Math B17-Winter 1999 - Midterm Exam No. 2 (solutions) SOLUTIONS

1. Let A, B and C be the following matrices:

$$
A=\left[\begin{array}{ll}
1 & 4 \\
3 & 6
\end{array}\right] \quad B=\left[\begin{array}{rr}
1 & -3 \\
1 & 5
\end{array}\right] \quad C=\left[\begin{array}{rr}
-2 & 5 \\
1 & -2
\end{array}\right]
$$

Compute $(3 A+B) C$.

Solution:

$$
\begin{aligned}
(3 A+B) C & =\left(\left[\begin{array}{ll}
3 & 12 \\
9 & 18
\end{array}\right]+\left[\begin{array}{rr}
1 & -3 \\
1 & 5
\end{array}\right]\right)\left[\begin{array}{rr}
-2 & 5 \\
1 & -2
\end{array}\right] \\
& =\left[\begin{array}{rr}
4 & 9 \\
10 & 23
\end{array}\right]\left[\begin{array}{rr}
-2 & 5 \\
1 & -2
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
\end{aligned}
$$

2. Is the vector $\mathbf{b}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ in the column space of the matrix $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 1 & 3 & 2\end{array}\right]$? Solution:

The vector \mathbf{b} is in the column space of A iff the system $A \mathbf{v}=\mathbf{b}$ has a solution. The augmented matrix is:

$$
A^{\prime}=\left[\begin{array}{lll|l}
1 & 3 & 5 & 2 \\
1 & 3 & 2 & 1
\end{array}\right]
$$

After using Gauss-Jordan reduction it becomes: $\left[\begin{array}{ccc|c}1 & 3 & 0 & \frac{1}{3} \\ 0 & 0 & 1 & \frac{1}{3}\end{array}\right]$
Here we see that $\operatorname{rank} A=\operatorname{rank} A^{\prime}=2$, hence the system has solution and the vector \mathbf{b} does belong to the column space of the matrix A.
3. Solve the following system of equations:

$$
\left\{\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}=2 \\
x_{1}+x_{2}+x_{3}=1 \\
x_{2}+2 x_{3}=1
\end{array}\right.
$$

Solution:

The augmented matrix is: $\left[\begin{array}{ccc|c}1 & 2 & 3 & 2 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1\end{array}\right]$
After using Gauss-Jordan reduction we get: $\left[\begin{array}{rrr|r}1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$
i.e.:

$$
\left\{\begin{array}{rll}
x_{1} & & -x_{3}=0 \\
& x_{2}+2 x_{3}=1
\end{array}\right.
$$

The solution is $x_{1}=x_{3}, x_{2}=1-2 x_{3}$, or:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{3} \\
1-2 x_{3} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right]
$$

4. Find a basis and the dimension of the solution space for the system:

$$
\left\{\begin{array}{rr}
x_{1} & -3 x_{3}+x_{4}-x_{5}=0 \\
& x_{2}-x_{3}+3 x_{4}+x_{5}=0
\end{array}\right.
$$

Solution:

The coefficient matrix is:

$$
A=\left[\begin{array}{rrrrr}
1 & 0 & -3 & 1 & -1 \\
0 & 1 & -1 & 3 & 1
\end{array}\right]
$$

Note that A is already in Gauss-Jordan reduced form. Hence, the general solution of $A \mathbf{x}=\mathbf{0}$ is:

$$
\begin{aligned}
& x_{1}=3 x_{3}-x_{4}+x_{5} \\
& x_{2}=x_{3}-3 x_{4}-x_{5}
\end{aligned}
$$

and in matrix form: $\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=x_{3}\left[\begin{array}{l}3 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{r}-1 \\ -3 \\ 0 \\ 1 \\ 0\end{array}\right]+x_{5}\left[\begin{array}{r}1 \\ -1 \\ 0 \\ 0 \\ 1\end{array}\right]$.
Hence, the following set is a basis of the solution space:

$$
\left\{\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
3 \\
1 \\
1 \\
0 \\
0
\end{array}\right] ; \quad \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}
-1 \\
-3 \\
0 \\
1 \\
0
\end{array}\right] ; \quad \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{r}
1 \\
-1 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

and its dimension is 3 .
5. Find the inverse of the following matrix: $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 2 & 1 \\ 1 & 1 & 1\end{array}\right]$. Solution:

$$
A^{-1}=\left[\begin{array}{rrr}
-1 & 0 & 2 \\
1 & 1 & -3 \\
0 & -1 & 2
\end{array}\right]
$$

6. Find the eigenvalues and eigenvectors of the following matrix: $A=\left[\begin{array}{rrr}3 & 4 & 4 \\ 2 & 1 & -2 \\ -4 & -4 & -1\end{array}\right]$.

Solution:

The characteristic polynomial of A is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{ccc}
3-\lambda & 4 & 4 \\
2 & 1-\lambda & -2 \\
-4 & -4 & -1-\lambda
\end{array}\right] & =-3+3 \lambda^{2}+\lambda-\lambda^{3} \\
& =-(\lambda-1)(\lambda-3)(\lambda+1)
\end{aligned}
$$

Its roots are $\lambda=3, \lambda=1$ and $\lambda=-1$.
For $\lambda=3$ we get $A-3 I=\left[\begin{array}{rrr}0 & 4 & 4 \\ 2 & -2 & -2 \\ -4 & -4 & -4\end{array}\right]$
After using Gauss-Jordan the matrix becomes: $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$
The solutions of $(A-3 I) \mathbf{v}=0$ are:

$$
\mathbf{v}=\left[\begin{array}{c}
0 \\
-x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right]
$$

So we can take the following eigenvector: $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{r}0 \\ -1 \\ 1\end{array}\right]$

For $\lambda=1$ we get $A-I=\left[\begin{array}{rrr}2 & 4 & 4 \\ 2 & 0 & -2 \\ -4 & -4 & -2\end{array}\right]$
After using Gauss-Jordan the matrix becomes: $\left[\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0\end{array}\right]$
The solutions of $(A-I) \mathbf{v}=0$ are:

$$
\mathbf{v}=\left[\begin{array}{c}
x_{3} \\
-\frac{3}{2} x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{r}
1 \\
-\frac{3}{2} \\
1
\end{array}\right]
$$

So we can take the following eigenvector: $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}1 \\ -\frac{3}{2} \\ 1\end{array}\right]$
For $\lambda=-1$ we get $A+I=\left[\begin{array}{rrr}4 & 4 & 4 \\ 2 & 2 & -2 \\ -4 & -4 & 0\end{array}\right]$
After using Gauss-Jordan the matrix becomes: $\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
The solutions of $(A+I) \mathbf{v}=0$ are:

$$
\mathbf{v}=\left[\begin{array}{c}
-x_{2} \\
x_{2} \\
0
\end{array}\right]=x_{2}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]
$$

So we can take the following eigenvector: $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$
As a summary, we get the following set of eigenvalues with their associated eigenvectors:
$\lambda_{1}=3, \quad \mathbf{v}_{\mathbf{1}}=\left[\begin{array}{r}0 \\ -1 \\ 1\end{array}\right] ; \quad \lambda_{2}=1, \quad \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}1 \\ -\frac{3}{2} \\ 1\end{array}\right] ; \quad \lambda_{3}=-1, \quad \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$

