Math B17 - Fall 1999 - Midterm Exam No. 1 (solutions)

SOLUTIONS

1. Determine whether the following series converges or diverges. If it converges,
find its sum.
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Solution:
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—— < —, and — converges because it is a p-series
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with p = 2. Hence, by Comparison Test the given series converges.

We have:

We can rewrite each term of the series like this:
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So, the series is telescopic:
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2. Find a power series representation for the hyperbolic sine: sinhz = ¢
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3. Determine if the following series converges or diverges:
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Solution:
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We have: lim (1 — —) =e 1 #£0.
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Since the nth term does not converge to zero, the series diverges.



4. Determine if the following series converges absolutely, converges conditionally,
or diverges:
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Solution:
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The series is alternating, o decreases and o — 0, hence the series
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converges.
o0
1 1 . . . .
On the other hand —— > —. Since the harmonic series Z — diverges,
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by comparison test E o diverges.
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Hence the given series converges conditionally.



5. Find the interval of convergence of the following series:
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Solution:
We use the ratio test:
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There is convergence for p < 1, i.e., |z| < 1/2.

At the endpoints we get the series
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respectively, whose nth terms do not tend to zero, so they do not converge.
Hence, the interval of convergence is:

not including the endpoints.



6. Find a power series for the following integral
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Hence, integrating termwise:
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