## Math B17 - Fall 1999 - Final Exam (solutions)

## SOLUTIONS

1. Determine if the following infinite series converge absolutely, converge conditionally or diverge:
(a) $\sum_{n=1}^{\infty} \frac{\sin n}{\sqrt{n^{3}}}$

## Solution:

We have: $\left|\frac{\sin n}{\sqrt{n^{3}}}\right| \leq \frac{1}{\sqrt{n^{3}}}$. The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}}}$ is a $p$-series with $p=3 / 2>1$, hence it converges. By comparison $\sum_{n=1}^{\infty}\left|\frac{\sin n}{\sqrt{n^{3}}}\right|$ also converges. Hence the given series converges absolutely.
(b) $\sum_{n=3}^{\infty} \frac{(-1)^{n}}{\ln n}$

## Solution:

The series is alternating. The absolute value of its $n$th term $\left|\frac{(-1)^{n}}{\ln n}\right|=\frac{1}{\ln n}$ is decreasing and tends to zero, hence the series converges. However $\frac{1}{\ln n} \geq \frac{1}{n}$, and $\sum_{n=3}^{\infty} \frac{1}{n}$ diverges, so $\sum_{n=3}^{\infty} \frac{1}{\ln n}$ diverges by comparison. Hence the given series converges conditionally.
2. Find the interval of convergence of the following series:

$$
\sum_{n=1}^{\infty} \frac{(2+x)^{n}}{n^{2} 7^{n}}
$$

## Solution:

By the ratio test:

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{(2+x)^{(n+1)} /(n+1)^{2} 7^{(n+1)}}{(2+x)^{n} / n^{2} 7^{n}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{|2+x|}{7} \frac{n^{2}}{n^{2}+1}=\frac{|2+x|}{7} .
\end{aligned}
$$

Hence, the series converges absolutely for $\rho=|2+x| / 7<1$, i.e., $-9<$ $x<5$, or $x$ in $(-9,5)$. It diverges for $\rho=|2+x| / 7>1$, i.e., $x<-9$ or $x>5$. It remains to check convergence at the endpoints.

At $x=5$ the series is $\sum_{n=1}^{\infty} \frac{(2+5)^{n}}{n^{2} 7^{n}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, which is a $p$-series with $p=$ $2>1$, hence it converges. At $x=-9$ the series is $\sum_{n=1}^{\infty} \frac{(2-9)^{n}}{n^{2} 7^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$, which is also convergent.

Hence, the interval of convergence is $[-9,5]$, including the endpoints.
3. Find a power series for the following function: $f(x)=\int_{t=0}^{x} e^{-\pi t^{2}} d t$.

## Solution:

Using the Maclaurin series for $e^{x}$ we find:

$$
e^{-\pi t^{2}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{\pi^{n} t^{2 n}}{n!}=1-\pi t^{2}+\frac{\pi^{2} t^{4}}{2!}-\frac{\pi^{3} t^{6}}{3!}+\cdots
$$

Integrating termwise we get:

$$
f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\pi^{n} x^{2 n+1}}{n!(2 n+1)}=x-\frac{\pi x^{3}}{3}+\frac{\pi^{2} x^{5}}{2!5}-\frac{\pi^{3} x^{7}}{3!7}+\cdots
$$

4. Solve the following system of equations:

$$
\left\{\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}= & 1 \\
x_{1}-x_{2}+x_{3}+3 x_{4} & =-1 \\
x_{1}+x_{3}+2 x_{4} & =0
\end{aligned}\right.
$$

## Solution:

The augmented matrix is:

$$
A=\left[\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & 3 & -1 \\
1 & 0 & 1 & 2 & 0
\end{array}\right] \stackrel{\begin{array}{l}
\text { Gauss-Jordan } \\
\text { reduction }
\end{array}}{\Longrightarrow}\left[\begin{array}{lllr|r}
1 & 0 & 1 & 2 & 0 \\
0 & 1 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So, the system is equivalent to:

$$
\left\{\begin{aligned}
x_{1} \quad+x_{3}+2 x_{4} & =0 \\
& x_{2}
\end{aligned}\right.
$$

Hence, the solution is:

$$
\begin{aligned}
& x_{1}=-x_{3}-2 x_{4} \\
& x_{2}=1+x_{4}
\end{aligned}
$$

i.e.:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
-1 \\
0 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
-2 \\
1 \\
0 \\
1
\end{array}\right]
$$

5. A $3 \times 2$ matrix $X$ has the following property:

$$
\left[\begin{array}{rrr}
1 & 2 & 0 \\
-1 & -3 & 3 \\
1 & 1 & 4
\end{array}\right] X=\left[\begin{array}{rr}
-1 & 2 \\
2 & 0 \\
0 & 5
\end{array}\right]
$$

Find $X$.

## Solution:

Using Gauss-Jordan reduction on the augmented matrix:

$$
\left[\begin{array}{rrr|rr}
1 & 2 & 0 & -1 & 2 \\
-1 & -3 & 3 & 2 & 0 \\
1 & 1 & 4 & 0 & 5
\end{array}\right] \stackrel{\begin{array}{c}
\text { Gauss-Jordan } \\
\text { reduction }
\end{array}}{\Longrightarrow}\left[\begin{array}{lll|rr}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right]
$$

Hence:

$$
X=\left[\begin{array}{rr}
1 & 0 \\
-1 & 1 \\
0 & 1
\end{array}\right]
$$

An alternative (although longer) solution consists of computing the inverse of the coefficient matrix:

$$
\left[\begin{array}{rrr}
1 & 2 & 0 \\
-1 & -3 & 3 \\
1 & 1 & 4
\end{array}\right]^{-1}=\left[\begin{array}{rrr}
15 & 8 & -6 \\
-7 & -4 & 3 \\
-2 & -1 & 1
\end{array}\right]
$$

and multiplying it by the given matrix:

$$
X=\left[\begin{array}{rrr}
15 & 8 & -6 \\
-7 & -4 & 3 \\
-2 & -1 & 1
\end{array}\right]\left[\begin{array}{rr}
-1 & 2 \\
2 & 0 \\
0 & 5
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
-1 & 1 \\
0 & 1
\end{array}\right] .
$$

6. Find a basis and the dimension of the column space of the following matrix:

$$
A=\left[\begin{array}{rrrrr}
1 & -1 & 1 & 1 & 1 \\
1 & -1 & 2 & 2 & -1 \\
2 & -2 & 3 & 3 & 0
\end{array}\right]
$$

## Solution:

By Gauss reduction we get:

$$
\left[\begin{array}{rrrrr}
1 & -1 & 1 & 1 & 1 \\
1 & -1 & 2 & 2 & -1 \\
2 & -2 & 3 & 3 & 0
\end{array}\right] \stackrel{\text { Gauss }}{\underset{\text { reduction }}{\Longrightarrow}}\left[\begin{array}{rrrrr}
1 & -1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

There are two pivots, so the rank of $A$ is 2 , hence the dimension of the column space is 2 .

The pivots are on columns 1 and 3 , so the columns 1 and 3 of the original matrix form a basis for the column space:

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right\}
$$

7. Given the vectors:

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right] \quad \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}
-1 \\
2 \\
0
\end{array}\right] \quad \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

find all possible real numbers $x_{1}, x_{2}, x_{3}$, such that:

$$
x_{1} \mathbf{v}_{\mathbf{1}}+x_{2} \mathbf{v}_{\mathbf{2}}+x_{3} \mathbf{v}_{\mathbf{3}}=\mathbf{0} .
$$

## Solution:

The equation above is equivalent to the following homogeneous system:

$$
\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & 1 \\
2 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

So:

$$
\left[\begin{array}{rrr|r}
1 & -1 & 0 & 0 \\
-1 & 2 & 1 & 0 \\
2 & 0 & 2 & 0
\end{array}\right] \stackrel{\begin{array}{l}
\text { Gauss-Jordan } \\
\text { reduction }
\end{array}}{\Longrightarrow}\left[\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Hence, the system is equivalent to:

$$
\left\{\begin{array}{ll}
x_{1} & \\
& +x_{3}=0 \\
& x_{2}
\end{array}+x_{3}=0\right.
$$

The solution is $x_{1}=x_{2}=-x_{3}$, i.e.:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right]
$$

8. Diagonalize the symmetric matrix $A=\left[\begin{array}{rrr}4 & -1 & 1 \\ -1 & 4 & -1 \\ 1 & -1 & 4\end{array}\right]$.

Show an orthogonal matrix $P$ such that $D=P^{t} A P$ is diagonal.
(Hint: all eigenvalues of $A$ are multiple of 3.)

## Solution:

The matrix $P$ will be of the form $P=\left[\mathbf{u}_{\mathbf{1}} \mathbf{u}_{\mathbf{2}} \mathbf{u}_{\mathbf{3}}\right]$, where $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}\right\}$ is an orthonormal basis for $\mathbb{R}^{3}$ made of eigenvectors for $A$.

The eigenvalues of $A$ are the roots of its characteristic polynomial:

$$
\operatorname{det}(A-\lambda I)=-\lambda^{3}+12 \lambda^{2}-45 \lambda+54=-(\lambda-6)(\lambda-3)^{2}
$$

i.e., $\lambda=6$ and $\lambda=3$ (double).

For $\lambda=6$ we must solve $(A-6 I) \mathbf{x}=\mathbf{0}$ :

$$
\left[\begin{array}{rrr}
-2 & -1 & 1 \\
-1 & -2 & -1 \\
1 & -1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The solution is $x_{1}=x_{3}, x_{2}=-x_{3}$, i.e.:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right],
$$

so we take $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$ as the first eigenvector.
For $\lambda=3$ we must solve $(A-3 I) \mathbf{x}=\mathbf{0}$ :

$$
\left[\begin{array}{rrr}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The solution is $x_{1}=x_{2}-x_{3}$, i.e.:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]
$$

so we take $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$ as the two remaining eigenvectors.
The vector $\mathbf{v}_{\mathbf{1}}$ is orthogonal to $\mathbf{v}_{\mathbf{2}}$ and $\mathbf{v}_{\mathbf{3}}$, but $\mathbf{v}_{\mathbf{2}}$ and $\mathbf{v}_{\mathbf{3}}$ are not orthogonal, so we must apply the Gram-Schmidt process to $\left\{\mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ :

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{2}}^{\prime}=\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& \mathbf{v}_{\mathbf{3}}^{\prime}=\mathbf{v}_{\mathbf{3}}-\frac{\mathbf{v}_{\mathbf{3}} \cdot \mathbf{v}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}}} \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 \\
1 / 2 \\
1
\end{array}\right]
\end{aligned}
$$

Next, we normalize $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}^{\prime}$ and $\mathbf{v}_{\mathbf{3}}^{\prime}$ :

$$
\begin{aligned}
& \mathbf{u}_{\mathbf{1}}=\frac{\mathbf{v}_{\mathbf{1}}}{\left|\mathbf{v}_{\mathbf{1}}\right|}=\frac{1}{\sqrt{3}}\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] \\
& \mathbf{u}_{\mathbf{2}}=\frac{\mathbf{v}_{\mathbf{2}}^{\prime}}{\left|\mathbf{v}_{\mathbf{2}}^{\prime}\right|}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& \mathbf{u}_{\mathbf{3}}=\frac{\mathbf{v}_{\mathbf{3}}^{\prime}}{\left|\mathbf{v}_{\mathbf{3}}^{\prime}\right|}=\frac{1}{\sqrt{6}}\left[\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right]
\end{aligned}
$$

Hence:

$$
P=\left[\begin{array}{rrr}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}}
\end{array}\right]
$$

Finally, the diagonal form of $A$ is:

$$
D=P^{t} A P=\left[\begin{array}{lll}
6 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

9. Find the principal axes and classify the central conic:

$$
x^{2}+y^{2}-8 x y=15
$$

## Solution:

The conic can be represented as $\left[\begin{array}{ll}x & y\end{array}\right] A\left[\begin{array}{l}x \\ y\end{array}\right]=15$, where $A=\left[\begin{array}{rr}1 & -4 \\ -4 & 1\end{array}\right]$.
We must diagonalize $A$ as $D=P^{t} A P$ for some orthogonal matrix $P=\left[\begin{array}{ll}\mathbf{u}_{\mathbf{1}} & \mathbf{u}_{\mathbf{2}}\end{array}\right]$, where $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}\right\}$ is an orthonormal basis for $\mathbb{R}^{2}$ consisting of eigenvectors for A.

The eigenvalues of $A$ are the roots of the characteristic polynomial:

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
1-\lambda & -4 \\
-4 & 1-\lambda
\end{array}\right]=\lambda^{2}-2 \lambda-15=(\lambda-5)(\lambda+3)
$$

The eigenvalues are $\lambda=-3$ and $\lambda=5$.
For $\lambda=-3$ we must solve $\left[\begin{array}{rr}4 & -4 \\ -4 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. The solution is $x_{1}=x_{2}$, or: $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]$, so we take $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ as eigenvector.

For $\lambda=5$ we must solve $\left[\begin{array}{cc}-4 & -4 \\ -4 & -4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. The solution is $x_{1}=-x_{2}$, or: $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{r}-1 \\ 1\end{array}\right]$, so we take $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$.

Note that $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are already orthogonal, so all we need is to normalize them: $\mathbf{u}_{\mathbf{1}}=\frac{1}{\sqrt{2}} \mathbf{v}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}=\frac{1}{\sqrt{2}} \mathbf{v}_{\mathbf{2}}$. The matrix for the change of basis is:

$$
P=\left[\begin{array}{ll}
\mathbf{u}_{1} & \mathbf{u}_{2}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right] .
$$

In the new basis the conic is $\left[\begin{array}{ll}x^{\prime} & y^{\prime}\end{array}\right] D\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=15$, where

$$
D=P^{t} A P=\left[\begin{array}{rr}
-3 & 0 \\
0 & 5
\end{array}\right],
$$

and

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=P^{t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

i.e.:

$$
\left\{\begin{array}{l}
x^{\prime}=\frac{1}{\sqrt{2}}(x+y) \\
y^{\prime}=\frac{1}{\sqrt{2}}(-x+y)
\end{array}\right.
$$

Hence the conic is $-3 x^{\prime 2}+5 y^{\prime 2}=15$, or equivalently: $-\frac{x^{\prime 2}}{5}+\frac{y^{\prime 2}}{3}=1$, which is an hyperbola. Its principal axes are given by the basic vectors

$$
\mathbf{u}_{\mathbf{1}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \mathbf{u}_{\mathbf{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
-1 \\
1
\end{array}\right] .
$$

Note: An alternative solution is $\frac{x^{\prime 2}}{3}-\frac{y^{\prime 2}}{5}=1$, and

$$
\mathbf{u}_{\mathbf{1}}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
-1 \\
1
\end{array}\right], \quad \mathbf{u}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

10. Use the method of Lagrange multipliers to find the maximum and minimum values of the function $f(x, y)=2 x y$ given the constrain $g(x, y)=x^{2}+y^{2}=1$.

## Solution:

We must solve $\nabla f(x, y)=\lambda \nabla g(x, y), g(x, y)=1$, i.e.:

$$
\left\{\begin{aligned}
2 y & =\lambda(2 x) \\
2 x & =\lambda(2 y) \\
x^{2}+y^{2} & =1
\end{aligned}\right.
$$

which is equivalent to $A \mathbf{x}=\lambda \mathbf{x}, \mathbf{x}=1$, where $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$. So the problem consists of finding eigenvectors of length 1 for the matrix $A$.

First we find the eigenvalues for $A$ :

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{rr}
-\lambda & 1 \\
1 & -\lambda
\end{array}\right]=\lambda^{2}-1=(\lambda-1)(\lambda+1)
$$

hence the eigenvalues are $\lambda= \pm 1$.
For $\lambda=-1$ we solve $(A+I) \mathbf{x}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\mathbf{0}$. The solutions of length 1 are $\mathbf{x}_{\mathbf{1}}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}-1 \\ 1\end{array}\right]$ and $-\mathbf{x}_{\mathbf{1}}$.

For $\lambda=1$ we solve $(A-I) \mathbf{x}=\left[\begin{array}{rr}-1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\mathbf{0}$. The solutions of length 1 are $\mathbf{x}_{\mathbf{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $-\mathbf{x}_{\mathbf{2}}$.

Hence, the extreme values of $f(x, y)$ are:

$$
\begin{aligned}
f\left(\mathbf{x}_{1}\right) & =f\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=-1 \\
f\left(-\mathbf{x}_{\mathbf{1}}\right) & =f\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=-1 \\
f\left(\mathbf{x}_{\mathbf{2}}\right) & =f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=1 \\
f\left(-\mathbf{x}_{\mathbf{2}}\right) & =f\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=1 .
\end{aligned}
$$

