b, we state this theorem in a modified version.

Theorem (Modified Direct Theorem). Let a = (an : n ∈ Z) be a bounded sequence
that satisfies property P(k) on the sequence of intervals I = (Ij : j ≥ 1). Let
(X, T, µ) be an ergodic (k− 1)-step nilsystem, x0 ∈ X, and f be a smooth function
on X. Then

lim sup
j→+∞

∣∣∣ 1
|Ij |

∑
n∈Ij

an f(Tnx0)
∣∣∣ ≤ ‖a‖I,k |||f |||∗k .

Proof.

5.4.1. We begin with the case that f = Dkφ for some continuous function φ on X
with |||φ|||k = 1.

By substituting a subsequence for I, we can assume that for every h = (h1, . . . , hk) ∈
Zk, the averages on Ij of

an

∏
ε∈{0,1}k

∗

C |ε|φ(Tn+ε·hx0)

converge.
Fix δ > 0. By Corollary 5.3, for every sufficiently large H we have that∣∣∣ 1

Hk

H−1∑
h1,...,hk=0

an

∏
ε∈{0,1}k

∗

C |ε|φ(Tn+ε·hx0)− anf(Tnx0)
∣∣∣ < δ

for every n ∈ Z and so∣∣∣ 1
Hk

H−1∑
h1,...,hk=0

( 1
|Ij |

∑
n∈Ij

an

∏
ε∈{0,1}k

∗

C |ε|φ(Tn+ε·hx0)
)
− 1
|Ij |

∑
n∈Ij

anf(Tnx0)
∣∣∣ < δ .

for every j ≥ 1. Taking the limit as j → +∞ along a subsequence, we have that
for every sufficiently large H,

limsup |averagesI(anf(Tnx0))|

≤ δ +

∣∣∣∣∣∣ 1
Hk

H−1∑
h1,...,hk=0

lim averagesI
(
an

∏
ε∈{0,1}k

∗

C |ε|φ(Tn+ε·hx0)
)∣∣∣∣∣∣ .
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We conclude that

limsup |averagesI(anf(Tnx0))|

≤

∣∣∣∣∣∣ lim
H→+∞

1
Hk

H−1∑
h1,...,hk=0

lim averagesI
(
an

∏
ε∈{0,1}k

∗

C |ε|φ(Tn+ε·hx0)
)∣∣∣∣∣∣ .

The existence of the limit for H → +∞ is given by Proposition 4.3. Using Inequal-
ity (12) and Corollary 3.11, we have that the last quantity is bounded by

‖a‖I,k . ‖(φ(Tnx0) : n ∈ Z)‖2
k−1

I,k = ‖a‖I,k . |||φ|||(2
k−1)/2k

k = ‖a‖I,k .

5.4.2. We now turn to the general case. We can assume that |||f |||∗k ≤ 1.
Fix δ > 0. By Proposition 5.6, we can write f = f1 + f2, where f1 is a convex

combination of functions considered in the first part and ‖f2‖L2k/(2k−1)(µ)
< δ. The

contribution of f1 to the lim sup of the averages is bounded by 1.
For every j ≥ 1, by the Hölder inequality we have∣∣∣ 1

|Ij |
∑
n∈Ij

anf2(Tnx0)
∣∣∣ ≤ ‖a‖∞

( 1
|Ij |

∑
n∈Ij

|f2(Tnx0)|2
k/(2k−1)

)(2k−1)/2k

.

Since both f and f1 are continuous, so is f2. Therefore, by unique ergodicity of
(X, T ), the averages of |f2(Tnx0)|2

n/(2n−1) converge to the integral of the function
|f |2n/(2n−1) and we have that

limsup |averagesI(anf2(Tnx0))| ≤ δ .

The result follows. �

5.5. The dual norm for smooth nilsequences.

Corollary 5.8. Let (X, µ, T ) and (Y, ν, S) be ergodic (k− 1)-step nilsystems, x0 ∈
X, y0 ∈ Y , f be a smooth function on X, and g a smooth function on Y . If
f(Tnx0) = g(Sny0) for every n ∈ Z, then |||f |||∗µ,k = |||g|||∗ν,k.

Proof. Fix δ > 0. By definition of |||f |||∗µ,k, there exists a continuous function h on
X with

|||h|||µ,k = 1 and
∣∣∣∫ f h dµ

∣∣∣ ≥ |||f |||∗µ,k − δ .

By unique ergodicity of X,∣∣∣∫ f h dµ
∣∣∣ = lim

N→+∞

∣∣∣N−1∑
n=0

f(Tnx0)h(Tnx0)
∣∣∣ = lim

N→+∞

∣∣∣N−1∑
n=0

g(Sny0)h(Tnx0)
∣∣∣ .

Let I be the sequence of intervals (IN = [0, N − 1] : N ≥ 1). By Corollary 3.11,
the sequence (h(Tnx0) : n ∈ Z) satisfies property P(k) on I and ‖(h(Tnx0) : n ∈
Z)‖I,k = |||h|||µ,k = 1. By the Modified Direct Theorem, we have that

lim
N→+∞

∣∣∣N−1∑
n=0

g(Sny0)h(Tnx0)
∣∣∣ ≤ |||g|||∗ν,k

and so |||f |||∗µ,k − δ ≤ |||g|||∗ν,k. Exchanging the roles of f and g, we obtain the
announced equality. �

Using this corollary, we define:
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Definition 5.9. Let b be a (k − 1)-step smooth nilsequence. We define |||b|||∗k =
|||f |||∗µ,k, where f is a smooth function on an ergodic (k− 1)-step nilsystem (X, µ, T )
and x0 ∈ X is chosen such that bn = f(Tnx0) for every n.

Using this definition, the Direct Theorem (Theorem 2.13) is a reformulation of
the Modified Direct Theorem of Section 5.4.

5.6. The case k = 2. Let X be a 1-step nilmanifold, that is, a compact abelian
Lie group, and let f be a smooth function on X. Let X̂ be the dual group of G.
Then the Fourier series of f is

f(x) =
∑
χ∈ bX

f̂(χ) χ(x) , where
∑
χ∈ bX

|f̂(χ)| < +∞ .

An easy computation using the definition gives

|||f |||2 =
(∑

χ∈ bX
|f̂(χ)|4

)1/4

.

Therefore we have

|||f |||∗2 =
(∑

χ∈ bX
|f̂(χ)|4/3

)3/4

.

If T is an ergodic translation on X, x0 ∈ X, and b is the sequence given by
bn = f(Tnx0) for every n, we recover the formula for |||b|||∗2 given in Section 2.3 and
Proposition 2.12.

5.7. Some convergence results.

Corollary 5.10. Let k ≥ 2 be an integer, I = (Ij : j ≥ 1) be a sequence of intervals
whose lengths tend to infinity, and let a = (an : n ∈ Z) be a bounded sequence.
Assume that for every δ > 0, there exists a (k−1)-step nilsequence a′ such that the
sequence a − a′ satisfies property P(k) on I and ‖a − a′‖I,k < δ. Then for every
(k − 1)-step nilsequence b = (bn : n ∈ Z), the limit

lim
j→+∞

1
|Ij |

∑
n∈Ij

anbn

exists.

Proof. By density, we can restrict to the case that b is a smooth nilsequence. Let
δ > 0 and the nilsequence a′ be as in the statement. Since the product sequence
a′b is a nilsequence, its averages converge. By Theorem 2.13,

limsup |averagesI((an − a′n)bn)| ≤ δ|||b|||∗k .

It follows that the averages on Ij of anbn form a Cauchy sequence. �

By the same argument, we have:

Corollary 5.11. Let k ≥ 2 be an integer and a = (an : n ∈ Z) be a bounded
sequence. Assume that for every δ > 0, there exists a (k − 1)-step nilsequence a′

such that ‖a−a′‖U(k) < δ. Then for every (k−1)-step nilsequence b = (bn : n ∈ Z),
the averages of the sequence anbn converge, meaning that the limit

lim
j→+∞

1
|Ij |

∑
n∈Ij

anbn
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exists for all sequences of intervals I = (Ij : j ≥ 1) whose lengths tend to infinity.

This Corollary is the direct implication of Theorem 2.19. Propositions 2.20
and 2.21 provide examples of sequences satisfying the hypothesis of this Corollary.

6. The correspondence principle revisited and inverse theorems

6.1. An extension of the correspondence principle. We recall that a topo-
logical dynamical system (Y, S) is distal if for every y, y′ ∈ Y with y 6= y′, then

inf
n∈Z

dY (Tny, Tny′) > 0

where dY denotes a distance defining the topology of Y .

Proposition 6.1. Let (X, T ) be a topological dynamical system, x0 ∈ X a transitive
point, and µ an invariant ergodic measure on X. Let (Y, S) be a distal topological
dynamical system, ν an invariant measure on Y , and π : (X, µ, T ) → (Y, ν, S) a
measure theoretic factor map.

Then there exist a point y0 ∈ Y and a sequence of intervals I = (Ij : j ≥ 1)
whose lengths tend to infinity such that for every continuous function f on X and
every continuous function g on Y ,∫

f(x).g ◦ π(x) dµ(x) = lim
j→+∞

1
|Ij |

∑
n∈Ij

f(Tnx0).g(Sny0) .

If the system (X, T ) and the point x0 are associated to a sequence as in Sec-
tion 4.1 and if Y denotes the Kronecker factor of (X, µ, T ), then the sequence of
intervals I given by the Proposition plays the same role as the “Kronecker complete
processes” of [BFW]. Our construction is (we hope) simpler and works in a more
general setting: below we use it when Y is a nilsystem.

Proof. We write dX(·, ·) and dY (·, ·) for distances on X and Y defining the topolo-
gies of these spaces.

6.1.1. Construction of an extension of X. Let B be the closed (in norm) subalgebra
of L∞(µ) that is spanned by C(X) and the functions g ◦ π with g ∈ C(Y ). This
algebra is unitary, separable, and invariant under complex conjugation and under
T .

Let W be the Gelfand spectrum of this algebra. Since B is separable, W is a
compact metrizable space. By definition, there exists an isometric isomorphism of
algebras Ψ: C(W ) → B.

As in Section 4.1.1, there exists a homeomorphism R : W → W satisfying Ψ(f ◦
T ) = Ψ(f) ◦R for all functions f ∈ C(W ).

The inclusion of C(X) in B induces a continuous surjective map p : W → X
satisfying f ◦ p = Ψ(f) for every continuous function f on X and we have that
T ◦ p = p ◦ R. Similarly, the map g 7→ g ◦ π from C(Y ) to B is an isometric
homomorphism of algebras and thus induces a continuous surjective map q : W → Y
satisfying g ◦ q = Ψ(g ◦ π) for all continuous functions g on Y . We have that
S ◦ q = q ◦ R. So, p : (W,R) → (X, T ) and q : (W,R) → (Y, S) are factor maps, in
the topological sense.
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The map f 7→
∫

f dµ is a positive linear form on the algebra B and thus there
exists a unique probability measure ρ on W satisfying∫

f dµ =
∫

Ψ(f) dρ for all functions f ∈ B .

Since Ψ(f ◦ T ) = Ψ(f) ◦R for all f ∈ B and µ is invariant under T , the measure
ρ is invariant under R. Since Ψ(f) = f ◦ p for all continuous functions f on X, we
have that the image of ρ under p is equal to µ. Therefore, p : (W,ρ, R) → (X, µ, T )
is a measure theoretic factor map. Moreover, for every function f ∈ B,∫

|Ψ(f)|2 dρ =
∫

Ψ(|f |2) dρ =
∫
|f |2 dµ

and the map Ψ is an isometry from the space B endowed with the norm L2(µ)
into the space L2(ρ). Since C(X) is dense in B under the L2(µ) norm and since
Ψ(f) = f ◦ p for f ∈ C(X), we have that for all f ∈ B,

Ψ(f) = f ◦ p (ρ-almost everywhere).

We claim that the map p : (W,ρ,R) → (X, µ, T ) is an isomorphism between
measure preserving systems. Indeed, the range of the map f 7→ f◦p : L2(µ) → L2(ρ)
is closed in L2(ρ) because this map is an isometry, and it contains Ψ(B) = C(W )
and thus it is equal to L2(ρ). In particular, (W,ρ,R) is ergodic.

Finally, for every function g ∈ C(Y ), we have that g ◦ q = Ψ(g ◦ π) = g ◦ π ◦ p
(ρ-almost everywhere) and so q = π ◦ p (ρ-almost everywhere).

In particular, the image of ρ under q is ν.

6.1.2. Construction of the sequence of intervals. Since ρ is ergodic under R, it
admits a generic point w1. Recall that this means that for every f ∈ C(W ),

lim
j→+∞

1
j

j−1∑
n=0

f(Rnw1) =
∫

f dρ .

Set x1 = p(w1). Since x0 is a transitive point of X, we can choose as in Section 4.1.2
a sequence of integers (kj : j ≥ 1) such that

(15) lim
j→+∞

sup
0≤n≤j

dX(Tnx1, T
kj+nx0) = 0 .

Set y1 = q(w1). Let η be a point in the closure of the sequence (Skj : j ≥ 1) in
the Ellis semigroup [E] of (Y, S). Since (Y, S) is distal, we have (see [A], chapter
5) that η is a bijection from Y onto itself. Pick y0 ∈ Y such that η(y0) = y1.
Thus passing, if necessary, to a subsequence of (kj : j ≥ 1), which we also denote
by (kj : j ≥ 1), we have that T kj y0 converges to y1. Again replacing this sequence
by a subsequence, we can assume that

(16) lim
j→+∞

sup
0≤n<j

dY (Sny1, S
kj+ny0) = 0 .

For all j ≥ 1, set Ij = [kj , kj + j − 1]. Let f be a continuous function on X and
g a continuous function on Y . By (15) and (16) we have that

lim
j→+∞

sup
0≤n<j

∣∣f(Tnx1)− f(T kj+nx0)
∣∣ = 0 and

lim
j→+∞

sup
0≤n<j

∣∣g(Sny1)− g(Skj+ny0)
∣∣ = 0 .
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Thus

(17) lim
j→+∞

( 1
|Ij |

∑
n∈Ij

f(Tnx0)g(Sny0)−
1
j

j−1∑
n=0

f(Tnx1)g(Sny1)
)

= 0 .

For each integer n,

f(Tnx1)g(Sny1) = f ◦ p(Rnw1).g ◦ q(Rnw1) .

Since w1 is a generic point with respect to the measure ρ, the second average in (17)
converges to∫

(f ◦ p).(g ◦ q) dρ =
∫

(f ◦ p).(g ◦ π ◦ p) dρ =
∫

f.(g ◦ π) dµ

because q = π ◦ p (ρ-almost everywhere) and the image of ρ under p is µ. �

6.2. Inverse results.

Proposition 6.2. Let k ≥ 2 be an integer, a be a bounded sequence, and δ > 0.
Then there exists a sequence of intervals I = (Ij : j ≥ 1) whose lengths tend to
infinity and a (k − 1)-step smooth nilsequence b such that

(i) The sequence a satisfies property P(k) on I and ‖a‖I,k ≥ ‖a‖U(k) − δ.
(ii) The sequence a− b satisfies property P(k) on I and ‖a− b‖I,k < δ.

Proof. Let (X, T, x0) be the pointed dynamical system associated to the algebra
spanned by the sequence a, as in Section 4.1.1. Let f be the continuous function
on X defined by f(Tnx0) = an for every n ∈ Z.

By Proposition 4.5, there exists an invariant ergodic measure µ on X with
|||f |||µ,k ≥ ‖a‖U(k) − δ. By Corollary 3.12 of the Structure Theorem there exist
a (k − 1)-step nilsystem (Y, S, ν), a measure theoretic factor map π : (X, µ, T ) →
(Y, ν, S), and a smooth function g on Y with |||f − g ◦ π|||µ,k < δ.

Recall that every nilsystem is distal. Now, let I and y0 be given by Proposi-
tion 6.1 and let b be the nilsequence given by bn = g(Sny0) for every n ∈ Z.

The measure on X associated to I as in 4.1.2 is equal to µ. Thus the sequence
a satisfies property P(k) on I and ‖a‖I,k = |||f |||µ,k ≥ ‖a‖U(k) − δ. To prove
Proposition 6.2, we are left with proving that the sequence a−b satisfies property
P(k) on I and that ‖a− b‖I,k < δ.

For h = (h1, . . . , hk) ∈ Zk, we have∏
ε∈{0,1}k

C |ε|(an+ε·h − bn+ε·h) =
∏

ε∈{0,1}k

C |ε|(f(Tn+ε·hx0)− g(Sn+ε·hy0)
)

=
∑

(A,B) partition of {0,1}k

(−1)|B|
∏
ε∈A

C |ε|f(Tn+ε·hx0)
∏
ε∈B

C |ε|g(Sn+ε·hy0) .

By definition of I, the averages (with respect to n) of the above expression on this
sequence of intervals converge to∑

(A,B) partition of {0,1}k

(−1)|B|
∫ ∏

ε∈A

C |ε|f(T ε·hx)
∏
ε∈B

C |ε|g ◦ π(T ε·hx) dµ(x)

=
∫ ∏

ε∈{0,1}k

C |ε|(f − g ◦ π)(T ε·hx) dµ(x) .
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By definition, the averages (with respect to h ∈ Zd) of the first term converge
to ‖a − b‖I,k and, by Corollary 3.8, the averages of the last integral converge to
|||f − g ◦ π|||µ,k < δ and we are done. �

We now prove the Inverse Theorem (Theorem 2.16). We recall the statement
here for convenience.

Theorem. Let a = (an : n ∈ Z) be a bounded sequence. Then for every δ > 0,
there exists a (k − 1)-step smooth nilsequence b = (bn : n ∈ Z) such that

|||b|||∗k = 1 and lim
N→+∞

sup
M∈Z

∣∣∣ 1
N

M+N−1∑
n=M

anbn

∣∣∣ ≥ ‖a‖U(k) − δ .

Proof. We can assume without loss that ‖a‖U(k) > δ. Let I and c be as in Proposi-
tion 6.2, but with δ/3 instead of δ; we write cn = g(Sny0) for n ∈ Z, where (Y, S, ν)
is an ergodic (k − 1)-step nilsystem, y0 ∈ Y , and g is a smooth function on Y . We
define h = |||g|||−2k+1

k .Dkg and b to be the sequence given by bn = h(Sny0), and we
check that the announced properties are satisfied.

By Corollary 5.4, h is a smooth function and |||h|||∗ν,k = 1 by (14) and thus
|||b|||∗k = 1. We have

lim averagesI
(
cnbn

)
= lim averagesI

(
g(Sny0)h(Sny0)

)
=

∫
g.h dν = |||g|||k

= ‖c‖I,k ≥ ‖a‖I,k − δ/3 ≥ ‖a‖U(k) − 2δ/3 .

On the other hand, by the Direct Theorem 2.13,

limsup |averagesI((an − cn)bn)| ≤ ‖a− c‖I,k |||b|||∗k ≤ δ/3

and we conclude that the lim inf of the averages on I of anbn is ≥ ‖a‖U(k) − δ and
we are done. �

6.3. Proof of Theorem 2.19. We recall the statement for convenience.

Theorem. For a bounded sequence a = (an : n ∈ Z), the following are equivalent.
(i) For every δ > 0, the sequence a can be written as a′ + a′′, where a′ is a

(k − 1)-step nilsequence, and ‖a′′‖U(k) < δ.
(ii) For every (k − 1)-step nilsequence c = (cn : n ∈ Z), the averages of ancn

converge.

We recall that property (ii) means that the averages

1
|Ij |

∑
n∈Ij

ancn

converge for every sequence of intervals I = (Ij : n ≥ 1) whose lengths tend to
infinity. The common value of these limits is written lim averages

(
ancn

)
.

Proof. (i) =⇒ (ii) This implication is given by Corollary 5.11.

(ii) =⇒ (i)
Assume that the sequence a satisfies (ii). Let b and I be as in Proposition 6.2, but

with δ/3 instead of δ. Define a′ = b and we are left with showing that ‖a−b‖U(k) <
δ.
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Assume that this does not hold. By Theorem 2.16, there exists a (k − 1)-step
smooth nilsequence c and a sequence of intervals J whose lengths tend to infinity
with

|||c|||∗k = 1 and
∣∣lim averagesJ

(
(an − bn)cn

)∣∣ ≥ 2δ/3 .

Now, the sequence (bncn) is a product of two (k − 1)-step nilsequences and thus
it is also a (k − 1)-step nilsequence and its averages converge. By hypothesis, the
averages of the sequence (ancn) converge, and thus the averages of the sequence
(an − bn)cn converge. Since I and J are sequences of intervals whose lengths tend
to infinity,∣∣lim averagesI

(
(an − bn)cn

)∣∣ =
∣∣lim averages

(
(an − bn)cn

)
|

=
∣∣lim averagesJ

(
(an − bn)cn

)∣∣ ≥ 2δ/3 .

On the other hand, by the Direct Theorem (Theorem 2.13)∣∣lim averagesI
(
(an − bn)cn

)∣∣ ≤ ‖a− b‖I,k |||c|||∗k < 2δ/3

and we have a contradiction. �

7. An application in ergodic theory

7.1. Proof of Theorem 2.22. We now turn to the generalization of the Wiener-
Wintner Ergodic Theorem, replacing the exponential sequence e(nt) by an arbitrary
nilsequence. Throughout this Section, for each integer N ≥ 1, we write IN for the
interval [0, N − 1] and we let I denote the sequence of intervals (IN : N ≥ 1).

Let (X, µ, T ) be an ergodic system, φ be a bounded measurable function on X,
and fix an integer k ≥ 2. We build a subset X0 of full measure of X on which the
conclusion of the Theorem holds for every (k − 1)-step nilsequence b.

For every integer r ≥ 1, Corollary 3.12 of the Structure Theorem provides a
(k − 1)-step nilsystem (Zr, νr, Sr), a factor map πr : X → Zr and a continuous
function fr on Zr such that

|||φ− fr ◦ πr|||k < r−1 .

By Corollary 3.10, there exists a subset Er of X with µ(Er) = 1 such that for
every x ∈ Er, we have

‖(φ(Tnx)− fr ◦ πr(Tnx) : n ∈ Z)‖I,k = |||φ− fr ◦ πr|||k ≤ r−1 .

Note that we consider the map πr to be defined everywhere. For µ-almost every x,
we have that fr ◦ πr(Tnx) = fr(Sn

r πr(x)) for every n ∈ Z. Therefore, there exists
a set E′

r ⊂ X with µ(E′
r) = 1 such that

‖(φ(Tnx)− fr(Sn
r πr(x)) : n ∈ Z)‖I,k = |||φ− fr ◦ πr|||k ≤ r−1

for every x ∈ E′
r.

Set X0 =
⋂∞

r=1 E′
r. For every x ∈ X0, the sequence (φ(Tnx) : n ∈ Z) satisfies

the hypothesis of Corollary 5.10, completing the proof. �

7.1.1. Proof of Corollary 2.23. Let (X, µ, T ) be an ergodic system, φ be a bounded
measurable function on X, and let X0 be the subset of X introduced in Theo-
rem 2.22. Let x ∈ X0 and p be a generalized polynomial.

For every n ∈ Z, let {p(n)} denote the fractional part of p(n). Then {p(·)}
is a bounded generalized polynomial. In [BL] (Theorem A, (ii)), it is shown that
there exist an ergodic nilsystem (Y, ν, S), a point y ∈ Y , and a Riemann integrable
function f on Y with {p(n)} = f(Sny) for every n ∈ Z.
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For every δ > 0, there exists a continuous function g on Y with ‖f−g‖L1(ν) ≤ δ.
The sequence (g(Sny) : n ∈ Z) is a nilsequence and thus by definition of X0, the
averages on I of φ(Tnx)g(Sny) converge. On the other hand, since the function
|f − g| is Riemann integrable and (Y, S) is uniquely ergodic, we have that

limsup |averagesI(φ(Tnx)(f(Sny)− g(Sny)))|

≤ ‖φ‖∞ lim averagesI
(
|f(Sny)− g(Sny)|

)
= ‖φ‖∞

∫
|f − g| dν ≤ ‖φ‖∞δ .

Therefore the averages on I of φ(Tnx){p(n)} = φ(Tnx)f(Sny) form a Cauchy
sequence.

We remark that for every n ∈ Z, we have that e(p(n)) = e({p(n)}) = e(f(Sny))
and that the function e(f(·)) is Riemann integrable on Y . The same proof gives
the second claim of the corollary. �

7.2. Examples. Similar methods can be used to show show that some explicit
sequences satisfy the hypothesis (i) of Theorem 2.19 and thus are universally good
for the convergence in norm of multiple ergodic averages.

Proposition 7.1. Let (X, T ) be a uniquely ergodic system with invariant measure
µ and let k ≥ 2 be an integer. Let (Zk, µk, T ) be the factor defined in the Structure
Theorem (Theorem 3.4) and assume that the factor map πk : X → Zk−1 is con-
tinuous. Let f be a Riemann integrable function on X and let x ∈ X. Then the
sequence (f(Tnx) : n ∈ Z) satisfies hypothesis (i) of Theorem 2.19.

Proof. Let a be the sequence (f(Tnx) : n ∈ Z) and let δ > 0. We want to show that
we can write a = a′ + a′′ where a′ us a (k − 1)-step nilsequence and ‖a′′‖U(k) < δ.

Let (Y, S, ν), p : X → Y , and h be the (k − 1)-step nilsystem, the factor map,
and the function on Y given by Corollary 3.12. Recall that Zk is the inverse limit
(in both the topological and measure theoretical senses) of all factors of X which
are (k − 1)-step nilsystems [HK1]. Thus Y is a factor of Zk and the factor map
q : Zk → Y is continuous. Therefore the factor map p = q ◦ πk mapping X → Y is
continuous.

We define the sequences a′ and a′′ by a′n = h ◦ p(Tnx) and a′′n = f(Tnx) − h ◦
p(Tnx) for every n ∈ Z. Then a′ is a (k − 1)-step nilsequence. Since the function
h ◦ p is continuous, the function f −h ◦ p is Riemann integrable, and Corollary 3.11
implies that ‖a′′‖U(k) = |||f − h ◦ p|||k < δ. �

We use this proposition to prove Proposition 2.20 on generalized polynomials.

Proof of Proposition 2.20. Let p be a generalized polynomial. For every n ∈ Z, let
{p(n)} denote the fractional part of p(n). We begin with the same argument as in
the proof of Corollary 2.23.

There exists an integer ` ≥ 1, an ergodic `-step nilsystem (X = G/Γ, µ, T ), a
point x ∈ X, and a Riemann integrable function f on X with {p(n)} = f(Tnx)
and e(p(n)) = e({p(n)}) = e(f(Tnx)) for every n ∈ Z.

The system (X, µ, T ) satisfies the hypotheses of Proposition 7.1. Indeed, for
k > ` we have that Zk = X and for k < `, Zk is the quotient G/GkΓ of X. The
result follows. �

We now prove Proposition 2.21, which states that the Thue-Morse sequence
satisfies also the hypothesis of Theorem 2.19.
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Proof of Proposition 2.21. Let a = (an : n ∈ Z) be the Thue-Morse sequence. We
recall some of its properties (see [Q]).

There exists a uniquely ergodic system (X, T, µ), a point x0 ∈ X, and a contin-
uous function φ on X with an = φ(Tnx0) for every n ∈ Z. Moreover, the factor
map π1 : X → Z1 on the Kronecker factor Z1 of X is continuous. Finally, the map
π is two to one almost everywhere.

For every integer k ≥ 2, the factor Zk of X, as given by the Structure Theorem,
is an extension of Zk−1 by a connected compact abelian group [HK1]. It follows
that Zk = Z1 for every k.

Therefore the hypotheses of Proposition 7.1 are satisfied and we are done. �

7.3. Proof of Theorem 2.24. We now prove the generalization of the spectral
theorem. Starting with an arbitrary measure preserving system (Y, S, ν), by ergodic
decomposition we can assume that (Y, S, ν) is an ergodic system.

We recall the following result from [HK1] (Theorem 12.1):

Theorem. Let g0, . . . , gk−1 be measurable functions on (Y, S, ν) with ‖gi‖∞ ≤ 1
for i ∈ {0, . . . , k − 1}. Then

lim sup
N→+∞

∣∣∣ 1
N

N−1∑
n=0

∫ k−1∏
i=0

Singi dν
∣∣∣ ≤ c min

i∈{0,...,k−1}
|||gi|||k−1

where c is a constant depending only on k.

Proceeding as in [BHK] (proof of Corollary 4.5 from Theorem 4.4), we deduce:

Corollary 7.2. Let g0, . . . , gk−1 be measurable functions on (Y, S, ν) with ‖gi‖∞ ≤
1 for i ∈ {0, . . . , k − 1}. Then

lim sup
N→+∞

1
N

N−1∑
n=0

∣∣∣∫ k−1∏
i=0

Singi dν
∣∣∣2 ≤ c2 min

i∈{0,...,k−1}
|||gi|||2k .

We deduce:

Corollary 7.3. Let f1, . . . , fk be bounded functions on (Y, S, ν) with ‖fi‖∞ ≤ 1 for
i ∈ {1, . . . , k} and let a = (an : n ∈ Z) be a sequence with ‖a‖∞ ≤ 1. Then

(18) lim sup
N→+∞

∥∥∥ 1
N

N−1∑
n=0

an

k∏
i=1

Sinfi

∥∥∥
L2(ν)

≤ k1/4c1/2 min
i∈{1,...,k}

|||fi|||k+1 .

Proof. Let ` ∈ {1, . . . , k} be such that ‖f`‖k+1 = mini∈{1,...,k}|||fi|||k+1 and let Q be
the lim sup in the left hand side of (18).

By the van der Corput Lemma (Appendix A):

Q2 ≤ lim sup
M→+∞

1
M

M−1∑
m=0

∣∣∣lim sup
N→+∞

1
N

N−1∑
n=0

anan+m

∫ k∏
i=1

Sin(fi.S
imfi) dν

∣∣∣ .

By the Cauchy-Schwarz Inequality,

Q4 ≤ lim sup
M→+∞

1
M

M−1∑
m=0

lim sup
N→+∞

1
N

N−1∑
n=0

∣∣∣∫ k∏
i=1

Sin(fi.S
imfi) dν

∣∣∣2
= lim sup

M→+∞

1
M

M−1∑
m=0

lim sup
N→+∞

1
N

N−1∑
n=0

∣∣∣∫ k−1∏
i=0

Sin(fi+1.S
(i+1)mfi+1) dν

∣∣∣2 .
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Applying Corollary 7.2 to the functions gi = fi+1.S
(i+1)mfi+1, we have that

Q4 ≤ c2 lim sup
M→+∞

1
M

M−1∑
m=0

|||f`.S
`mf`|||2k ≤ kc2 lim sup

M→+∞

1
kM

kM−1∑
m=0

|||f`.S
mf`|||2k

≤ kc2
(
lim sup
M→+∞

1
kM

kM−1∑
m=0

|||f`.S
mf`|||2

k

k

)1/2k−1

by the Hölder Inequality. By (3), the last lim sup is actually a limit and is equal to
|||f`|||4k+1 and we are done. �

We now return to the proof of Theorem 2.24. We assume that a = (an : n ∈ Z)
is a bounded sequence such that the averages

1
N

N−1∑
n=0

anbn

converge as N → +∞ for every k-step nilsequence b = (bn : n ∈ Z). We assume that
(Y, S, ν) is an ergodic system and f1, . . . , fk ∈ L∞(ν). We show the convergence of
the averages

1
N

N−1∑
n=0

anSnf1 . . . Sknfk

in L2(ν).
Let Zk be the k-th factor of (Y, S, ν), as given by the Structure Theorem. If

for some i ∈ {1, . . . , k} we have E(fi | Zk) = 0, then |||fi|||k+1 = 0. Then by
Corollary 7.3, the above averages converge to zero in L2(ν). We say that the factor
Zk is characteristic for the convergence of these averages.

Therefore, in order to prove the convergence of these averages, for arbitrary
bounded functions, it suffices to prove the convergence when the functions are
measurable with respect to the factor Zk.

By the Structure Theorem, Zk is an inverse limit of k step nilsystem. Thus by
density, we can assume that the functions fi are measurable with respect to a k-step
nilsystem (Z, S) which is a factor of (Y, S, ν). By density again, we are reduced to
the case that (Y, ν, S) is a k-step nilsystem and that the functions f1, . . . , fk are
continuous.

But in this case, for every y ∈ Y the sequence

(f1(Sny).f2(S2ny). · · · .fk(Skny) : n ∈ Z)

is a k-step nilsequence and by hypothesis, the averages

1
N

N−1∑
n=0

an f1(Sny).f2(S2ny). · · · .fk(Skny)

converge for every y ∈ Y . �

Appendix A. The van der Corput Lemma

We state the van der Corput Lemma, as used in our set up (see [KN]):
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van der Corput’s Lemma. Let a = (an : n ∈ Z) be a sequence with |an| ≤ 1 for
all n ∈ Z and let I be an interval in Z. Then for every integer H ≥ 1, we have

| 1
|I|

∑
n∈I

an|2 ≤
4H

|I|
+

∣∣∣ H∑
h=−H

H − |h|
H2

1
|I|

∑
n∈I

an+han

∣∣∣ .

Appendix B. Parallelepipeds in nilmanifolds

We explain the cubic structure associated to a nilmanifold. In the literature,
there are (at least) two presentations of these objections, in [HK1] and in Appendix
E of [GT2]. The results proved in these papers are often recalled here without proof,
but we need a bit more than just those results. We use the notation of [HK1]. The
group that we denote by G

[k]
k−1 is the same as the group HPk of [GT2].

The k’s in index and exponent that occur everywhere are cumbersome but nec-
essary as we use an induction at some point.

B.1. Algebraic preliminaries. We begin with some algebraic constructions in-
volving “cubes.” Let G be a group and k ≥ 1 be an integer.

B.1.1. Two constructions of the “side group”. We use the notation of Section 3.2.
We write 0 = (0, 0, . . . , 0) ∈ {0, 1}k and 1 = (1, 1, . . . , 1) ∈ {0, 1}k.

As before, if X is a set, X [k] = X2k

and points of X [k] are written as x =
(xε : ε ∈ {0, 1}k). For x ∈ X, x[k] ∈ X [k] is the element (x, x, . . . , x), with x
repeated 2k times. If f : X → Y is a map, f [k] : X [k] → Y [k] denotes the diagonal
map: (f(x))ε = f(xε) for all ε ∈ {0, 1}k.

For g ∈ G and 1 ≤ i ≤ k, g
[k]
i = ((g[k]

i )ε : ε ∈ {0, 1}k) is given by:

(
g
[k]
i )ε =

{
g if εi = 1
1 if εi = 0 .

(Note that we mean ε = (ε1, . . . , εk).) G
[k]
k−1 is the subgroup of G[k] spanned by

{g[k] : g ∈ G} ∪ {g[k]
i : 1 ≤ i ≤ k, g ∈ G} .

The same group was also introduced in [GT2], but with a different definition and
notation. We recall their presentation, but in our notation, substituting “upper
faces” for “lower faces” for coherence. We start with some notation.

It is convenient to view {0, 1}k as the set of vertices of the unit Euclidean cube.
If J is a subset of {1, . . . , k} and η ∈ {0, 1}J , the set

α = {ε ∈ {0, 1}k : εi = ηi for all i ∈ J}

is called a face of {0, 1}k. The dimension of α is dim(α) = k−|J |. If all coordinates
of η are equal to 1, then this face is called an upper face. In particular, α0 = {0, 1}k

is the unique upper face of dimension k, corresponding to J = ∅; {1} is the unique
upper face of dimension zero, corresponding to J = {1, . . . , k}. The k upper faces
of dimension k− 1 are αi = {ε ∈ {0, 1}k : εi = 1} for 1 ≤ i ≤ k. Let α0, α1, . . . , α2k

be an enumeration of all of the upper faces such that α0, . . . , αk are as above and
dim(αi) is a decreasing sequence; in particular, α2k = {1}.
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If α is a face and g ∈ G, we write g
[k]
α = ((g[k]

α )ε : ε ∈ {0, 1}k) for the element of
G[k] given by: (

g[k]
α

)
ε
=

{
g if ε ∈ α ;
1 otherwise .

In particular, the elements g
[k]
i defined above can be written as g

[k]
αi .

In [GT2], HPk(G) is defined to be the set of elements g ∈ G[k] that can be
written as

(19) g = (g1)[k]
α1

(g2)[k]
α2

. . . (g2k)[k]
α2k

where gi ∈ Gk−dim(αi) for every i ∈ {1, . . . , k} .

Here G0 = G1 = G; in all other places in the paper, we use G0 to denote a different
object (the connected component of the identity of G).

Let us explain briefly why G
[k]
k−1 and HPk(G) are actually equal. By a direct

computation, Green and Tao show that HPk(G) is a subgroup of G[k]; since it
contains the generators of G

[k]
k−1, it contains this group. On the other hand, it is

shown in [HK1] (section 5) that for every side α of dimension d and every g ∈
Gk−dim(α), g

[k]
α belongs to G

[k]
k−1 (and more precisely to (G[k]

k−1)k−dim(α)) and thus

HPk(G) ⊂ G
[k]
k−1. We have equality.

In the sequel we only use the notation G
[k]
k−1. Depending on the property to be

proven, the first or second presentation is more convenient.

B.1.2. Algebraic properties. We have:
(i) Let Γ be a subgroup of G. If all coordinates of g belong to Γ except

possibly g0, then g0 ∈ ΓGk.
(ii) In particular, if all coordinates of g ∈ G

[k]
k−1 are equal to 1 except possibly

g0, then g0 ∈ Gk.
The second statement is proved (in a perhaps concealed place) in [HK1] via

induction on k, and the first one is not stated explicitly but follows with a similar
proof. Both statements follow easily from the second definition of G

[k]
k−1 and the

symmetry of this set, allowing us to substitute the coordinate g1 for g0.
We need two more groups for our proofs. In this appendix, we write

Hk = {g ∈ G
[k]
k−1 : g0 = 1} and G

[k]
k = {g[k] : g ∈ G} .

(The first group is not defined in the papers.) Then Hk is clearly a normal subgroup
of G

[k]
k−1 and G

[k]
k−1 = Hk.G

[k]
k . Moreover, Hk is the group spanned by the elements

g
[k]
i for 1 ≤ i ≤ k and g ∈ G; in the second presentation of G

[k]
k−1, it consists of

elements that can be written as in (19) with g1 = 1.
We have
(iii) (Hk)2 = Hk ∩ (G2)[k].
(iv) (G[k]

k−1)2 = G
[k]
k−1 ∩ (G2)[k].

Proof. We prove (iii). The inclusion (Hk)2 ⊂ Hk ∩ (G2)[k] is obvious.
Let α be a face of dimension d < k−1 containing 1. Let g ∈ G and h ∈ Gk−d−1.

We can chose a face β of dimension k− 1 and a face γ of dimension d+1 such that
α = β ∩ γ. We have

g[k]
α ∈ Hk ; h[k]

γ ∈ Hk and [g;h][k]
α =

[
g
[k]
β ;h[k]

γ

]
.
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Thus [g;h][k]
α ∈ (Hk)2. Therefore, for any q ∈ Gk−d, we have that q

[k]
α ∈ (Hk)2.

Using this remark, we can show the inclusion Hk ∩ (G2)[k] ⊂ (Hk)2. Let g be
in the first of these groups. We write g as in (19) with g1 = 1. By the remark, all

terms of the form (gj)
[k]
αj with dim(αj) < k− 1 in the product belong to (Hk)2 and

we are reduced to show that the product of the k remaining terms also belongs to
this group. We remark that all coordinates of this product belong to G2.

Let g
[k]
α be one of these terms. Then α is an upper face of dimension k − 1 and

it is immediate that there exists η ∈ {0, 1}k such that η belongs to α and does not
belong to any other upper face of dimension k− 1. Therefore, g is the coordinate η

of the product and g ∈ G2. It follows that g
[k]
α belongs to (Hk)2 and we are done.

We now deduce (iv). Again, the inclusion (G[k]
k−1)2 ⊂ G

[k]
k−1 ∩ (G2)[k] is obvious.

Let g ∈ G
[k]
k−1 ∩ (G2)[k]. We write g = h[k]q where h ∈ G and q ∈ Hk. We have that

g0 = h and so h ∈ G2. Thus h[k] ∈ (G2)[k]. Moreover, q ∈ Hk ∩ (G2)[k] and by the

second part of the Lemma, q ∈ (Hk)2 ⊂ (G2)
[k]
k−1. �

B.2. Topological properties. Henceforth G is a r-step nilpotent Lie group, Γ is
a discrete cocompact subgroup, and X = G/Γ. In applications r will be equal to
k − 1 but the general case is used in an induction below.

In [HK1] and [GT2], it is shown that

(v) G
[k]
k−1 is a closed subgroup of G[k] and hence is an r-step nilpotent Lie

group.
(vi) The group Λk := Γ[k] ∩G

[k]
k−1 is a cocompact subgroup of G

[k]
k−1.

We do not reproduce the proof here. We define:

Xk = G
[k]
k−1/(Γ[k] ∩G

[k]
k−1) .

For the moment we write νk for the Haar measure of Xk.
The image of νk under the projection x 7→ x0 is equal to the Haar measure µ of

X. We have that:

(vii) The group Θk := Hk ∩ Γ[k] is cocompact in Hk.

Proof. Every g ∈ Hk belongs to G
[k]
k−1 and thus is at a bounded distance from some

γ ∈ Λk. Since g0 = 1, γ0 is at a bounded distance from 1. Since Γ is discrete, γ0

belongs to a finite subset F of Γ.
We have that g is at a bounded distance from ((γ0)[k])−1γ, which belongs to

G
[k]
k−1 ∩Hk = Θk. �

We define Wk = Hk/Θk . Then Wk is a (k − 1)-step nilmanifold, naturally
included in Xk as a closed subset.

For every g ∈ G we have that g[k] belongs to G
[k]
k−1. We deduce that for every

x ∈ X, we have that x[k] := (x, x, . . . , x) belongs to Xk.
For every x ∈ X, we write

Wk,x = {x ∈ Xk : x0 = x} .

We show:

(viii) Let x ∈ X and g be a lift of x in G. Then Wk,x = g[k].Wk.
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Proof. Let x ∈ Wk,x and h be a lift of x in G
[k]
k−1. Since x0 = x, we have that

h0 = gγ for some γ ∈ Γ. Let q = (g[k])−1h(γ[k])−1. Then q ∈ Hk and its image
y in Hk satisfies g[k]y = x. We thus have that Wk,x ⊂ g[k].Wk and the opposite
inclusion is obvious. �

B.3. Dynamical properties. Henceforth, we assume that X is endowed with the
translation T by some τ ∈ G and that (X, T, µ) is ergodic. Recall that the same
nilmanifold can be represented as a quotient in different ways. As usual we assume
that G is spanned by the connected component G0 of the identity and τ . We claim
that:

(ix) (G[k]
k−1)0 = (G0)

[k]
k−1.

(x) G
[k]
k−1 is spanned by (G[k]

k−1)0, τ [k], and the elements τ
[k]
i , 1 ≤ i ≤ k.

(xi) Hk is spanned by (Hk)0 and the elements τ
[k]
i , 1 ≤ i ≤ k.

Proof. By hypothesis and the first definition of G
[k]
k−1, this group is spanned by

elements of the form g[k] for g ∈ G0, g
[k]
i for g ∈ G0 and 1 ≤ i ≤ k, τ

[k]
i for

1 ≤ i ≤ k and τ [k]. This proves (x).
The commutator of two elements of the above type belongs to (G2)

[k]
k−1 ⊂

(G0)
[k]
k−1, because it follows from our assumption that G2 ⊂ G0. Then every element

g of G
[k]
k−1 can be written as g = h(τ [k])n(τ [k]

1 )m1 . . . (τ [k]
k )mk with h ∈ (G0)

[k]
k−1.

If g ∈ (G[k]
k−1)0, then by looking at the coordinate 0 of g we have that h0τ

n = g0

belongs to G0. Thus τn ∈ G0.
Let i ∈ {1, . . . , k}. As in the proof of (iii), there exists η ∈ {0, 1}k such that

τ
[k]
i = τ and τ

[k]
j = 1 for j 6= i. We have that gη = hητmi

i and thus τmi ∈ G0. Thus

(τ [k]
i )mi ∈ (G0)

[k]
k−1. This achieves the proof of (ix).

Now assume that g ∈ (Hk)0. Then it belongs to (G[k]
k−1)0 and we write it as

above, g = h(τ [k]
1 )m1 . . . (τ [k]

k )mk with h ∈ (G0)
[k]
k−1. We have that h0 = g0 = 1 and

so h ∈ Hk ∩ (G0)
[k]
k−1 and this element belongs to (Hk)0. This proves (xi). �

(xii) Xk is ergodic under the action of T [k] and T
[k]
i , 1 ≤ i ≤ k.

(xiii) Wk is ergodic under the transformations T
[k]
i , 1 ≤ i ≤ k.

Proof. Let Z be the compact abelian group G/ΓG2 and σ be the image of τ in Z.
Since T is ergodic, the translation by σ on Z is ergodic.

By (iv) and (any) definition of G
[k]
k−1, the quotient G

[k]
k−1/(G[k]

k−1)2Λk can be

identified with the subgroup Z
[k]
k−1 of Z [k]. This group consists of the points z of

Z [k] which can be written as

z =
(
u

k∏
i=1

vεi
i : ε ∈ {0, 1}k

)
for some u, v1, . . . , vk ∈ Z. The transformations induced on this group by the
transformations T [k] and T

[k]
i , 1 ≤ i ≤ k, are the translations by σ[k] and σ

[k]
i . In

the above parametrization of Z
[k]
k−1, these transformations correspond to the map

u 7→ σu and to the maps vi 7→ σvi, respectively.
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Since the translation by σ on Z is ergodic, it follows easily that Z
[k]
k−1 is ergodic

under the translations by σ[k] and σ
[k]
i . By (ix) and Theorem 3.6, Xk is ergodic

under the action of T [k] and T
[k]
i , 1 ≤ i ≤ k.

The second statement is proved in the same way. �

We show:

(xiv) The Haar measure νk of Xk is equal to the measure µ[k] defined in [HK1]
and described in Section 3.2.

This result is proved in [HK1], but the context is so different from the present one
that we prefer to give a complete proof here.

Proof. We use induction on k. By definition, G
[2]
1 = G × G and so X1 = X × X

and ν1 = µ× µ, which is equal to the measure µ1 of [HK1].
Assume that the announced property holds up to k− 1 for some k > 1. In order

to show the property for k, it suffices to show that when fε, ε ∈ {0, 1}k, are 2k

continuous functions on X, we have that the function F defined on X [k] by

F (x) =
∏

ε∈{0,1}k

fε(xε)

has the same integral under the measures µ[k] and νk.
For every x ∈ X, the point x[k] = (x, x, . . . , x) belongs to Xk. Since (Xk, T [k], T

[k]
1 , . . . , T

[k]
k )

is uniquely ergodic with invariant measure νk, we have that∫
F (x) dνk(x)

= lim
L→+∞

1
L

L−1∑
`=0

(
lim

M→+∞

1
Mk−1

M−1∑
m1,...mk−1=0

(
lim

N→+∞

1
N

N−1∑
n=0

∏
ε∈{0,1}k

fε(Tn+ε·m+εk`x)
))

where m = (m1, . . . ,mk−1) and ε·m = ε1m1+. . .+εk−1mk−1. By unique ergodicity
of (X, T, µ), this is equal to

lim
L→+∞

1
L

L−1∑
`=0

(
lim

M→+∞

1
Mk−1

M−1∑
m1,...mk−1=0

∫ ∏
ε∈{0,1}k

fε(T ε·m+εk`x) dµ(x)
)

.

We write each ε ∈ {0, 1}k in the form η0 or η1 with η ∈ {0, 1}k−1, and this
expression can be rewritten as

lim
L→+∞

1
L

L−1∑
`=0

(
lim

M→+∞

1
Mk−1

M−1∑
m1,...,mk−1=0

∫ ∏
η∈{0,1}k−1

(fη0.T
`fη1)(T η·mx) dµ(x)

)
.

By unique ergodicity of Xk−1 under the transformations T [k−1] and T
[k−1]
i , 1 ≤ i ≤

k − 1, and proceeding as above, we have that this expression is equal to

lim
L→+∞

1
L

M−1∑
`=0

∫ ∏
η∈{0,1}k−1

(fη0.T
`fη1)(xη) dνk−1(x) .
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By the induction hypothesis, the integral remains unchanged when the measure
µ[k−1] is substituted for νk−1. We rewrite this expression as

(20) lim
L→+∞

1
L

L−1∑
`=0

∫
F0 . F1 ◦ (T [k−1])` dµ[k−1]

where
F0(x) =

∏
η∈{0,1}k−1

fη0(xη) and F1(x) =
∏

η∈{0,1}k−1

fη1(xη) .

Let I denotes the T [k−1]-invariant σ-algebra of the measure µ[k−1]. The limit (20)
is equal to ∫

E(F0 | I) E(F1 | I) dµ[k−1] .

By the inductive definition of the measure µ[k] in [HK1] (section 3), this is equal to∫
F0(xη0 : η ∈ {0, 1}k−1) F1(xη1 : η ∈ {0, 1}k−1) dµ[k](x)

and the function in the integral is just the function F . �

Recall that the measure µ[k] satisfies the inequality (2) of Section 3.2. This can
probably be proved directly for the measure νk but does not seem obvious.

B.4. The fibers. Recall that for every x ∈ X, Wk,x = {x ∈ Xk : x0 = x}.
(xv) For every x ∈ X, Wk,x is uniquely ergodic under the transformations T

[k]
i ,

1 ≤ i ≤ k.
We write ρx for the invariant measure of Wk,x.

(xvi) For every x ∈ X and h ∈ G, ρh.x is the image of ρx under the translation
by h[k].

Proof. Let g be a lift of x in G and τ̃ = gτg−1.
For 1 ≤ i ≤ k, we have that τ̃

[k]
i = g[k]τ

[k]
i (g[k])−1 and all these elements commute

and belong to Hk. For 1 ≤ i ≤ k, let T̃
[k]
i be the translation by τ̃

[k]
i .

We first show that the nilsystem (Wk, T̃
[k]
1 , . . . , T̃

[k]
k ) is uniquely ergodic. For each

i, τ̃
[k]
i (τ [k]

i )−1 belongs to Hk∩(G2)[k] and thus to (Hk)2 by (iii). Therefore, τ̃
[k]
i and

τ
[k]
i have the same projection on the compact abelian group Hk/(Hk)2. By (xiii),

the action induced by τ
[k]
i , 1 ≤ i ≤ k on this group is ergodic. The criteria given

by Theorem 3.6 and property (xi) give the announced unique ergodicity.
By (viii), we have that g[k].Wk = Wk,x. The map y 7→ g[k].y mapping (Wk, T̃

[k]
1 , . . . , T̃

[k]
k )

to (Wk,x, T
[k]
1 , . . . , T

[k]
k ) is an isomorphism of topological systems and thus the sec-

ond of these system is uniquely ergodic. This proves (xv).
We write ρ for the Haar measure of the nilmanifold Wk = Hk/Θk. Then ρ

is the invariant measure of Wk and the above proof shows that for every g ∈ G,
the invariant measure of Wk,x is the image of ρ under translation by G[k]. This
immediately implies (xvi). �

In fact, Wk,x can be given the structure of a nilmanifold, quotient of the group
Hk by the discrete cocompact group g[k]Θ(g[k])−1, and the transformations T

[k]
i are

translations on this nilmanifold.
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B.5. The case that G is a (k − 1)-step nilpotent. Henceforth we assume that
G is a (k − 1)-step nilpotent group.

We show:

(xvii) Let Xk∗ be the image of x 7→ x∗ of Xk under the projection x 7→ x∗
mapping X [k] to X2k−1. There exists a smooth map Φ: Xk∗ → Xk such
that

(21) Xk =
{
(Φ(x∗), x∗) : x ∈ Xk∗

}
.

Different proofs are given for the existence and continuity of Φ in [HK1] and [GT2].
The smoothness of Φ can be easily deduced from these proofs, but this property is
not stated in these papers. For completeness, we give a short complete proof.

Proof. First we remark that the projection Xk → Xk∗ is one to one. Indeed, let x
and y be two points of Xk with the same projections. We lift them to two elements
g and h of G[k]. All the coordinates of hg−1 belong to Γ except the first one, and
by (i) this coordinate also belongs to ΓGk = Γ. Thus x = y.

Therefore the projection Xk → Xk∗ is a homeomorphism. By composing the
reciprocal of this map with the projection x 7→ x0, we obtain a continuous map
Φ: Xk∗ → X satisfying (21). We are left with showing that it is smooth.

Let G∗ be the image of G[k] in G2k−1 under the map g 7→ g∗. By (ii), the
projection G[k] → G∗ is one to one.

We check that G∗ is a closed subgroup of G2k−1. Let (g∗n) be a sequence in G2k−1

converging to some g∗. For each n, there exists g0,n ∈ G with g
n

= (g0,n, g∗n) ∈
G

[k]
k−1 and there exists γ

n
∈ Γ[k] ∩ G

[k]
k−1 at a bounded distance from g

n
. All the

coordinates of γ
n
, except γ0, are for all n at a bounded distance from the unit.

By passing to subsequences, we can assume that they do not depend on n. By (i),
γ

n
does not depend on n. Therefore, g

n
remains at a bounded distance from the

unit and taking a subsequence we can assume that it converges to some g, which

belongs to G
[k]
k−1 by (v). Then the projection of g on G∗ is equal to g∗. Thus g

belongs to G∗.
Now, the projection G

[k]
k−1 → G∗ is a smooth bijective homomorphism between

Lie groups. Therefore it is a diffeomorphism. Since the projection G
[k]
k−1 → Xk has

discrete kernel, it follows that the projection Xk → Xk∗ is a diffeomorphism and
thus that Φ is smooth. �

We deduce:

(xviii) ||| · |||k is a norm on C(X).

Proof. It suffices to show that if f ∈ C(X) satisfies |||f |||k = 0, then f = 0. By
Proposition 4.3, if fε, ε ∈ {0, 1}k

∗, are 2k − 1 continuous functions on X, then∫
f(x0)

∏
ε∈{0,1}k−∗

fε(xε) dµ[k](x) = 0 .

By density,
∫

f(x0)F (x∗) dµ(x) = 0 for every continuous function F on Xk∗. Taking
F = f̄◦Φ where Φ is as in statement ii of Theorem 5.1, property (21) of this function
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gives

0 =
∫

f(x0)f̄(Φ(x∗)) dµ[k](x) =
∫
|f(x0)|2 dµ[k](x) =

∫
|f(x)|2 dµ(x)

because the projection of µ[k] on X is µ. �
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