Math B17-Winter 1999 - Midterm Exam No. 1 (solutions) SOLUTIONS

1. Determine if the following infinite series converges or diverges:

$$
\sum_{n=1}^{\infty} \frac{\ln n}{1+\ln (n+7)}
$$

Solution:

Using l'Hôpital's rule we check that the n-th term does not converge to zero:
$\lim _{n \rightarrow \infty} \frac{\ln n}{1+\ln (n+7)}=\lim _{x \rightarrow \infty} \frac{\ln x}{1+\ln (x+7)}=\lim _{x \rightarrow \infty} \frac{1 / x}{1 /(x+7)}=\lim _{x \rightarrow \infty} \frac{x+7}{x}=1$

Hence, by the n-th Term Test for Divergence, the series diverges.
2. Use the integral test to determine if the following series converges or diverges:

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}
$$

Solution:

First, note that $f(x)=\frac{1}{x(\ln x)^{2}}$ is continuous, positive and decreasing for $x \geq 2$. Next, we compute the following integral:

$$
\int_{2}^{n} \frac{1}{x(\ln x)^{2}} d x=\left[-\frac{1}{\ln x}\right]_{2}^{n}=\frac{1}{\ln 2}-\frac{1}{\ln n}
$$

So:

$$
\lim _{n \rightarrow \infty} \int_{2}^{n} \frac{1}{x(\ln x)^{2}}=\frac{1}{\ln 2}
$$

Since the integral converges, the series converges.
3. Let S be the sum of the following series:

$$
S=\sum_{n=0}^{\infty} \frac{\cos ^{2} n}{5^{n}}
$$

Determine which one of the following statements is true and show why:

1. The series diverges.
2. The series converges and $5 / 4 \leq S$.
3. The series converges and $0<S<5 / 4$.

Solution:

First note that $0 \leq \cos ^{2} n \leq 1$, hence:

$$
0 \leq \frac{\cos ^{2} n}{5^{n}} \leq \frac{1}{5^{n}}
$$

Since the following geometric series converges:

$$
\sum_{n=0}^{\infty} \frac{1}{5^{n}}=\frac{1}{1-\frac{1}{5}}=\frac{5}{4}
$$

by Comparison Test the given series also converges, and its sum is $S \leq 5 / 4$. Note that the inequality is actually strict $(S<5 / 4)$, since, for instance, $\frac{\cos ^{2} 1}{5}<1 / 5$. Hence statement 3 is true.
4. Find the interval of convergence of the following power series:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}(x-2)^{n}
$$

Solution:

By the method at the beginning of section 11.8 of the textbook:

$$
\rho=\lim _{n \rightarrow \infty} \frac{1 /(n+1)}{1 / n}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1
$$

hence the radius of convergence is $R=1 / \rho=1$, so the power series converges absolutely for $|x-2|<1$, i.e., $1<x<3$.

Alternatively, using directly the Ratio Test, the series converges absolutely wherever the following limit is less than 1 :

$$
\lim _{n \rightarrow \infty} \frac{|x-2|^{n+1} /(n+1)}{|x-2|^{n} / n}=\lim _{n \rightarrow \infty} \frac{n}{n+1}|x-2|=|x-2|
$$

hence the power series converges absolutely for $|x-2|<1$, i.e., $1<x<3$.
Next we test the endpoints.
For $x=1$ the series is

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

which diverges.
For $x=3$ the series becomes

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

which converges.
Hence its interval of convergence is $(1,3]$.
5. Find the power series in x of the function defined by the following integral:

$$
f(x)=\int_{0}^{x} \frac{\sin t}{t} d t=
$$

Solution:

The power series of $\sin t$ is:

$$
\sin t=\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{2 n+1}}{(2 n+1)!}=t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}-\frac{t^{7}}{7!}+\cdots
$$

Dividing by t we get:

$$
\frac{\sin t}{t}=\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{2 n}}{(2 n+1)!}=1-\frac{t^{2}}{3!}+\frac{t^{4}}{5!}-\frac{t^{6}}{7!}+\cdots
$$

Integrating termwise we get:

$$
\int_{0}^{x} \frac{\sin t}{t} d t=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!(2 n+1)}=x-\frac{x^{3}}{3!3}+\frac{x^{5}}{5!5}-\frac{x^{7}}{7!7}+\cdots
$$

6. Use power series to compute the following limit:

$$
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin x}\right)=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & =\lim _{x \rightarrow 0} \frac{\sin x-x}{x \sin x} \\
& =\lim _{x \rightarrow 0} \frac{\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)-x}{x\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)} \\
& =\lim _{x \rightarrow 0} \frac{-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots}{x^{2}-\frac{x^{4}}{3!+\frac{x^{6}}{5!}-\cdots}} \\
& =\lim _{x \rightarrow 0} \frac{-\frac{x}{3!}+\frac{x^{3}}{5!}-\cdots}{1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots} \\
& =\frac{0}{1}=0
\end{aligned}
$$

