Math B17-Spring 1999 - Midterm Exam No. 2 - Lerma (answers)

ANSWERS

1. Let A and B be the following matrices:

$$
A=\left[\begin{array}{rrr}
-2 & 2 & -4 \\
-2 & 3 & -3 \\
0 & 0 & 1
\end{array}\right] \quad P=\left[\begin{array}{rrr}
1 & 1 & -1 \\
0 & 1 & 1 \\
-1 & 0 & 1
\end{array}\right]
$$

Compute $P^{-1} A P$.

Answer:

$$
P^{-1}=\left[\begin{array}{rrr}
-1 & 1 & -2 \\
1 & 0 & 1 \\
-1 & 1 & -1
\end{array}\right], \quad P^{-1} A P=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

2. Is the row vector $\mathbf{r}=\left[\begin{array}{lll}2 & 1 & 0\end{array}\right]$ in the row space of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$?

Answer:

Since the rows of A are not proportional, $\operatorname{rank} A=2$. If \mathbf{r} is in the row space of A then the following matrix should have also rank 2 :

$$
B=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
2 & 1 & 0
\end{array}\right]
$$

In fact, after using Gaussian reduction, that matrix becomes:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

so $\operatorname{rank} B=2$, and \mathbf{r} does belong to the row space of A.
Another way to prove that \mathbf{r} belongs to the row space of A is to note that in can be obtained by subtracting twice the first row of A from its second row.
3. Solve the following system of equations:

$$
\left\{\begin{aligned}
& x_{1}-x_{2}+2 x_{3}=1 \\
& x_{2}+2 x_{3}=3 \\
& x_{1}+4 x_{3}=4
\end{aligned}\right.
$$

Answer:
The augmented matrix is: $\left[\begin{array}{rrr|r}1 & -1 & 2 & 1 \\ 0 & 1 & 2 & 3 \\ 1 & 0 & 4 & 4\end{array}\right]$
After using Gauss-Jordan reduction we get: $\left[\begin{array}{ccc|c}1 & 0 & 4 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$
i.e.:

$$
\left\{\begin{array}{rl}
x_{1} & 4 x_{3}
\end{array}=4\right.
$$

The solution is $x_{1}=4-4 x_{3}, x_{2}=3-2 x_{3}$, or:

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4-4 x_{3} \\
3-2 x_{3} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
3 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
-4 \\
-2 \\
1
\end{array}\right]
$$

4. Find a basis and the dimension of the solution space for the system:

$$
\left\{\begin{aligned}
x_{1}+2 x_{2}+x_{4} & =0 \\
x_{2}+x_{3}+2 x_{4} & =0 \\
x_{1}+3 x_{2}+x_{3}+3 x_{4} & =0
\end{aligned}\right.
$$

Answer:
The coefficient matrix is:

$$
A=\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 1 & 1 & 2 \\
1 & 3 & 1 & 3
\end{array}\right]
$$

After using Gauss-Jordan reduction it becomes: $\left[\begin{array}{rrrr}1 & 0 & -2 & -3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$.
Hence, the general solution of $A \mathbf{x}=\mathbf{0}$ is:

$$
\left\{\begin{array}{l}
x_{1}=2 x_{3}+3 x_{4} \\
x_{2}=-x_{3}-2 x_{4}
\end{array} .\right.
$$

In matrix form: $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=x_{3}\left[\begin{array}{r}2 \\ -1 \\ 1 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{r}3 \\ -2 \\ 0 \\ 1\end{array}\right]$.
Hence, the following set is a basis for the solution space:

$$
\left\{\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{r}
2 \\
-1 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}
3 \\
-2 \\
0 \\
1
\end{array}\right]\right\}
$$

and its dimension is 2 .
5. Find the coordinates of the vector $\mathbf{v}=\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right]$ respect to the basis:

$$
\left\{\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{c}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

Answer:

$$
\text { Calling } \mathbf{v}^{\prime}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \text { the coordinates of } \mathbf{v} \text { respect to the new basis, we }
$$

have $P \mathbf{v}^{\prime}=\mathbf{v}$, where $P=\left[\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right]$. Hence, we must solve the system:

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right] .
$$

The augmented matrix is: $\left[\begin{array}{rrr|r}1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & -1\end{array}\right]$
After Gauss-Jordan reduction it becomes: $\left[\begin{array}{lll|r}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0\end{array}\right]$
Hence the solution is:

$$
\mathbf{v}^{\prime}=\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right]
$$

6. Diagonalize the following matrix: $A=\left[\begin{array}{cc}5 & -3 \\ 6 & -4\end{array}\right]$. Find the matrix P such that $P^{-1} A P$ is diagonal.

Answer:

The characteristic polynomial of A is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
5-\lambda & -3 \\
6 & -4-\lambda
\end{array}\right] & =\lambda^{2}-\lambda-2 \\
& =(\lambda-2)(\lambda+1)
\end{aligned}
$$

Its roots are $\lambda=2$ and $\lambda=-1$.
For $\lambda=2$ we get $A-2 I=\left[\begin{array}{ll}3 & -3 \\ 6 & -6\end{array}\right]$.
After using Gauss-Jordan the matrix becomes: $\left[\begin{array}{rr}1 & -1 \\ 0 & 0\end{array}\right]$.
The solutions of $(A-2 I) \mathbf{v}=0$ are:

$$
\mathbf{v}=\left[\begin{array}{l}
x_{2} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

So we can take the following eigenvector: $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, or any non-zero multiple of it.

For $\lambda=-1$ we get $A+I=\left[\begin{array}{ll}6 & -3 \\ 6 & -3\end{array}\right]$.
After using Gauss-Jordan the matrix becomes: $\left[\begin{array}{rr}2 & -1 \\ 0 & 0\end{array}\right]$.
The solutions of $(A+I) \mathbf{v}=0$ are:

$$
\mathbf{v}=\left[\begin{array}{c}
x_{2} / 2 \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{c}
1 / 2 \\
1
\end{array}\right]=\frac{x_{2}}{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

So we can take the following eigenvector: $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$, or any non-zero multiple of it.

Hence: ${ }^{1}$

$$
\begin{gathered}
P=\left[\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right], \quad P^{-1}=\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right], \\
P^{-1} A P=\left[\begin{array}{rr}
2 & 0 \\
0 & -1
\end{array}\right] .
\end{gathered}
$$

${ }^{1}$ There are other possible choices for P, for instance: $P=\left[\begin{array}{cc}1 & 1 / 2 \\ 1 & 1\end{array}\right]$.

