Math B17 - Spring 1999 - Midterm Exam No. 1 - Lerma (answers)

ANSWERS

1. Determine whether the following series converges or diverges. If it converges,
find its sum.

o0

Z sin” 1
n=1
Answer:

It is a geometric series of ratio » = sin1. Since |r| < 1, the series con-
verges. The sum is

o0

. sin 1
Zsm”lz _
1—sinl

n=1



2. Find the Taylor series of Inz at a = 1.
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3. Determine if the following series converges or diverges:

n=1 n
Answer:
et/ N1
We have that: > —,

so by the comparison test, the series diverges (recall that the harmonic series
diverges).



4. Determine if the following series converges absolutely, converges conditionally,
or diverges:
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Answer:
We use the ratio test:
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hence the series converges absolutely.



5. Find a power series for the following function and find its radius of conver-
gence: f(x) = ’

1—=z
Answer:
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In order to find its radius of convergence, we use the ratio test:
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There is convergence for p < 1, i.e., |z| < 1. At the endpoints we get the

series
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respectively, whose n-th terms do not tend to zero, so they do not converge.
Hence, the interval of convergence is:

I=(-1,1),

not including the endpoints.



6. Use power series to evaluate the following limit:
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An alternative (and simpler) way consists of using In(z?) = 21In z:
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