Math B17-Spring 1999-Midterm Exam No. 1 - Lerma (answers)

ANSWERS

1. Determine whether the following series converges or diverges. If it converges, find its sum.

$$
\sum_{n=1}^{\infty} \sin ^{n} 1
$$

Answer:

It is a geometric series of ratio $r=\sin 1$. Since $|r|<1$, the series converges. The sum is

$$
\sum_{n=1}^{\infty} \sin ^{n} 1=\frac{\sin 1}{1-\sin 1}
$$

2. Find the Taylor series of $\ln x$ at $a=1$.

Answer:

$$
\ln x=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(x-1)^{n}}{n}=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\cdots
$$

3. Determine if the following series converges or diverges:

$$
\sum_{n=1}^{\infty} \frac{e^{1 / n}}{n}
$$

Answer:
We have that: $\quad \sum_{n=1}^{\infty} \frac{e^{1 / n}}{n}>\sum_{n=1}^{\infty} \frac{1}{n}$,
so by the comparison test, the series diverges (recall that the harmonic series diverges).
4. Determine if the following series converges absolutely, converges conditionally, or diverges:

$$
\sum_{n=0}^{\infty} \frac{(-10)^{n}}{n!}
$$

Answer:
We use the ratio test:

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{10^{n+1} /(n+1)!}{10^{n} / n!}=\lim _{n \rightarrow \infty} \frac{10}{n+1}=0<1
$$

hence the series converges absolutely.
5. Find a power series for the following function and find its radius of convergence: $f(x)=\frac{x}{1-x}$

Answer:

$$
\begin{aligned}
& \text { Since } \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots, \text { we have: } \\
& \frac{x}{1-x}=x \sum_{n=0}^{\infty} x^{n}=x\left(1+x+x^{2}+x^{3}+\cdots\right)= \\
& \qquad x+x^{2}+x^{3}+x^{4}+\cdots=\sum_{n=1}^{\infty} x^{n}
\end{aligned}
$$

In order to find its radius of convergence, we use the ratio test:

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{x^{n}}\right|=\lim _{n \rightarrow \infty}|x|=|x| .
$$

There is convergence for $\rho<1$, i.e., $|x|<1$. At the endpoints we get the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \quad \text { and } \quad \sum_{n=1}^{\infty} 1^{n}
$$

respectively, whose n-th terms do not tend to zero, so they do not converge. Hence, the interval of convergence is:

$$
I=(-1,1),
$$

not including the endpoints.
6. Use power series to evaluate the following limit:

$$
\lim _{x \rightarrow 1} \frac{\ln \left(x^{2}\right)}{x-1}=
$$

Answer:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\ln \left(x^{2}\right)}{x-1} & =\lim _{x \rightarrow 1} \frac{\left(x^{2}-1\right)-\left(x^{2}-1\right)^{2} / 2+\left(x^{2}-1\right)^{3} / 3-\cdots}{x-1} \\
& =\lim _{x \rightarrow 1}\left\{(x+1)-(x+1)\left(x^{2}-1\right) / 2+(x+1)\left(x^{2}-1\right)^{2} / 3-\cdots\right\} \\
& =2
\end{aligned}
$$

An alternative (and simpler) way consists of using $\ln \left(x^{2}\right)=2 \ln x$:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\ln \left(x^{2}\right)}{x-1} & =2 \lim _{x \rightarrow 1} \frac{\ln x}{x-1} \\
& =2 \lim _{x \rightarrow 1} \frac{(x-1)-(x-1)^{2} / 2+(x-1)^{3} / 3-\cdots}{x-1} \\
& =2 \lim _{x \rightarrow 1}\left\{\left(1-(x-1) / 2+(x-1)^{2} / 3-\cdots\right\}\right. \\
& =2
\end{aligned}
$$

