Math B17 - Spring 1999 - Final Exam (solutions) SOLUTIONS

1. Determine if the sequence $\{a_n\}$ converges, and find its limit if it does converge:

(a)
$$a_n = \frac{\sin n}{3^n}$$

Solution:

We have: $-\frac{1}{3^n} \le \frac{\sin n}{3^n} \le \frac{1}{3^n}$. Hence, by the Squeeze Law it converges and $\lim_{n \to \infty} a_n = 0.$

(b)
$$a_n = \frac{\ln 2n}{\ln 3n}$$

Solution:

By L'Hôpital: $\lim_{n \to \infty} \frac{\ln 2n}{\ln 3n} = \lim_{n \to \infty} \frac{2/2n}{3/3n} = 1.$

(c)
$$a_n = \sqrt[n]{n}$$
.

Solution:

We have $\ln a_n = \ln n/n$. By L'Hôpital:

$$\lim_{n \to \infty} \frac{\ln n}{n} = \lim_{n \to \infty} \frac{1/n}{1} = 1,$$

hence

$$\lim_{n \to \infty} \sqrt[n]{n} = e^0 = 1.$$

2. Determine if the following infinite series converge or diverge:

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{1+\sqrt{n}}$$

Solution:

It *converges*, because it is an alternating series and the n-th term is decreasing and tends to zero.

(b)
$$\sum_{n=1}^{\infty} (-1)^n \sqrt[n]{2}$$

Solution:

We have

$$\lim_{n \to \infty} \sqrt[n]{2} = 1$$

so the series diverges because the n-th term does not tend to zero.

3. Using the power series for $\ln(1 \pm x)$, find the power series for: $\ln \frac{1+x}{1-x}$.

Solution:

We have

$$\ln (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$$
$$\ln (1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots = -\sum_{n=1}^{\infty} \frac{x^n}{n}$$

Then:

$$\ln \frac{1+x}{1-x} = \ln(1+x) - \ln(1-x)$$

= $\left(x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots\right) - \left(-x - \frac{x^2}{2} - \frac{x^3}{3} - \cdots\right)$
= $2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots\right)$
= $2\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$

4. Solve the following system of equations or show that it has no solutions:

$$\begin{cases} x_1 + 2x_2 + 4x_3 = 3\\ x_1 + 3x_2 + 9x_3 = 6\\ 2x_1 + 5x_2 + 13x_3 = 9\\ x_2 + 5x_3 = 3 \end{cases}$$

Solution:

The augmented matrix is
$$A' = \begin{bmatrix} 1 & 2 & 4 & | & 3 \\ 1 & 3 & 9 & | & 6 \\ 2 & 5 & 13 & | & 9 \\ 0 & 1 & 5 & | & 3 \end{bmatrix}$$
.
After using Gauss-Jordan reduction we get:
$$\begin{bmatrix} 1 & 0 & -6 & | & -3 \\ 0 & 1 & 5 & | & 3 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
.

i.e.:

$$\begin{cases} x_1 & - 6 x_3 = -3 \\ x_2 + 5 x_3 = 3 \end{cases}$$

The solution is $x_1 = -3 + 6 x_3$, $x_2 = 3 - 5 x_3$, or:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ 3 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 6 \\ -5 \\ 1 \end{bmatrix}.$$

5. Find a basis for the null space of the matrix
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & 1 & -1 & 1 \\ 0 & 3 & 2 & 5 \\ 2 & 1 & 4 & 3 \end{bmatrix}$$
.

Solution:

The null space of A is the set of solutions of $A\mathbf{x} = \mathbf{0}$. Gauss-Jordan

reduction on A yields:
$$\begin{bmatrix} 1 & 0 & 5/3 & 2/3 \\ 0 & 1 & 2/3 & 5/3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
, hence the general solution is

$$x_{1} = -5x_{3}/3 - 2x_{4}/3, \ x_{2} = -2x_{3}/3 - 5x_{4}/3, \ \text{i.e.:}$$
$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = x_{3} \begin{bmatrix} -5/3 \\ -2/3 \\ 1 \\ 0 \end{bmatrix} + x_{4} \begin{bmatrix} -2/3 \\ -5/3 \\ 0 \\ 1 \end{bmatrix}$$

Hence, a basis for the null space is:

$$\left\{ \mathbf{v_1} = \begin{bmatrix} -5/3 \\ -2/3 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{v_2} = \begin{bmatrix} -2/3 \\ -5/3 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

Other solutions are possible.

	1	1	1	1	
	-1	1	2	3	
6. Compute the determinant of the following matrix: $A =$	1	1	4	9	.
	$\lfloor -1$	1	8	27	

Solution:

$$\det A = 48.$$

7. In \mathbb{R}^3 find the change of basis matrix from the standard basis to the basis

$$\left\{ \mathbf{v_1} = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \ \mathbf{v_2} = \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \ \mathbf{v_3} = \begin{bmatrix} 3\\1\\-1 \end{bmatrix} \right\}.$$

What are the new coordinates of the point (1, 1, 1)?

Solution:

The change of basis matrix is
$$P = [\mathbf{v_1} \mathbf{v_2} \mathbf{v_3}] = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ -1 & 1 & -1 \end{bmatrix}$$
.

The new coordinates of the point (1, 1, 1) are (x_1, x_2, x_3) , where

1	2	3	x_1		1	
0	1	1	x_2	=	1	
1	1	-1	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$		1	

After solving this system we get $x_1 = -2$, $x_2 = 0$, $x_3 = 1$, hence the new coordinates are (-2, 0, 1).

8. Diagonalize the following matrix: $A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ 1 & 1 & 0 \end{bmatrix}$.

Show the matrix P such that $D = P^{-1} A P$ is diagonal.

Solution:

First we find the eigenvalues of A:

$$\det(A - \lambda I) = -\lambda^{3} + 4\lambda^{2} - 5\lambda + 2 = -(\lambda - 2)(\lambda - 1)^{2}$$

hence the eigenvalues are $\lambda = 2$ and $\lambda = 1$ (double).

For $\lambda = 2$ we must solve $(A - 2I) \mathbf{x} = \mathbf{0}$:

0	1	-1	$\begin{bmatrix} x_1 \end{bmatrix}$		0	
1	0	-1	x_2	=	0 0	
1	1	-2	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$		0	

The solution is $x_1 = x_3$, $x_2 = x_3$, i.e.:

$\begin{bmatrix} x_1 \end{bmatrix}$		1	
x_2	$= x_3$	1	,
x_3		1	

so we take $\mathbf{v_1} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$ as the first eigenvector.

For $\lambda = 1$ we must solve $(A - I) \mathbf{x} = \mathbf{0}$:

$$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

The solution is $x_1 = -x_2 + x_3$, i.e.:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix},$$

so we take
$$\mathbf{v_2} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$
 and $\mathbf{v_3} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ as the two remaining eigenvectors.

 $Then^1$

$$P = [\mathbf{v_1} \ \mathbf{v_2} \ \mathbf{v_3}] = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix},$$

and

$$D = P^{-1}AP = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 0 & 1 \\ -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

 $^{^{1}\}mathrm{Other}$ solutions are possible.

9. Find the principal axes and classify the central conic:

$$x^2 + y^2 - 10 \, xy = 24$$

Solution:

The conic can be represented as
$$\begin{bmatrix} x & y \end{bmatrix} A \begin{bmatrix} x \\ y \end{bmatrix} = 24$$
, where $A = \begin{bmatrix} 1 & -5 \\ -5 & 1 \end{bmatrix}$

We must diagonalize A as $D = P^t A P$ for some orthogonal matrix $P = \begin{bmatrix} \mathbf{u_1} & \mathbf{u_2} \end{bmatrix}$, where $\{\mathbf{u_1}, \mathbf{u_2}\}$ is an orthonormal basis for \mathbb{R}^2 consisting of eigenvectors for A.

The eigenvalues of A are the roots of the characteristic polynomial:

$$\det (A - \lambda I) = \det \begin{bmatrix} 1 - \lambda & -5 \\ -5 & 1 - \lambda \end{bmatrix} = \lambda^2 - 2\lambda - 24 = (\lambda - 6)(\lambda + 4)$$

The eigenvalues are $\lambda = -4$ and $\lambda = 6$.

For
$$\lambda = -4$$
 we must solve $\begin{bmatrix} 5 & -5 \\ -5 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. The solution is $x_1 = x_2$, or: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, so we take $\mathbf{v_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ as eigenvector.
For $\lambda = 6$ we must solve $\begin{bmatrix} -5 & -5 \\ -5 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. The solution is $x_1 = -x_2$, or: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, so we take $\mathbf{v_2} = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$.

Note that $\mathbf{v_1}$ and $\mathbf{v_2}$ are already orthogonal, so all we need is to normalize them: $\mathbf{u_1} = \frac{1}{\sqrt{2}} \mathbf{v_1}$, $\mathbf{u_2} = \frac{1}{\sqrt{2}} \mathbf{v_2}$. The matrix for the change of basis is:

$$P = \begin{bmatrix} \mathbf{u_1} & \mathbf{u_2} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

In the new basis the conic is $\begin{bmatrix} x' & y' \end{bmatrix} D \begin{bmatrix} x' \\ y' \end{bmatrix} = 24$, where $D = P^t A P = \begin{bmatrix} -4 & 0 \\ 0 & 6 \end{bmatrix},$ and

$$\begin{bmatrix} x'\\y' \end{bmatrix} = P^t \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\-1 & 1 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$$

i.e.:

$$\begin{cases} x' = \frac{1}{\sqrt{2}} (x+y) \\ y' = \frac{1}{\sqrt{2}} (-x+y) \end{cases}$$

Hence the conic is $-4 x'^2 + 6 y'^2 = 24$, or equivalently: $-\frac{{x'}^2}{6} + \frac{{y'}^2}{4} = 1$, which is an *hyperbola*. Its principal axes are given by the basic vectors

$$\mathbf{u_1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}, \qquad \mathbf{u_2} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1 \end{bmatrix}.$$

Note: An alternative solution is $\frac{{x'}^2}{4} - \frac{{y'}^2}{6} = 1$, and

$$\mathbf{u_1} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\ 1 \end{bmatrix}, \qquad \mathbf{u_2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ 1 \end{bmatrix}.$$

10. Find the maximum and minimum values of the function $f(x, y) = x^2 + xy + y^2$ given the constrain $g(x, y) = x^2 + y^2 = 1$.

Solution:

By the method of Lagrange multipliers we must solve $\nabla f(x, y) = \lambda \nabla g(x, y)$, g(x, y) = 1, i.e.:

$$\begin{cases} 2x + y = \lambda (2x) \\ x + 2y = \lambda (2y) \\ x^2 + y^2 = 1 \end{cases}$$

which is equivalent to $A\mathbf{x} = \lambda \mathbf{x}, \, \mathbf{x} = 1$, where $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \, \mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$. So

the problem reduces to finding eigenvectors of length 1 for the matrix A.

First we find the eigenvalues for A:

$$\det(A - \lambda I) = \det \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} = \lambda^2 - 4\lambda + 3 = (\lambda - 1)(\lambda - 3),$$

hence the eigenvalues are $\lambda = 1$ and $\lambda = 3$.

For $\lambda = 1$ we solve $(A - I) \mathbf{x} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \mathbf{0}$. A solution of length 1 is $\mathbf{x}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

For $\lambda = 3$ we solve $(A - 3I) \mathbf{x} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \mathbf{0}$. A solution of length 1 is $\mathbf{x_2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

The extreme values of f(x, y) are respectively:

$$f(\mathbf{x_1}) = f(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) = 1/2$$

and

$$f(\mathbf{x_2}) = f(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) = 3/2.$$