Math B17 - Winter 1999 - Midterm Exam No. 1 (solutions)

SOLUTIONS

1. Determine if the following infinite series converges or diverges:
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Solution:

Using ’'Hopital’s rule we check that the n-th term does not converge to
Zero:
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Hence, by the n-th Term Test for Divergence, the series diverges.



2. Use the integral test to determine if the following series converges or diverges:
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Solution:
First, note that f(x) = x(T1132 is continuous, positive and decreasing for
x > 2. Next, we compute the foflowing integral:
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Since the integral converges, the series converges.



3. Let S be the sum of the following series:
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Determine which one of the following statements is true and show why:

1. The series diverges.
2. The series converges and 5/4 < S.

3. The series converges and 0 < S < 5/4.

Solution:

First note that 0 < cos?n < 1, hence:
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Since the following geometric series converges:
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by Comparison Test the given series also converges, and its sum is S < 5/4.
Note that the inequality is actually strict (S < 5/4), since, for instance,

—COS; L < 1/5. Hence statement 3 is true.



4. Find the interval of convergence of the following power series:
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Solution:

By the method at the beginning of section 11.8 of the textbook:
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hence the radius of convergence is R = 1/p = 1, so the power series converges
absolutely for |x — 2| < 1,ie.,1 <z < 3.

Alternatively, using directly the Ratio Test, the series converges abso-
lutely wherever the following limit is less than 1:
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hence the power series converges absolutely for |z — 2| < 1, i.e., 1 <z < 3.
Next we test the endpoints.

For x = 1 the series is
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which diverges.

For x = 3 the series becomes

which converges.

Hence its interval of convergence is (1, 3].



5. Find the power series in z of the function defined by the following integral:
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Solution:

The power series of sint is:

[e.9]
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Dividing by ¢t we get:
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Integrating termwise we get:
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6. Use power series to compute the following limit:

Solution:
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