Math B17-Spring 1999-Final Exam (solutions) SOLUTIONS

1. Determine if the sequence $\left\{a_{n}\right\}$ converges, and find its limit if it does converge:
(a) $a_{n}=\frac{\sin n}{3^{n}}$

Solution:

We have: $-\frac{1}{3^{n}} \leq \frac{\sin n}{3^{n}} \leq \frac{1}{3^{n}}$. Hence, by the Squeeze Law it converges and

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

(b) $a_{n}=\frac{\ln 2 n}{\ln 3 n}$

Solution:
By L'Hôpital: $\lim _{n \rightarrow \infty} \frac{\ln 2 n}{\ln 3 n}=\lim _{n \rightarrow \infty} \frac{2 / 2 n}{3 / 3 n}=1$.
(c) $a_{n}=\sqrt[n]{n}$.

Solution:
We have $\ln a_{n}=\ln n / n$. By L'Hôpital:

$$
\lim _{n \rightarrow \infty} \frac{\ln n}{n}=\lim _{n \rightarrow \infty} \frac{1 / n}{1}=1
$$

hence

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n}=e^{0}=1
$$

2. Determine if the following infinite series converge or diverge:
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{1+\sqrt{n}}$

Solution:

It converges, because it is an alternating series and the n-th term is decreasing and tends to zero.
(b) $\sum_{n=1}^{\infty}(-1)^{n} \sqrt[n]{2}$

Solution:
We have

$$
\lim _{n \rightarrow \infty} \sqrt[n]{2}=1
$$

so the series diverges because the n-th term does not tend to zero.
3. Using the power series for $\ln (1 \pm x)$, find the power series for: $\ln \frac{1+x}{1-x}$.

Solution:
We have

$$
\begin{aligned}
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n} \\
& \ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\cdots=-\sum_{n=1}^{\infty} \frac{x^{n}}{n}
\end{aligned}
$$

Then:

$$
\begin{aligned}
\ln \frac{1+x}{1-x} & =\ln (1+x)-\ln (1-x) \\
& =\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots\right)-\left(-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\cdots\right) \\
& =2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots\right) \\
& =2 \sum_{n=0}^{\infty} \frac{x^{2 n+1}}{2 n+1}
\end{aligned}
$$

4. Solve the following system of equations or show that it has no solutions:

$$
\left\{\begin{array}{r}
x_{1}+2 x_{2}+4 x_{3}=3 \\
x_{1}+3 x_{2}+9 x_{3}=6 \\
2 x_{1}+5 x_{2}+13 x_{3}=9 \\
x_{2}+5 x_{3}=3
\end{array}\right.
$$

Solution:
The augmented matrix is $A^{\prime}=\left[\begin{array}{rrr|r}1 & 2 & 4 & 3 \\ 1 & 3 & 9 & 6 \\ 2 & 5 & 13 & 9 \\ 0 & 1 & 5 & 3\end{array}\right]$.
After using Gauss-Jordan reduction we get: $\left[\begin{array}{rrr|r}1 & 0 & -6 & -3 \\ 0 & 1 & 5 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
i.e.:

$$
\left\{\begin{aligned}
x_{1} & -6 x_{3}=-3 \\
& x_{2}+5 x_{3}=3
\end{aligned}\right.
$$

The solution is $x_{1}=-3+6 x_{3}, x_{2}=3-5 x_{3}$, or:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-3 \\
3 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
6 \\
-5 \\
1
\end{array}\right] .
$$

5. Find a basis for the null space of the matrix $A=\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ -1 & 1 & -1 & 1 \\ 0 & 3 & 2 & 5 \\ 2 & 1 & 4 & 3\end{array}\right]$.

Solution:

The null space of A is the set of solutions of $A \mathrm{x}=\mathbf{0}$. Gauss-Jordan

$$
\begin{aligned}
& \text { reduction on } A \text { yields: }\left[\begin{array}{cccc}
1 & 0 & 5 / 3 & 2 / 3 \\
0 & 1 & 2 / 3 & 5 / 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \text {, hence the general solution is } \\
& x_{1}=-5 x_{3} / 3-2 x_{4} / 3, x_{2}=-2 x_{3} / 3-5 x_{4} / 3 \text {, i.e.: } \\
& {\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-5 / 3 \\
-2 / 3 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-2 / 3 \\
-5 / 3 \\
0 \\
1
\end{array}\right]}
\end{aligned}
$$

Hence, a basis for the null space is:

$$
\left\{\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
-5 / 3 \\
-2 / 3 \\
1 \\
0
\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}
-2 / 3 \\
-5 / 3 \\
0 \\
1
\end{array}\right]\right\} .
$$

Other solutions are possible.
6. Compute the determinant of the following matrix: $A=\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ -1 & 1 & 2 & 3 \\ 1 & 1 & 4 & 9 \\ -1 & 1 & 8 & 27\end{array}\right]$.

Solution:
$\operatorname{det} A=48$.
7. In \mathbb{R}^{3} find the change of basis matrix from the standard basis to the basis

$$
\left\{\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{r}
3 \\
1 \\
-1
\end{array}\right]\right\}
$$

What are the new coordinates of the point $(1,1,1)$?

Solution:
The change of basis matrix is $P=\left[\mathbf{v}_{\mathbf{1}} \mathbf{V}_{\mathbf{2}} \mathbf{v}_{\mathbf{3}}\right]=\left[\begin{array}{rrr}1 & 2 & 3 \\ 0 & 1 & 1 \\ -1 & 1 & -1\end{array}\right]$.
The new coordinates of the point $(1,1,1)$ are $\left(x_{1}, x_{2}, x_{3}\right)$, where

$$
\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & 1 & 1 \\
-1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

After solving this system we get $x_{1}=-2, x_{2}=0, x_{3}=1$, hence the new coordinates are $(-2,0,1)$.
8. Diagonalize the following matrix: $A=\left[\begin{array}{rrr}2 & 1 & -1 \\ 1 & 2 & -1 \\ 1 & 1 & 0\end{array}\right]$.

Show the matrix P such that $D=P^{-1} A P$ is diagonal.

Solution:

First we find the eigenvalues of A :

$$
\operatorname{det}(A-\lambda I)=-\lambda^{3}+4 \lambda^{2}-5 \lambda+2=-(\lambda-2)(\lambda-1)^{2}
$$

hence the eigenvalues are $\lambda=2$ and $\lambda=1$ (double).
For $\lambda=2$ we must solve $(A-2 I) \mathbf{x}=\mathbf{0}$:

$$
\left[\begin{array}{lll}
0 & 1 & -1 \\
1 & 0 & -1 \\
1 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The solution is $x_{1}=x_{3}, x_{2}=x_{3}$, i.e.:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],
$$

so we take $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ as the first eigenvector.
For $\lambda=1$ we must solve $(A-I) \mathbf{x}=\mathbf{0}$:

$$
\left[\begin{array}{lll}
1 & 1 & -1 \\
1 & 1 & -1 \\
1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

The solution is $x_{1}=-x_{2}+x_{3}$, i.e.:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

so we take $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ as the two remaining eigenvectors.
Then ${ }^{1}$

$$
P=\left[\begin{array}{lll}
\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}} & \mathbf{v}_{\mathbf{3}}
\end{array}\right]=\left[\begin{array}{rrr}
1 & -1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

and

$$
\begin{aligned}
D=P^{-1} A P & =\left[\begin{array}{rrr}
1 & 1 & -1 \\
-1 & 0 & 1 \\
-1 & -1 & 2
\end{array}\right]\left[\begin{array}{rrr}
2 & 1 & -1 \\
1 & 2 & -1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{rrr}
1 & -1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

[^0]9. Find the principal axes and classify the central conic:
$$
x^{2}+y^{2}-10 x y=24
$$

Solution:

The conic can be represented as $\left[\begin{array}{ll}x & y\end{array}\right] A\left[\begin{array}{l}x \\ y\end{array}\right]=24$, where $A=\left[\begin{array}{rr}1 & -5 \\ -5 & 1\end{array}\right]$.
We must diagonalize A as $D=P^{t} A P$ for some orthogonal matrix $P=\left[\begin{array}{ll}\mathbf{u}_{\mathbf{1}} & \mathbf{u}_{\mathbf{2}}\end{array}\right]$, where $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}\right\}$ is an orthonormal basis for \mathbb{R}^{2} consisting of eigenvectors for A.

The eigenvalues of A are the roots of the characteristic polynomial:

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
1-\lambda & -5 \\
-5 & 1-\lambda
\end{array}\right]=\lambda^{2}-2 \lambda-24=(\lambda-6)(\lambda+4)
$$

The eigenvalues are $\lambda=-4$ and $\lambda=6$.
For $\lambda=-4$ we must solve $\left[\begin{array}{rr}5 & -5 \\ -5 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. The solution is $x_{1}=x_{2}$, or: $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]$, so we take $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ as eigenvector.

For $\lambda=6$ we must solve $\left[\begin{array}{cc}-5 & -5 \\ -5 & -5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. The solution is $x_{1}=-x_{2}$, or: $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{r}-1 \\ 1\end{array}\right]$, so we take $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$.

Note that $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are already orthogonal, so all we need is to normalize them: $\mathbf{u}_{\mathbf{1}}=\frac{1}{\sqrt{2}} \mathbf{v}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}=\frac{1}{\sqrt{2}} \mathbf{v}_{\mathbf{2}}$. The matrix for the change of basis is:

$$
P=\left[\begin{array}{ll}
\mathbf{u}_{1} & \mathbf{u}_{2}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]
$$

In the new basis the conic is $\left[\begin{array}{ll}x^{\prime} & y^{\prime}\end{array}\right] D\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=24$, where

$$
D=P^{t} A P=\left[\begin{array}{rr}
-4 & 0 \\
0 & 6
\end{array}\right],
$$

and

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=P^{t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

i.e.:

$$
\left\{\begin{array}{l}
x^{\prime}=\frac{1}{\sqrt{2}}(x+y) \\
y^{\prime}=\frac{1}{\sqrt{2}}(-x+y)
\end{array}\right.
$$

Hence the conic is $-4 x^{\prime 2}+6 y^{\prime 2}=24$, or equivalently: $-\frac{x^{\prime 2}}{6}+\frac{y^{\prime 2}}{4}=1$, which is an hyperbola. Its principal axes are given by the basic vectors

$$
\mathbf{u}_{\mathbf{1}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \mathbf{u}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

Note: An alternative solution is $\frac{x^{\prime 2}}{4}-\frac{y^{\prime 2}}{6}=1$, and

$$
\mathbf{u}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
-1 \\
1
\end{array}\right], \quad \mathbf{u}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

10. Find the maximum and minimum values of the function $f(x, y)=x^{2}+x y+y^{2}$ given the constrain $g(x, y)=x^{2}+y^{2}=1$.

Solution:

By the method of Lagrange multipliers we must solve $\nabla f(x, y)=\lambda \nabla g(x, y)$, $g(x, y)=1$, i.e.:

$$
\left\{\begin{aligned}
2 x+y & =\lambda(2 x) \\
x+2 y & =\lambda(2 y) \\
x^{2}+y^{2} & =1
\end{aligned}\right.
$$

which is equivalent to $A \mathbf{x}=\lambda \mathbf{x}, \mathbf{x}=1$, where $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right], \mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$. So the problem reduces to finding eigenvectors of length 1 for the matrix A.

First we find the eigenvalues for A :

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right]=\lambda^{2}-4 \lambda+3=(\lambda-1)(\lambda-3),
$$

hence the eigenvalues are $\lambda=1$ and $\lambda=3$.
For $\lambda=1$ we solve $(A-I) \mathbf{x}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\mathbf{0}$. A solution of length 1 is $\mathbf{x}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}-1 \\ 1\end{array}\right]$.

For $\lambda=3$ we solve $(A-3 I) \mathbf{x}=\left[\begin{array}{rr}-1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\mathbf{0}$. A solution of length 1 is $\mathbf{x}_{\mathbf{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

The extreme values of $f(x, y)$ are respectively:

$$
f\left(\mathbf{x}_{\mathbf{1}}\right)=f\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=1 / 2
$$

and

$$
f\left(\mathbf{x}_{\mathbf{2}}\right)=f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=3 / 2 .
$$

[^0]: ${ }^{1}$ Other solutions are possible.

