Math B17-Fall 1999 - Midterm Exam No. 1 (solutions)

SOLUTIONS

1. Determine whether the following series converges or diverges. If it converges, find its sum.

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+2)}
$$

Solution:

We have: $\frac{1}{n(n+2)}<\frac{1}{n^{2}}$, and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges because it is a p-series with $p=2$. Hence, by Comparison Test the given series converges.

We can rewrite each term of the series like this:

$$
\frac{1}{n(n+2)}=\frac{1 / 2}{n}-\frac{1 / 2}{n+2}
$$

So, the series is telescopic:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n(n+2)} & =\sum_{n=1}^{\infty}\left(\frac{1 / 2}{n}-\frac{1 / 2}{n+2}\right) \\
& =\frac{1 / 2}{1}-\frac{1 / 2}{3}+\frac{1 / 2}{2}-\frac{1 / 2}{4}+\frac{1 / 2}{3}-\frac{1 / 2}{5}+\frac{1 / 2}{4}-\frac{1 / 2}{6}+\cdots \\
& =\frac{1 / 2}{1}+\frac{1 / 2}{2}=\frac{3}{4}
\end{aligned}
$$

2. Find a power series representation for the hyperbolic $\operatorname{sine}: \sinh x=\frac{e^{x}-e^{-x}}{2}$.

Solution:

$$
\begin{aligned}
\sinh x & =\frac{e^{x}-e^{-x}}{2} \\
& =\frac{1}{2}\left\{\left(\frac{1}{0!}+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots\right)-\left(\frac{1}{0!}-\frac{x}{1!}+\frac{x^{2}}{2!}-\cdots\right)\right\} \\
& =x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

3. Determine if the following series converges or diverges:

$$
\sum_{n=1}^{\infty}\left(1-\frac{1}{n}\right)^{n}
$$

Solution:

We have: $\quad \lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}=e^{-1} \neq 0$.
Since the nth term does not converge to zero, the series diverges.
4. Determine if the following series converges absolutely, converges conditionally, or diverges:

$$
\sum_{n=3}^{\infty} \frac{(-1)^{n}}{\ln n}
$$

Solution:

The series is alternating, $\frac{1}{\ln n}$ decreases and $\frac{1}{\ln n} \rightarrow 0$, hence the series converges.

On the other hand $\frac{1}{\ln n}>\frac{1}{n}$. Since the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, by comparison test $\sum_{n=3}^{\infty} \frac{1}{\ln n}$ diverges.

Hence the given series converges conditionally.
5. Find the interval of convergence of the following series:

$$
f(x)=\sum_{n=0}^{\infty}\left(1+2^{n}\right) x^{n}
$$

Solution:

We use the ratio test:

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{\left(1+2^{n+1}\right) x^{n+1}}{\left(1+2^{n}\right) x^{n}}\right|=|x| \lim _{n \rightarrow \infty}\left|\frac{\left(1+2^{n+1}\right)}{\left(1+2^{n}\right)}\right|=2|x|
$$

There is convergence for $\rho<1$, i.e., $|x|<1 / 2$.
At the endpoints we get the series

$$
\sum_{n=0}^{\infty}(-1)^{n}\left(1+2^{n}\right) \quad \text { and } \quad \sum_{n=0}^{\infty}\left(1+2^{n}\right)
$$

respectively, whose nth terms do not tend to zero, so they do not converge. Hence, the interval of convergence is:

$$
I=\left(-\frac{1}{2}, \frac{1}{2}\right),
$$

not including the endpoints.
6. Find a power series for the following integral

$$
\int_{0}^{x} e^{-t^{2}} d t
$$

Solution:

$$
e^{-t^{2}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{2 n}}{n!}=1-\frac{t^{2}}{1!}+\frac{t^{4}}{2!}-\frac{t^{6}}{3!}+\cdots
$$

Hence, integrating termwise:

$$
\int_{0}^{x} e^{-t^{2}} d t=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{n!(2 n+1)}=x-\frac{x^{3}}{1!3}+\frac{x^{5}}{2!5}-\frac{x^{7}}{3!7}+\cdots
$$

