Math B17 - Winter 1999 - Midterm Exam No. 2 (solutions)

SOLUTIONS

1. Let A, B and C be the following matrices:

$$A = \begin{bmatrix} 1 & 4 \\ 3 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -3 \\ 1 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} -2 & 5 \\ 1 & -2 \end{bmatrix}$$

Compute (3A + B) C.

Solution:

$$(3A+B)C = \left(\begin{bmatrix} 3 & 12 \\ 9 & 18 \end{bmatrix} + \begin{bmatrix} 1 & -3 \\ 1 & 5 \end{bmatrix} \right) \begin{bmatrix} -2 & 5 \\ 1 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 9 \\ 10 & 23 \end{bmatrix} \begin{bmatrix} -2 & 5 \\ 1 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

2. Is the vector
$$\mathbf{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 in the column space of the matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ 1 & 3 & 2 \end{bmatrix}$?

Solution:

The vector **b** is in the column space of A iff the system A **v** = **b** has a solution. The augmented matrix is:

$$A' = \left[\begin{array}{rrrr} 1 & 3 & 5 & | & 2 \\ 1 & 3 & 2 & | & 1 \end{array} \right]$$

After miner Course Isolan and estimation it has more	[1	3	0	$\left \frac{1}{3} \right $
After using Gauss-Jordan reduction it becomes:	0	0	1	$\left[\frac{1}{3}\right]$

Here we see that rank $A = \operatorname{rank} A' = 2$, hence the system has solution and the vector **b** does belong to the column space of the matrix A. **3.** Solve the following system of equations:

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 2\\ x_1 + x_2 + x_3 = 1\\ & x_2 + 2x_3 = 1 \end{cases}$$

Solution:

The augmented matrix is:
$$\begin{bmatrix} 1 & 2 & 3 & | & 2 \\ 1 & 1 & 1 & | & 1 \\ 0 & 1 & 2 & | & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & -1 & | & 0 \end{bmatrix}$$

After using Gauss-Jordan reduction we get:
$$0$$
 1 2 1 0 0 0 0

i.e.:

$$\begin{cases} x_1 & - x_3 = 0 \\ x_2 + 2x_3 = 1 \end{cases}$$

The solution is $x_1 = x_3$, $x_2 = 1 - 2x_3$, or:

x_1		x_3		0		1
x_2	=	$1 - 2 x_3$	=	1	$+x_{3}$	-2
x_3		x_3		0		1

4. Find a basis and the dimension of the solution space for the system:

$$\begin{cases} x_1 & -3x_3 + x_4 - x_5 = 0 \\ x_2 - x_3 + 3x_4 + x_5 = 0 \end{cases}$$

Solution:

The coefficient matrix is:

$$A = \left[\begin{array}{rrrrr} 1 & 0 & -3 & 1 & -1 \\ 0 & 1 & -1 & 3 & 1 \end{array} \right]$$

Note that A is already in Gauss-Jordan reduced form. Hence, the general solution of $A\mathbf{x} = \mathbf{0}$ is:

Hence, the following set is a basis of the solution space:

$$\left\{ \begin{array}{c} \mathbf{v_1} = \begin{bmatrix} 3\\1\\1\\0\\0 \end{bmatrix}; \quad \mathbf{v_2} = \begin{bmatrix} -1\\-3\\0\\1\\0 \end{bmatrix}; \quad \mathbf{v_3} = \begin{bmatrix} 1\\-1\\0\\0\\1 \end{bmatrix} \right\}$$

and its dimension is 3.

5. Find the inverse of the following matrix: $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

Solution:

$$A^{-1} = \begin{bmatrix} -1 & 0 & 2\\ 1 & 1 & -3\\ 0 & -1 & 2 \end{bmatrix}$$

6. Find the eigenvalues and eigenvectors of the following matrix: $A = \begin{bmatrix} 3 & 4 & 4 \\ 2 & 1 & -2 \\ -4 & -4 & -1 \end{bmatrix}$.

Solution:

The characteristic polynomial of A is

$$\det (A - \lambda I) = \det \begin{bmatrix} 3 - \lambda & 4 & 4\\ 2 & 1 - \lambda & -2\\ -4 & -4 & -1 - \lambda \end{bmatrix} = -3 + 3\lambda^2 + \lambda - \lambda^3$$
$$= -(\lambda - 1)(\lambda - 3)(\lambda + 1)$$

Its roots are $\lambda = 3$, $\lambda = 1$ and $\lambda = -1$.

	0	4	4	
For $\lambda = 3$ we get $A - 3I =$	2	-2	-2	
	-4	-4	-4	
				ſ

After using Gauss-Jordan the matrix becomes: $\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 1 \\
 0 & 0 & 0
\end{bmatrix}$

The solutions of $(A - 3I)\mathbf{v} = 0$ are:

$$\mathbf{v} = \begin{bmatrix} 0\\ -x_3\\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 0\\ -1\\ 1 \end{bmatrix}$$

So we can take the following eigenvector: $\mathbf{v_1} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$

For
$$\lambda = 1$$
 we get $A - I = \begin{bmatrix} 2 & 4 & 4 \\ 2 & 0 & -2 \\ -4 & -4 & -2 \end{bmatrix}$
After using Gauss-Jordan the matrix becomes:
$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

The solutions of $(A - I)\mathbf{v} = 0$ are:

$$\mathbf{v} = \begin{bmatrix} x_3 \\ -\frac{3}{2}x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -\frac{3}{2} \\ 1 \end{bmatrix}$$

So we can take the following eigenvector: $\mathbf{v_2} = \begin{bmatrix} 1 \\ -\frac{3}{2} \\ 1 \end{bmatrix}$

For
$$\lambda = -1$$
 we get $A + I = \begin{bmatrix} 4 & 4 & 4 \\ 2 & 2 & -2 \\ -4 & -4 & 0 \end{bmatrix}$
After using Gauss-Jordan the matrix becomes: $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

The solutions of $(A + I)\mathbf{v} = 0$ are:

$$\mathbf{v} = \begin{bmatrix} -x_2 \\ x_2 \\ 0 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

So we can take the following eigenvector: $\mathbf{v_3} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$

As a summary, we get the following set of eigenvalues with their associated eigenvectors:

$$\lambda_1 = 3, \quad \mathbf{v_1} = \begin{bmatrix} 0\\ -1\\ 1 \end{bmatrix}; \quad \lambda_2 = 1, \quad \mathbf{v_2} = \begin{bmatrix} 1\\ -\frac{3}{2}\\ 1 \end{bmatrix}; \quad \lambda_3 = -1, \quad \mathbf{v_3} = \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix}$$