Math B17 - Winter 1999 - Final Exam (solutions) SOLUTIONS

1. Determine if the following infinite series converge or diverge:
(a) $\sum_{n=1000}^{\infty} \frac{(-1)^{n}}{\ln \ln \ln n}$

Solution:

It converges, because it is an alternating series and the n-th term is decreasing and tends to zero.
(b) $\sum_{n=1}^{\infty} n \sin \frac{1}{n}$

Solution:
We have

$$
\lim _{n \rightarrow \infty} n \sin \frac{1}{n}=\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{\cos x}{1}=1
$$

so the series diverges because the n-th term does not tend to zero.
2. Determine if the following infinite series converge or diverge:
(a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+1}}$

Solution:

By comparison:

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+1}} \leq \sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}
$$

The series on the right hand side converges by the integral test, hence the given series converges.
(b) $\sum_{n=0}^{\infty} \frac{n^{2}+n+2}{n^{3}+3 n+7}$

Solution:

We have

$$
\lim _{n \rightarrow \infty} \frac{\frac{n^{2}+n+2}{n^{3}+3 n+7}}{1 / n}=\lim _{n \rightarrow \infty} \frac{n^{3}+n^{2}+2 n}{n^{3}+3 n+7}=1
$$

so by the Limit Comparison Test the given series behaves the same as $\sum_{n=1}^{\infty} \frac{1}{n}$, i.e.: diverges.
3. Use power series to compute the following limit:

$$
\lim _{x \rightarrow 0}\left(\frac{1}{\ln (1+x)}-\frac{1}{x}\right)=
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(\frac{1}{\ln (1+x)}-\frac{1}{x}\right) & =\lim _{x \rightarrow 0} \frac{x-\ln (1+x)}{x \ln (1+x)} \\
& =\lim _{x \rightarrow 0} \frac{x-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots\right)}{x\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots\right)} \\
& =\lim _{x \rightarrow 0} \frac{\frac{x^{2}}{2}-\frac{x^{3}}{3}+\cdots}{x^{2}-\frac{x^{3}}{2}+\frac{x^{4}}{3}-\cdots} \\
& =\lim _{x \rightarrow 0} \frac{\frac{1}{2}-\frac{x}{3}+\cdots}{1-\frac{x}{2}+\frac{x^{2}}{3}-\cdots} \\
& =\frac{1}{2}
\end{aligned}
$$

4. Solve the following system of equations or show that it has no solutions:

$$
\left\{\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=10 \\
2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}=14 \\
3 x_{1}+4 x_{2}+5 x_{3}+6 x_{4}=18 \\
4 x_{1}+5 x_{2}+6 x_{3}+7 x_{4}=22
\end{array}\right.
$$

Solution:
The augmented matrix is $A^{\prime}=\left[\begin{array}{cccc|c}1 & 2 & 3 & 4 & 10 \\ 2 & 3 & 4 & 5 & 14 \\ 3 & 4 & 5 & 6 & 18 \\ 4 & 5 & 6 & 7 & 22\end{array}\right]$.
After using Gauss-Jordan reduction we get: $\left[\begin{array}{rrrr|r}1 & 0 & -1 & -2 & -2 \\ 0 & 1 & 2 & 3 & 6 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
i.e.:

$$
\left\{\begin{array}{rrrr}
x_{1} & -x_{3}-2 x_{4}= & -2 \\
& x_{2}+2 x_{3}+3 x_{4}=6
\end{array}\right.
$$

The solution is $x_{1}=-2+x_{3}+2 x_{4}, x_{2}=6-2 x_{3}-3 x_{4}$, or:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-2 \\
6 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{r}
1 \\
-2 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
2 \\
-3 \\
0 \\
1
\end{array}\right]
$$

5. Solve the following system of equations or show that it has no solutions:

$$
\left\{\begin{array}{r}
x_{1}+x_{2}+x_{3}=1 \\
x_{1}+2 x_{2}+3 x_{3}=4 \\
2 x_{1}+3 x_{2}+4 x_{3}=5 \\
x_{2}+2 x_{3}=0
\end{array}\right.
$$

Solution:
The augmented matrix is: $A^{\prime}=\left[\begin{array}{ccc|c}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 0\end{array}\right]$.
After applying Gauss-Jordan we get: $\left[\begin{array}{rrr|r}1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$.
We see that the rank of the coefficient matrix is 2 , and the rank of the augmented matrix is 3 , hence the system has no solutions.
6. Which of the following matrices are orthogonal? Why?

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \quad B=\left[\begin{array}{rrr}
1 & 1 & 2 \\
1 & -2 & 0 \\
1 & 1 & -2
\end{array}\right] \quad C=\left[\begin{array}{ccc}
1 / \sqrt{3} & 1 / \sqrt{6} & 1 / \sqrt{2} \\
1 / \sqrt{3} & -2 / \sqrt{6} & 0 \\
1 / \sqrt{3} & 1 / \sqrt{6} & -1 / \sqrt{2}
\end{array}\right]
$$

Solution:

A way to see if a matrix is orthogonal is to check if its inverse equals its transpose:

$$
A^{t} A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

Since $A^{t} A \neq I, A$ is not orthogonal.

$$
B^{t} B=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 8
\end{array}\right]
$$

So B is not orthogonal either.

$$
C^{t} C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Hence C is orthogonal.
7. In \mathbb{R}^{2} find the change of basis matrix for a 60° clockwise rotation. What are the new coordinates of the point $(1,1) ?\left(\right.$ Note: $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}, \cos \frac{\pi}{3}=\frac{1}{2}$.)

Solution:
The rotation transforms the standard basis $\left\{\mathbf{e}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{e}_{\mathbf{2}}=\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ into $\left\{\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}1 / 2 \\ -\sqrt{3} / 2\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}\sqrt{3} / 2 \\ 1 / 2\end{array}\right]\right\}$, hence the change of basis matrix is

$$
P=\left[\begin{array}{ll}
\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}}
\end{array}\right]=\left[\begin{array}{cc}
1 / 2 & \sqrt{3} / 2 \\
-\sqrt{3} / 2 & 1 / 2
\end{array}\right] .
$$

Since P is orthogonal, its inverse is its transpose: $P^{-1}=P^{t}=\left[\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right]$.
The new coordinates of the point $(1,1)$ are:

$$
P^{-1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{cc}
1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
(1-\sqrt{3}) / 2 \\
(1+\sqrt{3}) / 2
\end{array}\right],
$$

i.e.: $\left(\frac{1-\sqrt{3}}{2}, \frac{1+\sqrt{3}}{2}\right)$.
8. Find the dimension and an orthonormal basis for the column space of the following matrix:

$$
A=\left[\begin{array}{rrrr}
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 2 \\
1 & 0 & 1 & 2
\end{array}\right]
$$

Solution:

After using Gauss reduction on A the matrix becomes: $\left[\begin{array}{rrrr}1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$,
which shows that the first three columns of A form a basis for its column space:

$$
\left\{\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{r}
0 \\
-1 \\
1 \\
1
\end{array}\right]\right\}
$$

Since the basis has three vectors, the dimension of the column space is 3 .
Now we orthonormalize it by using the Gram-Schmidt process. Since $\mathbf{v}_{\mathbf{1}}$ is already orthogonal to $\mathbf{v}_{\mathbf{2}}$ and $\mathbf{v}_{\mathbf{3}}$, we need to apply Gram-Schmidt to $\left\{\mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ only:

$$
\mathbf{v}_{\mathbf{3}}^{\prime}=\mathbf{v}_{\mathbf{3}}-\frac{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{3}}}{\mathbf{v}_{\mathbf{2}} \cdot \mathbf{v}_{\mathbf{2}}} \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}
0 \\
-1 \\
1 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 \\
-1 \\
1 / 2 \\
1
\end{array}\right] .
$$

After normalizing we get the following orthonormal basis:

$$
\left\{\mathbf{u}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right], \mathbf{u}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], \mathbf{u}_{\mathbf{3}}=\frac{1}{\sqrt{10}}\left[\begin{array}{r}
-1 \\
-2 \\
1 \\
2
\end{array}\right]\right\}
$$

9. Find the principal axes and classify the central conic:

$$
5 x^{2}+5 y^{2}-6 x y=8
$$

Solution:

The conic can be represented as $\left[\begin{array}{ll}x & y\end{array}\right] A\left[\begin{array}{l}x \\ y\end{array}\right]=8$, where $A=\left[\begin{array}{rr}5 & -3 \\ -3 & 5\end{array}\right]$.
We must diagonalize A as $D=P^{t} A P$ for some orthogonal matrix $P=\left[\begin{array}{ll}\mathbf{u}_{\mathbf{1}} & \mathbf{u}_{\mathbf{2}}\end{array}\right]$, where $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}\right\}$ is an orthonormal basis for \mathbb{R}^{2} consisting of eigenvectors for A.

The eigenvalues of A are the roots of the characteristic polynomial:

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{cc}
5-\lambda & -3 \\
-3 & 5-\lambda
\end{array}\right]=\lambda^{2}-10 \lambda+16=(\lambda-2)(\lambda-8)
$$

The eigenvalues are $\lambda=2$ and $\lambda=8$.
For $\lambda=2$ we must solve $\left[\begin{array}{rr}3 & -3 \\ -3 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. The solution is $x_{1}=x_{2}$, or: $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]$, so we take $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ as eigenvector.

For $\lambda=8$ we must solve $\left[\begin{array}{ll}-3 & -3 \\ -3 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. The solution is $x_{1}=-x_{2}$, or: $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, so we take $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$.

Note that $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are already orthogonal, so all we need is to normalize them: $\mathbf{u}_{\mathbf{1}}=\frac{1}{\sqrt{2}} \mathbf{v}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}=\frac{1}{\sqrt{2}} \mathbf{v}_{\mathbf{2}}$. The matrix for the change of basis is:

$$
P=\left[\begin{array}{ll}
\mathbf{u}_{1} & \mathbf{u}_{2}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]
$$

In the new basis the conic is $\left[\begin{array}{ll}x^{\prime} & y^{\prime}\end{array}\right] D\left[\begin{array}{c}x^{\prime} \\ y^{\prime}\end{array}\right]=8$, where

$$
D=P^{t} A P=\left[\begin{array}{ll}
2 & 0 \\
0 & 8
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=P^{t}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

i.e.:

$$
\left\{\begin{array}{l}
x^{\prime}=\frac{1}{\sqrt{2}}(x+y) \\
y^{\prime}=\frac{1}{\sqrt{2}}(-x+y)
\end{array}\right.
$$

Hence the conic is $2 x^{\prime 2}+8 y^{\prime 2}=8$, or equivalently: $\frac{x^{\prime 2}}{4}+y^{\prime 2}=1$, which is an ellipse. Its principal axes are given by the basic vectors

$$
\mathbf{u}_{\mathbf{1}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \mathbf{u}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

Note: An alternative solution is $x^{\prime 2}+\frac{y^{\prime 2}}{4}=1$, and

$$
\mathbf{u}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
-1 \\
1
\end{array}\right], \quad \mathbf{u}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

10. Let $A=\left[\begin{array}{ccc}1 & 2 & -2 \\ 2 & 1 & -2 \\ 0 & 0 & -1\end{array}\right]$. Find a matrix P such that $D=P^{-1} A P$ is diagonal.

Solution:

The solution is of the form $P=\left[\mathbf{v}_{\mathbf{1}} \mathbf{v}_{\mathbf{2}} \mathbf{v}_{\mathbf{3}}\right]$, were $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is a basis for \mathbb{R}^{3} consisting of eigenvectors for A.

We have
$\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{ccc}1-\lambda & 2 & -2 \\ 2 & 1-\lambda & -2 \\ 0 & 0 & -1-\lambda\end{array}\right]=3+5 \lambda+\lambda^{2}-\lambda^{3}=-(\lambda-3)(\lambda+1)^{2}$

So the roots of the characteristic polynomial are $\lambda=3$ and $\lambda=-1$ (double).

For $\lambda=3$ we get: $A-3 I=\left[\begin{array}{rrr}-2 & 2 & -2 \\ 2 & -2 & -2 \\ 0 & 0 & -4\end{array}\right]$
After using Gauss-Jordan that matrix becomes: $\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
The solution of $(A-3 I) \mathbf{x}=\mathbf{0}$ is $x_{1}=x_{2}, x_{3}=0$, i.e.:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

So we take $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ as the first eigenvector.

Next, for $\lambda=-1$ we get $A+I=\left[\begin{array}{rrr}2 & 2 & -2 \\ 2 & 2 & -2 \\ 0 & 0 & 0\end{array}\right]$.
After using Gauss-Jordan that matrix becomes $\left[\begin{array}{rrr}1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
Hence, the solution of $(A+I) \mathbf{x}=\mathbf{0}$ is $x_{1}=-x_{2}+x_{3}$, i.e.:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{2}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

So, we take the eigenvectors $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.
The matrix P is: ${ }^{1}$
$P=\left[\begin{array}{lll}\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}} & \mathbf{v}_{\mathbf{3}}\end{array}\right]=\left[\begin{array}{rrr}1 & -1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$,
and

$$
D=P^{-1} A P=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

[^0]
[^0]: ${ }^{1}$ Other solutions, obtained by permuting the columns of P, are also possible. Also the vectors $\mathbf{v}_{\mathbf{2}}$ and $\mathbf{v}_{\mathbf{2}}$ could be chosen differently, provided they span the same subspace.

