
Math B17 - Fall 1999 - Final Exam (solutions)

SOLUTIONS

1. Determine if the following infinite series converge absolutely, converge condi-
tionally or diverge:

(a)
∞∑
n=1

sinn√
n3

Solution:

We have:

∣∣∣∣sinn√n3

∣∣∣∣ ≤ 1√
n3

. The series
∞∑
n=1

1√
n3

is a p-series with p = 3/2 > 1,

hence it converges. By comparison
∞∑
n=1

∣∣∣∣sinn√n3

∣∣∣∣ also converges. Hence the

given series converges absolutely.

(b)
∞∑
n=3

(−1)n

lnn

Solution:

The series is alternating. The absolute value of its nth term

∣∣∣∣(−1)n

lnn

∣∣∣∣ =
1

lnn
is

decreasing and tends to zero, hence the series converges. However
1

lnn
≥ 1

n
,

and
∞∑
n=3

1

n
diverges, so

∞∑
n=3

1

lnn
diverges by comparison. Hence the given

series converges conditionally.
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2. Find the interval of convergence of the following series:

∞∑
n=1

(2 + x)n

n2 7n

Solution:

By the ratio test:

ρ = lim
n→∞

∣∣∣∣(2 + x)(n+1)/(n+ 1)2 7(n+1)

(2 + x)n/n2 7n

∣∣∣∣
= lim

n→∞

|2 + x|
7

n2

n2 + 1
=
|2 + x|

7
.

Hence, the series converges absolutely for ρ = |2 + x|/7 < 1, i.e., −9 <
x < 5, or x in (−9, 5). It diverges for ρ = |2 + x|/7 > 1, i.e., x < −9 or
x > 5. It remains to check convergence at the endpoints.

At x = 5 the series is
∞∑
n=1

(2 + 5)n

n2 7n
=
∞∑
n=1

1

n2
, which is a p-series with p =

2 > 1, hence it converges. At x = −9 the series is
∞∑
n=1

(2− 9)n

n2 7n
=
∞∑
n=1

(−1)n

n2
,

which is also convergent.

Hence, the interval of convergence is [−9, 5], including the endpoints.
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3. Find a power series for the following function: f(x) =

∫ x

t=0

e−πt
2

dt.

Solution:

Using the Maclaurin series for ex we find:

e−πt
2

=
∞∑
n=0

(−1)n
πnt2n

n!
= 1− πt2 +

π2t4

2!
− π3t6

3!
+ · · ·

Integrating termwise we get:

f(x) =
∞∑
n=0

(−1)n
πnx2n+1

n! (2n+ 1)
= x− πx3

3
+
π2x5

2! 5
− π3x7

3! 7
+ · · ·
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4. Solve the following system of equations:
x1 + x2 + x3 + x4 = 1

x1 − x2 + x3 + 3x4 = −1

x1 + x3 + 2x4 = 0

Solution:

The augmented matrix is:

A =


1 1 1 1

1 −1 1 3

1 0 1 2

∣∣∣∣∣∣∣∣
1

−1

0


Gauss-Jordan

reduction
=⇒


1 0 1 2

0 1 0 −1

0 0 0 0

∣∣∣∣∣∣∣∣
0

1

0

 .

So, the system is equivalent to:{
x1 + x3 + 2x4 = 0

x2 − x4 = 1

Hence, the solution is:

x1 = −x3 − 2x4

x2 = 1 + x4

i.e.: 
x1

x2

x3

x4

 =


0

1

0

0

+ x3


−1

0

1

0

+ x4


−2

1

0

1


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5. A 3× 2 matrix X has the following property:
1 2 0

−1 −3 3

1 1 4

X =


−1 2

2 0

0 5


Find X.

Solution:

Using Gauss-Jordan reduction on the augmented matrix:
1 2 0

−1 −3 3

1 1 4

∣∣∣∣∣∣∣∣
−1 2

2 0

0 5


Gauss-Jordan

reduction
=⇒


1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣∣
1 0

−1 1

0 1


Hence:

X =


1 0

−1 1

0 1

 .

An alternative (although longer) solution consists of computing the in-
verse of the coefficient matrix:

1 2 0

−1 −3 3

1 1 4


−1

=


15 8 −6

−7 −4 3

−2 −1 1


and multiplying it by the given matrix:

X =


15 8 −6

−7 −4 3

−2 −1 1



−1 2

2 0

0 5

 =


1 0

−1 1

0 1

 .
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6. Find a basis and the dimension of the column space of the following matrix:

A =


1 −1 1 1 1

1 −1 2 2 −1

2 −2 3 3 0

 .

Solution:

By Gauss reduction we get:
1 −1 1 1 1

1 −1 2 2 −1

2 −2 3 3 0


Gauss

reduction
=⇒


1 −1 1 1 1

0 0 1 1 −2

0 0 0 0 0


There are two pivots, so the rank of A is 2, hence the dimension of the

column space is 2.

The pivots are on columns 1 and 3, so the columns 1 and 3 of the original
matrix form a basis for the column space:


1

1

2

 ,


1

2

3



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7. Given the vectors:

v1 =


1

−1

2

 v2 =


−1

2

0

 v3 =


0

1

2

 ,

find all possible real numbers x1, x2, x3, such that:

x1 v1 + x2 v2 + x3 v3 = 0 .

Solution:

The equation above is equivalent to the following homogeneous system:
1 −1 0

−1 2 1

2 0 2



x1

x2

x3

 =


0

0

0

 .

So: 
1 −1 0

−1 2 1

2 0 2

∣∣∣∣∣∣∣∣
0

0

0


Gauss-Jordan

reduction
=⇒


1 0 1

0 1 1

0 0 0

∣∣∣∣∣∣∣∣
0

0

0

 .

Hence, the system is equivalent to:{
x1 + x3 = 0

x2 + x3 = 0

The solution is x1 = x2 = −x3, i.e.:
x1

x2

x3

 = x3


−1

−1

1


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8. Diagonalize the symmetric matrix A =


4 −1 1

−1 4 −1

1 −1 4

.

Show an orthogonal matrix P such that D = P tAP is diagonal.

(Hint: all eigenvalues of A are multiple of 3.)

Solution:

The matrix P will be of the form P = [ u1 u2 u3 ], where {u1,u2,u3} is
an orthonormal basis for R3 made of eigenvectors for A.

The eigenvalues of A are the roots of its characteristic polynomial:

det(A− λI) = −λ3 + 12λ2 − 45λ+ 54 = −(λ− 6) (λ− 3)2 ,

i.e., λ = 6 and λ = 3 (double).

For λ = 6 we must solve (A− 6 I) x = 0:
−2 −1 1

−1 −2 −1

1 −1 −2



x1

x2

x3

 =


0

0

0


The solution is x1 = x3, x2 = −x3, i.e.:

x1

x2

x3

 = x3


1

−1

1

 ,

so we take v1 =


1

−1

1

 as the first eigenvector.

For λ = 3 we must solve (A− 3I) x = 0:
1 −1 1

−1 1 −1

1 −1 1



x1

x2

x3

 =


0

0

0

 .
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The solution is x1 = x2 − x3, i.e.:
x1

x2

x3

 = x2


1

1

0

+ x3


−1

0

1

 ,

so we take v2 =


1

1

0

 and v3 =


−1

0

1

 as the two remaining eigenvectors.

The vector v1 is orthogonal to v2 and v3, but v2 and v3 are not orthog-
onal, so we must apply the Gram-Schmidt process to {v2,v3}:

v′2 = v2 =


1

1

0



v′3 = v3 −
v3 · v2

v2 · v2

v2 =


−1

0

1

+
1

2


1

1

0

 =


−1/2

1/2

1


Next, we normalize v1, v′2 and v′3:

u1 =
v1

|v1|
=

1√
3


1

−1

1



u2 =
v′2
|v′2|

=
1√
2


1

1

0



u3 =
v′3
|v′3|

=
1√
6


−1

1

2


Hence:

P =


1√
3

1√
2
− 1√

6

− 1√
3

1√
2

1√
6

1√
3

0 2√
6


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Finally, the diagonal form of A is:

D = P tAP =


6 0 0

0 3 0

0 0 3


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9. Find the principal axes and classify the central conic:

x2 + y2 − 8xy = 15

Solution:

The conic can be represented as
[
x y

]
A

[
x

y

]
= 15, whereA =

[
1 −4

−4 1

]
.

We must diagonalizeA asD = P tAP for some orthogonal matrix P =
[

u1 u2

]
,

where {u1,u2} is an orthonormal basis for R2 consisting of eigenvectors for
A.

The eigenvalues of A are the roots of the characteristic polynomial:

det (A− λ I) = det

[
1− λ −4

−4 1− λ

]
= λ2 − 2λ− 15 = (λ− 5) (λ+ 3)

The eigenvalues are λ = −3 and λ = 5.

For λ = −3 we must solve

[
4 −4

−4 4

][
x1

x2

]
=

[
0

0

]
. The solution is

x1 = x2, or:

[
x1

x2

]
= x2

[
1

1

]
, so we take v1 =

[
1

1

]
as eigenvector.

For λ = 5 we must solve

[
−4 −4

−4 −4

][
x1

x2

]
=

[
0

0

]
. The solution is

x1 = −x2, or:

[
x1

x2

]
= x2

[
−1

1

]
, so we take v2 =

[
−1

1

]
.

Note that v1 and v2 are already orthogonal, so all we need is to normalize
them: u1 = 1√

2
v1, u2 = 1√

2
v2. The matrix for the change of basis is:

P =
[

u1 u2

]
=

1√
2

[
1 −1

1 1

]
.

In the new basis the conic is
[
x′ y′

]
D

[
x′

y′

]
= 15, where

D = P tAP =

[
−3 0

0 5

]
,
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and [
x′

y′

]
= P t

[
x

y

]
=

1√
2

[
1 1

−1 1

][
x

y

]

i.e.: {
x′ = 1√

2
(x+ y)

y′ = 1√
2

(−x+ y)

Hence the conic is −3x′2 + 5 y′2 = 15, or equivalently: −x
′2

5
+
y′2

3
= 1,

which is an hyperbola. Its principal axes are given by the basic vectors

u1 =
1√
2

[
1

1

]
, u2 =

1√
2

[
−1

1

]
.

Note: An alternative solution is
x′2

3
− y′2

5
= 1, and

u1 =
1√
2

[
−1

1

]
, u2 =

1√
2

[
1

1

]
.
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10. Use the method of Lagrange multipliers to find the maximum and minimum
values of the function f(x, y) = 2xy given the constrain g(x, y) = x2 +y2 = 1.

Solution:

We must solve ∇f(x, y) = λ∇ g(x, y), g(x, y) = 1, i.e.:
2y = λ (2x)

2x = λ (2y)

x2 + y2 = 1

which is equivalent to Ax = λx, x = 1, where A =

[
0 1

1 0

]
, x =

[
x

y

]
. So

the problem consists of finding eigenvectors of length 1 for the matrix A.

First we find the eigenvalues for A:

det(A− λI) = det

[
−λ 1

1 −λ

]
= λ2 − 1 = (λ− 1)(λ+ 1),

hence the eigenvalues are λ = ±1.

For λ = −1 we solve (A+ I) x =

[
1 1

1 1

][
x

y

]
= 0. The solutions of

length 1 are x1 =
1√
2

[
−1

1

]
and −x1.

For λ = 1 we solve (A− I) x =

[
−1 1

1 −1

][
x

y

]
= 0. The solutions of

length 1 are x2 =
1√
2

[
1

1

]
and −x2.

Hence, the extreme values of f(x, y) are:

f(x1) = f(− 1√
2
, 1√

2
) = −1

f(−x1) = f( 1√
2
,− 1√

2
) = −1

f(x2) = f( 1√
2
, 1√

2
) = 1

f(−x2) = f(− 1√
2
,− 1√

2
) = 1 .
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