
Notes on

Discrete Mathematics

Miguel A. Lerma

Contents

Introduction 5

Chapter 1. Logic 6
1.1. Propositions 6
1.2. Quantifiers 10
1.3. Proofs 13
1.4. Mathematical Induction 18

Chapter 2. The Language of Mathematics 21
2.1. Set Theory 21
2.2. Sequences and Strings 29
2.3. Relations 32
2.4. Functions 38

Chapter 3. Algorithms 43
3.1. Algorithms 43
3.2. The Euclidean Algorithm 53
3.3. Modular Arithmetic, RSA Algorithm 57

Chapter 4. Counting 63
4.1. Basic Principles 63
4.2. Combinatorics 65
4.3. Generalized Permutations and Combinations 67
4.4. Binomial Coefficients 69
4.5. The Pigeonhole Principle 71
4.6. Probability 72

Chapter 5. Recurrence Relations 76
5.1. Recurrence Relations 76

Chapter 6. Graph Theory 80
6.1. Graphs 80
6.2. Paths and Cycles 85
6.3. Representations of Graphs 91
6.4. Planar Graphs 94

3

CONTENTS 4

Chapter 7. Trees 97
7.1. Trees 97
7.2. Spanning Trees 102
7.3. Binary Trees 108
7.4. Decision Trees, Tree Isomorphisms 112

Chapter 8. Boolean Algebras 118
8.1. Combinatorial Circuits 118
8.2. Boolean Functions, Applications 123

Chapter 9. Automata, Grammars and Languages 128
9.1. Finite State Machines 128
9.2. Languages and Grammars 132
9.3. Regular Languages 139

Appendix A. 145
A.1. Efficient Computation of Powers Modulo m 145
A.2. Machines and Languages 147

Introduction

These notes are intended to be a summary of the main ideas in
course CS 310: Mathematical Foundations of Computer Science. I
may keep working on this document as the course goes on, so these
notes will not be completely finished until the end of the quarter.

The textbook for this course is Richard Johnsonbaugh:Discrete Math-
ematics, Fifth Edition, 2001, Prentice Hall. With few exceptions I will
follow the notation in the book.

These notes contain some questions and “exercises” intended to
stimulate the reader who wants to play a somehow active role while
studying the subject. They are not homework nor need to be addressed
at all if the reader does not wish to. I will recommend exercises and
give homework assignments separately.

Finally, if you find any typos or errors, or you have any suggestions,
please, do not hesitate to tell me. You may email me, or use the web
form for feedback on the web pages for the course.

Miguel A. Lerma
mlerma@math.northwestern.edu
Northwestern University
Winter 2003

5

CHAPTER 1

Logic

1.1. Propositions

A proposition is a declarative sentence that is either true or false
(but not both). For instance, the following are propositions: “Paris
is in France” (true), “London is in Denmark” (false), “2 < 4” (true),
“4 = 7 (false)”. However the following are not propositions: “what
is your name?” (this is a question), “do your homework” (this is a
command), “this sentence is false” (neither true nor false), “x is an
even number” (it depends on what x represents), “Socrates” (it is not
even a sentence). The truth or falsehood of a proposition is called its
truth value.

1.1.1. Connectives, Truth Tables. Connectives are used for
making compound propositions. The main ones are the following (p
and q represent given propositions):

Name Represented Meaning
Negation p “not p”
Conjunction p ∧ q “p and q”
Disjunction p ∨ q “p or q (or both)”
Exclusive Or p Y q “either p or q, but not both”
Implication p → q “if p then q”
Biconditional p ↔ q “p if and only if q”

The truth value of a compound proposition depends only on the
value of its components. Writing F for “false” and T for “true”, we
can summarize the meaning of the connectives in the following way:

6

1.1. PROPOSITIONS 7

p q p p ∧ q p ∨ q p Y q p → q p ↔ q
T T F T T F T T
T F F F T T F F
F T T F T T T F
F F T F F F T T

Note that ∨ represents a non-exclusive or, i.e., p ∨ q is true when
any of p, q is true and also when both are true. On the other hand Y
represents an exclusive or, i.e., p Y q is true only when exactly one of p
and q is true.

1.1.2. Conditional Propositions. A proposition of the form “if
p then q” or “p implies q”, represented “p → q” is called a conditional
proposition. For instance: “if John is from Chicago then John is from
Illinois”. The proposition p is called hypothesis or antecedent, and the
proposition q is the conclusion or consequent.

Note that p → q is true always except when p is true and q is false.
So, the followings sentences are true: “if 2 < 4 then Paris is in France”
(true → true), “if London is in Denmark then 2 < 4” (false → true),
“if 4 = 7 then London is in Denmark” (false → false). However the
following one is false: “if 2 < 4 then London is in Denmark” (true →
false).

In might seem strange that “p → q” is considered true when p is
false, regardless of the truth value of q. This will become clearer when
we study predicates such as “if x is a multiple of 4 then x is a multiple
of 2”. That implication is obviously true, although for the particular
case x = 3 it becomes “if 3 is a multiple of 4 then 3 is a multiple of 2”.

The proposition p ↔ q, read “p if and only if q”, is called bicon-
ditional. It is true precisely when p and q have the same truth value,
i.e., they are both true or both false.

1.1.3. Logical Equivalence. Note that the compound proposi-
tions p → q and p ∨ q have the same truth values:

p q p p ∨ q p → q
T T F T T
T F F F F
F T T T T
F F T T T

1.1. PROPOSITIONS 8

When two compound propositions have the same truth values no
matter what truth value their constituent propositions have, they are
called logically equivalent. For instance p → q and p ∨ q are logically
equivalent, and we write it:

p → q ≡ p ∨ q

Example: De Morgan’s Laws for Logic. The following propositions
are logically equivalent:

p ∨ q ≡ p ∧ q

p ∧ q ≡ p ∨ q

We can check it by examining their truth tables:

p q p q p ∨ q p ∨ q p ∧ q p ∧ q p ∧ q p ∨ q
T T F F T F F T F F
T F F T T F F F T T
F T T F T F F F T T
F F T T F T T F T T

Example: The following propositions are logically equivalent:

p ↔ q ≡ (p → q) ∧ (q → p)

Again, this can be checked with the truth tables:

p q p → q q → p (p → q) ∧ (q → p) p ↔ q
T T T T T T
T F F T F F
F T T F F F
F F T T T T

Exercise: Check the following logical equivalences:

p → q ≡ p ∧ q

p → q ≡ q → p

p ↔ q ≡ p Y q

1.1.4. Converse, Contrapositive. The converse of a conditional
proposition p → q is the proposition q → p. As we have seen, the bi-
conditional proposition is equivalent to the conjunction of a conditional

1.1. PROPOSITIONS 9

proposition an its converse.

p ↔ q ≡ (p → q) ∧ (q → p)

So, for instance, saying that “John is married if and only if he has a
spouse” is the same as saying “if John is married then he has a spouse”
and “if he has a spouse then he is married”.

Note that the converse is not equivalent to the given conditional
proposition, for instance “if John is from Chicago then John is from
Illinois” is true, but the converse “if John is from Illinois then John is
from Chicago” may be false.

The contrapositive of a conditional proposition p → q is the propo-
sition q → p. They are logically equivalent. For instance the contra-
positive of “if John is from Chicago then John is from Illinois” is “if
John is not from Illinois then John is not from Chicago”.

1.2. QUANTIFIERS 10

1.2. Quantifiers

1.2.1. Predicates. A predicate or propositional function1 is a state-
ment containing variables. For instance “x + 2 = 7”, “X is American”,
“x < y”, “p is a prime number” are predicates. The truth value of the
predicate depends on the value assigned to its variables. For instance if
we replace x with 1 in the predicate “x+2 = 7” we obtain “1+2 = 7”,
which is false, but if we replace it with 5 we get “5 + 2 = 7”, which
is true. We represent a predicate by a letter followed by the variables
enclosed between parenthesis: P (x), Q(x, y), etc. An example for P (x)
is a value of x for which P (x) is true. A counterexample is a value of
x for which P (x) is false. So, 5 is an example for “x + 2 = 7”, while 1
is a counterexample.

Each variable in a predicate is assumed to belong to a domain
(or universe) of discourse, for instance in the predicate “n is an odd
integer” ’n’ represents an integer, so the domain of discourse of n is
the set of all integers. In “X is American” we may assume that X is
a human being, so in this case the domain of discourse is the set of all
human beings.2

1.2.2. Quantifiers. Given a predicate P (x), the statement “for
some x, P (x)” (or “there is some x such that p(x)”), represented
“∃xP (x)”, has a definite truth value, so it is a proposition in the
usual sense. For instance if P (x) is “x + 2 = 7” with the integers as
domain of discourse, then ∃xP (x) is true, since there is indeed an inte-
ger, namely 5, such that P (5) is a true statement. However, if Q(x) is
“2x = 7” and the domain of discourse is still the integers, then ∃xQ(x)
is false. On the other hand, ∃xQ(x) would be true if we extend the
domain of discourse to the rational numbers. The symbol ∃ is called
the existential quantifier.

1The term propositional function used by Johnsonbaugh is rather obsolete and
I have replaced it here with the more currently used predicate.

2Usually all variables occurring in predicates along a reasoning are supposed to
belong to the same domain of discourse, but in some situations (as in the so called
many-sorted logics) it is possible to use different kinds of variables to represent
different types of objects belonging to different domains of discourse. For instance
in the predicate “σ is a string of length n” the variable σ represents a string, while
n represents a natural number, so the domain of discourse of σ is the set of all
strings, while the domain of discourse of n is the set of natural numbers.

1.2. QUANTIFIERS 11

Analogously, the sentence “for all x, P (x)”—also “for any x, P (x)”,
“for every x, P (x)”, “for each x, P (x)”—, represented “∀xP (x)”, has
a definite truth value. For instance, if P (x) is “x + 2 = 7” and the
domain of discourse is the integers, then ∀xP (x) is false. However if
Q(x) represents “(x + 1)2 = x2 + 2x + 1” then ∀xQ(x) is true. The
symbol ∀ is called the universal quantifier.

In predicates with more than one variable it is possible to use several
quantifiers at the same time, for instance ∀x∀y∃z P (x, y, z), meaning
“for all x and all y there is some z such that P (x, y, z)”.

Note that in general the existential and universal quantifiers cannot
be permuted, i.e., in general ∀x∃y P (x, y) means something different
from ∃y∀xP (x, y). For instance if x and y represent human beings
and P (x, y) represents “x is married to y”, then ∀x∃y P (x, y) means
that everybody is married to someone, but ∃y∀xP (x, y) means that
there is someone to whom everybody else is married (a extreme form
of polygamy!).

A predicate can be partially quantified, e.g. ∀x∃y P (x, y, z, t). The
variables quantified (x and y in the example) are called bound variables,
and the rest (z and t in the example) are called free variables. A
partially quantified predicate is still a predicate, but depending on
fewer variables.

1.2.3. Generalized De Morgan Laws for Logic. If ∃xP (x) is
false then there is no value of x for which P (x) is true, or in other
words, P (x) is always false. Hence

∃xP (x) ≡ ∀x P (x) .

On the other hand, if ∀xP (x) is false then it is not true that for
every x, P (x) holds, hence for some x, P (x) must be false. Thus:

∀xP (x) ≡ ∃x P (x) .

This two rules can be applied in successive steps to find the negation
of a more complex quantified statement, for instance:

∃x∀y p(x, y) ≡ ∀x∀y P (x, y) ≡ ∀x∃y P (x, y) .

Exercise: Write formally the statement “for every real number there
is a greater real number”. Write the negation of that statement.

1.2. QUANTIFIERS 12

Answer : The statement is: ∀x∃y (x < y) (the domain of discourse
is the real numbers). Its negation is: ∃x ∀y x < y, i.e., ∃x∀y (x 6< y).
(Note that among real numbers x 6< y is equivalent to x ≥ y, but
formally they are different predicates.)

1.3. PROOFS 13

1.3. Proofs

1.3.1. Mathematical Systems, Proofs. A Mathematical Sys-
tem consists of:

1. Axioms : propositions that are assumed true.
2. Definitions : used to create new concepts from old ones.
3. Undefined terms : corresponding to the primitive concepts of the

system (for instance in set theory the term “set” is undefined).

A theorem is a proposition that has been proved to be true. An
argument that establishes the truth of a proposition is called a proof.

Example: Prove that if x > 2 and y > 3 then x + y > 5.

Answer : Assuming x > 2 and y > 3 and adding the inequalities
term by term we get: x + y > 2 + 3 = 5.

That is an example of direct proof. In a direct proof we assume the
hypothesis together with axioms and other theorems previously proved
and we derive the conclusion from them.

Proof by Contradiction. In a proof by contradiction or (Reductio ad
Absurdum) we assume the hypothesis and the negation of the conclu-
sion, and try to derive a contradiction, i.e., a proposition of the form
r ∧ r.

Example: Prove by contradiction that if x+y > 5 then either x > 2
or y > 3.

Answer : We assume the hypothesis x + y > 5. From here we must
conclude that x > 2 or y > 3. Assume to the contrary that “x > 2 or
y > 3” is false, so x ≤ 2 and y ≤ 3. Adding those inequalities we get
x ≤ 2 + 3 = 5, which contradicts the hypothesis x + y > 5. From here
we conclude that the assumption “x ≤ 2 and y ≤ 3” cannot be right,
so “x > 2 or y > 3” must be true.

A related proof is the proof by contrapositive, i.e., instead of proving
p → q we prove the contrapositive q → p.

1.3. PROOFS 14

1.3.2. Arguments, Rules of Inference. An argument is a se-
quence of propositions p1, p2, . . . , pn called hypothesis (or premises) fol-
lowed by a proposition q called conclusion. An argument is usually
written:

p1

p2
...
pn

∴ q

or

p1, p2, . . . , pn/ ∴ q

The argument is called valid if q is true whenever p1, p2, . . . , pn are
true; otherwise it is called invalid.

Rules of inference are certain simple arguments known to be valid
and used to make a proof step by step. For instance the following
argument is called modus ponens or law of detachment :

p → q
p

∴ q

In order to check whether it is valid we must examine the following
truth table:

p q p → q p q
T T T T T
T F F T F
F T T F T
F F T F F

If we look now at the rows in which both p → q and p are true (just
the first row) we see that also q is true, so the argument is valid.

Other rules of inference are the following:

1. Modus Ponens or Rule of Detachment :

1.3. PROOFS 15

p → q
p

∴ q

2. Modus Tollens :
p → q
q

∴ p

3. Addition:
p

∴ p ∨ q

4. Simplification:

p ∧ q
∴ p

5. Conjunction:

p
q

∴ p ∧ q

6. Hypothetical Syllogism:

p → q
q → r

∴ p → r

7. Disjunctive Syllogism:

p ∨ q
p

∴ q

Arguments are usually written using three columns. Each row con-
tains a label, a statement and the reason that justifies the introduction
of that statement in the argument. That justification can be one of the
following:

1. The statement is a premise.
2. The statement can be derived from statements occurring earlier

in the argument by using a rule of inference.

Example: Consider the following statements: “I take the bus or
I walk. If I walk I get tired. I do not get tired. Therefore I take the

1.3. PROOFS 16

bus.” We can formalize this by calling B = “I take the bus”, W =
“I walk” and T = “I get tired”. The premises are B ∨ W , W → T
and T , and the conclusion is B. The argument can be described in the
following steps:

step statement reason

1) W → T Premise
2) T Premise
3) W 1,2, Modus Tollens
4) B ∨W Premise
5) ∴ B 4,3, Disjunctive Syllogism

1.3.3. Rules of Inference for Quantified Statements. We
state the rules for predicates with one variable, but they can be gener-
alized to predicates with two or more variables.

1. Universal Instantiation. If ∀x p(x) is true, then p(a) is true for
each specific element a in the domain of discourse; i.e.:

∀x p(x)
∴ p(a)

For instance, from ∀x (x+1 = 1+x) we can derive 7+1 = 1+7.

2. Existential Instantiation. If ∃x p(x) is true, then p(a) is true for
some specific element a in the domain of discourse; i.e.:

∃x p(x)
∴ p(a)

The difference respect to the previous rule is the restriction in
the meaning of a, which now represents some (not any) element
of the domain of discourse. So, for instance, from ∃x (x2 = 2)
(the domain of discourse is the real numbers) we derive the
existence of some element, which we may represent ±√2, such
that (±√2)2 = 2.

3. Universal Generalization. If p(x) is proved to be true for a
generic element in the domain of discourse, then ∀x p(x) is true;
i.e.:

p(x)
∴ ∀x p(x)

By “generic” we mean an element for which we do not make any
assumption other than its belonging to the domain of discourse.
So, for instance, we can prove ∀x [(x + 1)2 = x2 + 2x + 1] (say,

1.3. PROOFS 17

for real numbers) by assuming that x is a generic real number
and using algebra to prove (x + 1)2 = x2 + 2x + 1.

4. Existential Generalization. If p(a) is true for some specific ele-
ment a in the domain of discourse, then ∃x p(x) is true; i.e.:

p(a)
∴ ∃x p(x)

For instance: from 7 + 1 = 8 we can derive ∃x (x + 1 = 8).

Example: Show that a counterexample can be used to disprove a
universal statement, i.e., if a is an element in the domain of discourse,
then from p(a) we can derive ∀x p(x). Answer : The argument is as
follows:

step statement reason

1) p(a) Premise

2) ∃x p(x) Existential Generalization

3) ∀x p(x) Negation of Universal Statement

1.4. MATHEMATICAL INDUCTION 18

1.4. Mathematical Induction

Many properties of positive integers can be proved by mathematical
induction.

1.4.1. Principle of Mathematical Induction. Let P be a prop-
erty of positive integers such that:

1. Basis Step: P (1) is true, and

2. Inductive Step: if P (n) is true, then P (n + 1) is true.

Then P (n) is true for all positive integers.

Remark : The premise P (n) in the inductive step is called Induction
Hypothesis.

The validity of the Principle of Mathematical Induction is obvious.
The basis step states that P (1) is true. Then the inductive step implies
that P (2) is also true. By the inductive step again we see that P (3)
is true, and so on. Consequently the property is true for all positive
integers.

Remark : In the basis step we may replace 1 with some other integer
m. Then the conclusion is that the property is true for every integer n
greater than or equal to m.

Example: Prove that the sum of the n first odd positive integers is
n2, i.e., 1 + 3 + 5 + · · ·+ (2n− 1) = n2.

Answer : Let S(n) = 1 + 3 + 5 + · · · + (2n− 1). We want to prove
by induction that for all positive integer n, S(n) = n2.

1. Basis Step: If n = 1 we have S(1) = 1 = 12, so the property is
true for 1.

2. Inductive Step: Assume (Induction Hypothesis) that the prop-
erty is true for some positive integer n, i.e.: S(n) = n2. We must
prove that it is also true for n + 1, i.e., S(n + 1) = (n + 1)2. In
fact:

S(n + 1) = 1 + 3 + 5 + · · ·+ (2n + 1) = S(n) + 2n + 1 .

1.4. MATHEMATICAL INDUCTION 19

But by induction hypothesis, S(n) = n2, hence:

S(n + 1) = n2 + 2n + 1 = (n + 1)2 .

This completes the induction, and shows that the property is true for
all positive integers.

Example: Prove that 2n + 1 ≤ 2n for n ≥ 3.

Answer : This is an example in which the property is not true for
all positive integers but only for integers greater than or equal to 3.

1. Basis Step: If n = 3 we have 2n + 1 = 2 · 3 + 1 = 7 and
2n = 23 = 8, so the property is true in this case.

2. Inductive Step: Assume (Induction Hypothesis) that the prop-
erty is true for some positive integer n, i.e.: 2n + 1 ≤ 2n. We
must prove that it is also true for n+1, i.e., 2(n+1)+1 ≤ 2n+1.
By the induction hypothesis we know that 2n ≤ 2n, and we also
have that 3 ≤ 2n if n ≥ 3, hence

2(n + 1) + 1 = 2n + 3 ≤ 2n + 2n = 2n+1 .

This completes the induction, and shows that the property is true for
all n ≥ 3.

Exercise: Prove the following identities by induction:

• 1 + 2 + 3 + · · ·+ n =
n (n + 1)

2
.

• 12 + 22 + 32 + · · ·+ n2 =
n (n + 1) (2n + 1)

6
.

• 13 + 23 + 33 + · · ·+ n3 = (1 + 2 + 3 + · · ·+ n)2.

1.4.2. Strong Form of Mathematical Induction. Let P be a
property of positive integers such that:

1. Basis Step: P (1) is true, and

2. Inductive Step: if P (k) is true for all 1 ≤ k ≤ n then P (n + 1)
is true.

Then P (n) is true for all positive integers.

1.4. MATHEMATICAL INDUCTION 20

Example: Prove that every integer n ≥ 2 is prime or a product of
primes. Answer :

1. Basis Step: 2 is a prime number, so the property holds for
n = 2.

2. Inductive Step: Assume that if 2 ≤ k ≤ n, then k is a prime
number or a product of primes. Now, either n + 1 is a prime
number or it is not. If it is a prime number then it verifies the
property. If it is not a prime number, then it can be written as
the product of two positive integers, n + 1 = k1 k2, such that
1 < k1, k2 < n + 1. By induction hypothesis each of k1 and
k2 must be a prime or a product of primes, hence n + 1 is a
product of primes.

This completes the proof.

1.4.3. The Well-Ordering Principle. Every nonempty set of
positive integers has a smallest element.

Example: Prove that
√

2 is irrational (i.e.,
√

2 cannot be written as
a quotient of two positive integers) using the well-ordering principle.
Answer : Assume that

√
2 is rational, i.e.,

√
2 = a/b, where a and

b are integers. Note that since
√

2 > 1 then a > b. Now we have
2 = a2/b2, hence 2 b2 = a2. Since the left hand side is even, then
a2 is even, but this implies that a itself is even, so a = 2 a′. Hence:
2 b2 = 4 a′2, and simplifying: b2 = 2 a′2. From here we see that

√
2 =

b/a′. Hence starting with a fractional representation of
√

2 = a/b
we end up with another fractional representation

√
2 = b/a′ with a

smaller numerator b < a. Repeating the same argument with the
fraction b/a′ we get another fraction with an even smaller numerator,
and so on. So the set of possible numerators of a fraction representing√

2 cannot have a smallest element, contradicting the well-ordering
principle. Consequently, our assumption that

√
2 is rational has to be

false.

CHAPTER 2

The Language of Mathematics

2.1. Set Theory

2.1.1. Sets. A set is a collection of objects, called elements of the
set. A set can be represented by listing its elements between braces:
A = {1, 2, 3, 4, 5}. The symbol ∈ is used to express that an element is
(or belongs to) a set, for instance 3 ∈ A. Its negation is represented by
6∈, e.g. 7 6∈ A. If the set is finite, its number of elements is represented
|A|, e.g. if A = {1, 2, 3, 4, 5} then |A| = 5.

Some important sets are the following:

1. N = {0, 1, 2, 3, · · · } = the set of natural numbers.1

2. Z = {−3,−2,−1, 0, 1, 2, 3, · · · } = the set of integers.
3. Q = the set of rational numbers.
4. R = the set of real numbers.
5. C = the set of complex numbers.

Is S is one of those sets then we also use the following notations:2

1. S+ = set of positive elements in S, for instance

Z+ = {1, 2, 3, · · · } = the set of positive integers.

2. S− = set of negative elements in S, for instance

Z− = {−1,−2,−3, · · · } = the set of negative integers.

3. S∗ = set of elements in S excluding zero, for instance R∗ = the
set of non zero real numbers.

Set-builder notation. An alternative way to define a set, called set-
builder notation, is by stating a property (predicate) P (x) verified by
exactly its elements, for instance A = {x ∈ Z | 1 ≤ x ≤ 5} = “set of

1Note that N includes zero—for some authors N = {1, 2, 3, · · · }, without zero.
2When working with strings we will use a similar notation with a different

meaning—be careful not to confuse it.

21

2.1. SET THEORY 22

integers x such that 1 ≤ x ≤ 5”—i.e.: A = {1, 2, 3, 4, 5}. In general:
A = {x ∈ U | p(x)}, where U is the domain of discourse in which the
predicate P (x) must be interpreted, or A = {x | P (x)} if the domain
of discourse for P (x) is implicitly understood. In set theory the term
universal set is often used in place of “domain of discourse” for a given
predicate.3

Principle of Extension. Two sets are equal if and only if they have
the same elements, i.e.:

A = B ≡ ∀x (x ∈ A ↔ x ∈ B) .

Subset. We say that A is a subset of set B, or A is contained in
B, and we represent it “A ⊆ B”, if all elements of A are in B, e.g., if
A = {a, b, c} and B = {a, b, c, d, e} then A ⊆ B.

A is a proper subset of B, represented “A ⊂ B”, if A ⊆ B but
A 6= B, i.e., there is some element in B which is not in A.

Empty Set. A set with no elements is called empty set (null, or
void) set, and is represented by ∅ or {}.

Note that nothing prevents a set from possibly being an element of
another set (which is not the same as being a subset!). For instance
if A = {1, a, {3, t}, {1, 2, 3}} and B = {3, t}, then obviously B is an
element of A, i.e., B ∈ A.

Power Set. The collection of all subsets of a set A is called the
power set of A, and is represented P(A). For instance, if A = {1, 2, 3},
then

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, A} .

Exercise: Prove by induction that if |A| = n then |P(A)| = 2n.

Multisets. Two ordinary sets are identical if they have the same
elements, so for instance, {a, a, b} and {a, b} are the same set because
they have exactly the same elements, namely a and b. However, in
some applications it might be useful to allow repeated elements in a
set. In that case we use multisets, which are mathematical entities
similar to sets, but with possibly repeated elements. So, as multisets,
{a, a, b} and {a, b} would be considered different, since in the first one
the element a occurs twice and in the second one it occurs only once.

3Properly speaking, the domain of discourse of set theory is the collection of
all sets (which is not a set).

2.1. SET THEORY 23

2.1.2. Venn Diagrams. Venn diagrams are graphic representa-
tions of sets as enclosed areas in the plane. For instance, in figure 2.1,
the rectangle represents the universal set (the set of all elements con-
sidered in a given problem) and the shaded region represents a set A.
The other figures represent various set operations.

A

Figure 2.1. Venn Diagram.

BA

Figure 2.2. Intersection A ∩B.

BA

Figure 2.3. Union A ∪B.

2.1. SET THEORY 24

A

Figure 2.4. Complement A.

BA

Figure 2.5. Difference A−B.

BA

Figure 2.6. Symmetric Difference A4B.

2.1.3. Set Operations.

1. Intersection: The common elements of two sets:

A ∩B = {x | (x ∈ A) ∧ (x ∈ B)} .

If A ∩B = ∅, the sets are said to be disjoint.

2. Union: The set of elements that belong to either of two sets:

A ∪B = {x | (x ∈ A) ∨ (x ∈ B)} .

2.1. SET THEORY 25

3. Complement : The set of elements (in the universal set) that do
not belong to a given set:

A = {x ∈ U | x 6∈ A} .

4. Difference or Relative Complement : The set of elements that
belong to a set but not to another:

A−B = {x | (x ∈ A) ∧ (x 6∈ B)} = A ∩B .

5. Symmetric Difference: Given two sets, their symmetric differ-
ence is the set of elements that belong to either one or the other
set but not both.

A4B = {x | (x ∈ A) Y (x ∈ B)} .

It can be expressed also in the following way:

A4B = A ∪B − A ∩B = (A−B) ∪ (B − A) .

2.1.4. Counting with Venn Diagrams. A Venn diagram with
n sets intersecting in the most general way divides the plane into 2n

regions. If we have information about the number of elements of some
portions of the diagram, then we can find the number of elements in
each of the regions and use the sum rule for obtaining the number of
elements in other portions of the plane.

Example: Let M , P and C be the sets of students taking Mathe-
matics courses, Physics courses and Computer Science courses respec-
tively in a university. Assume |M | = 300, |P | = 350, |C| = 450,
|M ∩ P | = 100, |M ∩ C| = 150, |P ∩ C| = 75, |M ∩ P ∩C| = 10. How
many students are taking exactly one of those courses? (fig. 2.7)

10

185

235

65140

C

60 90

M P

Figure 2.7. Counting with Venn diagrams.

We see that |(M∩P)−(M∩P∩C)| = 100−10 = 10, |(M∩C)−(M∩
P ∩C)| = 150−10 = 140 and |(P ∩C)− (M ∩P ∩C)| = 75−10 = 65.

2.1. SET THEORY 26

Then the region corresponding to students taking Mathematics courses
only has cardinality 300−(90+10+140) = 60. Analogously we compute
the number of students taking Physics courses only (185) and taking
Computer Science courses only (235). The sum 60 + 185 + 235 = 480
is the number of students taking exactly one of those courses.

2.1.5. Properties of Sets. The set operations verify the follow-
ing properties:

1. Associative Laws:

A ∪ (B ∪ C) = (A ∪B) ∪ C

A ∩ (B ∩ C) = (A ∩B) ∩ C

2. Commutative Laws:

A ∪B = B ∪ A

A ∩B = B ∩ A

3. Distributive Laws:

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

4. Identity Laws:
A ∪ ∅ = A

A ∩ U = A

5. Complement Laws:

A ∪ A = U

A ∩ A = ∅
6. Idempotent Laws:

A ∪ A = A

A ∩ A = A

7. Bound Laws:
A ∪ U = U

A ∩ ∅ = ∅
8. Absorption Laws:

A ∪ (A ∩B) = A

A ∩ (A ∪B) = A

9. Involution Law:

A = A

2.1. SET THEORY 27

10. 0/1 Laws:

∅ = U

U = ∅
11. DeMorgan’s Laws:

A ∪B = A ∩B

A ∩B = A ∪B

2.1.6. Generalized Union and Intersection. Given a collec-
tion of sets A1, A2, . . . , AN , their union is defined as the set of elements
that belong to at least one of the sets (here n represents an integer in
the range from 1 to N):

N⋃
n=1

An = A1 ∪ A2 ∪ · · · ∪ AN = {x | ∃n (x ∈ An)} .

Analogously, their intersection is the set of elements that belong to all
the sets simultaneously:

N⋂
n=1

An = A1 ∩ A2 ∩ · · · ∩ AN = {x | ∀n (x ∈ An)} .

These definitions can be applied to infinite collections of sets as well.
For instance assume that Sn = {kn | k = 2, 3, 4, . . . } = set of multiples
of n greater than n. Then

∞⋃
n=2

Sn = S2 ∪ S3 ∪ S4 ∪ · · · = {4, 6, 8, 9, 10, 12, 14, 15, . . . }

= set of composite positive integers .

2.1.7. Partitions. A partition of a set X is a collection S of non
overlapping non empty subsets of X whose union is the whole X. For
instance a partition of X{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} could be

S = {{1, 2, 4, 8}, {3, 6}, {5, 7, 9, 10}} .

Given a partition S of a set X, every element of X belongs to exactly
one member of S.

Example: The division of the integers Z into even and odd numbers
is a partition: S = {E, O}, where E = {2n | n ∈ Z}, O = {2n + 1 | n ∈
Z}.

2.1. SET THEORY 28

Example: The divisions of Z in negative integers, positive integers
and zero is a partition: S = {Z+, Z−, {0}}.

2.1.8. Ordered Pairs, Cartesian Product. An ordinary pair
{a, b} is a set with two elements. In a set the order of the elements is
irrelevant, so {a, b} = {b, a}. If the order of the elements is relevant,
then we use a different object called ordered pair, represented (a, b).
Now (a, b) 6= (b, a) (unless a = b). In general (a, b) = (a′, b′) iff a = a′

and b = b′.

Given two sets A, B, their Cartesian product A×B is the set of all
ordered pairs (a, b) such that a ∈ A and b ∈ B:

A×B = {(a, b) | (a ∈ A) ∧ (b ∈ B)} .

Analogously we can define triples or 3-tuples (a, b, c), 4-tuples (a, b, c, d),
. . . , n-tuples (a1, a2, . . . , an), and the corresponding 3-fold, 4-fold,. . . ,
n-fold Cartesian products:

A1 × A2 × · · · × An =

{(a1, a2, . . . , an) | (a1 ∈ A1) ∧ (a2 ∈ A2) ∧ · · · ∧ (an ∈ An)} .

If all the sets in a Cartesian product are the same, then we can use
an exponent: A2 = A× A, A3 = A× A× A, etc. In general:

An = A× A× (n times)· · · × A .

An example of Cartesian product is the real plane R2, where R is
the set of real numbers (R is sometimes called real line).

2.2. SEQUENCES AND STRINGS 29

2.2. Sequences and Strings

2.2.1. Sequences. A sequence is an (usually infinite) ordered list
of elements. Examples:

1. The sequence of positive integers:

1, 2, 3, 4, . . . , n, . . .

2. The sequence of positive even integers:

2, 4, 6, 8, . . . , 2n, . . .

3. The sequence of powers of 2:

1, 2, 4, 8, 16, . . . , n2, . . .

4. The sequence of Fibonacci numbers (each one is the sum of the
two previous ones):

0, 1, 1, 2, 3, 5, 8, 13, . . .

5. The reciprocals of the positive integers:

1,
1

2
,
1

3
,
1

4
, · · · ,

1

n
, · · ·

In general the elements of a sequence are represented with an in-
dexed letter, say s1, s2, s3, . . . , sn, The sequence itself can be de-
fined by giving a rule, e.g.: sn = 2n + 1 is the sequence:

3, 5, 7, 9, . . .

Here we are assuming that the first element is s1, but we can start at
any value of the index that we want, for instance if we declare s0 to be
the first term, the previous sequence would become:

1, 3, 5, 7, 9, . . .

The sequence is symbolically represented {sn} or {sn}∞n=1.

If sn ≤ sn+1 for every n the sequence is called increasing. If sn ≥
sn+1 then it is called decreasing. For instance sn = 2n+1 is increasing:
3, 5, 7, 9, . . . , while sn = 1/n is decreasing: 1, 1

2
, 1

3
, 1

4
, · · · .

If we remove elements from a sequence we obtain a subsequence.
E.g., if we remove all odd numbers from the sequence of positive inte-
gers:

1, 2, 3, 4, 5 . . . ,

2.2. SEQUENCES AND STRINGS 30

we get the subsequence consisting of the even positive integers:

2, 4, 6, 8, . . .

2.2.2. Sum (Sigma) and Product Notation. In order to ab-
breviate sums and products the following notations are used:

1. Sum (or sigma) notation:

n∑
i=m

ai = am + am+1 + am+2 + · · ·+ an

2. Product notation:
n∏

i=m

ai = am · am+1 · am+2 · · · · · an

For instance: assume an = 2n + 1, then

6∑
n=3

an = a3 + a4 + a5 + a6 = 7 + 9 + 11 + 13 = 40 .

6∏
n=3

an = a3 · a4 · a5 · a6 = 7 · 9 · 11 · 13 = 9009 .

2.2.3. Strings. Given a set X, a string over X is a finite ordered
list of elements of X.

Example: If X is the set X = {a, b, c}, then the following are ex-
amples of strings over X: aba, aaaa, bba, etc.

Repetitions can be specified with a superscripts, for instance: a2b3ac2a3 =
aabbbaccaaa, (ab)3 = ababab, etc.

The length of a string is its number of elements, e.g., |abaccbab| = 8,
|a2b7a3c6| = 18.

The string with no elements is called null string, represented λ. Its
length is, of course, zero: |λ| = 0.

The set of all strings over X is represented X∗. The set of no
null strings over X (i.e., all strings over X except the null string) is
represented X+.

2.2. SEQUENCES AND STRINGS 31

Given two strings α and β over X, the string consisting of α followed
by β is called the concatenation of α and β. For instance if α = abac
and β = baaab then αβ = abacbaaab.

2.3. RELATIONS 32

2.3. Relations

2.3.1. Relations. Assume that we have a set of men M and a set
of women W , some of whom are married. We want to express which
men in M are married to which women in W . One way to do that is by
listing the set of pairs (m,w) such that m is a man, w is a woman, and
m is married to w. So, the relation “married to” can be represented
by a subset of the Cartesian product M ×W . In general, a relation R

from a set A to a set B will be understood as a subset of the Cartesian
product A × B, i.e., R ⊆ A× B. If an element a ∈ A is related to an
element b ∈ B, we often write aR b instead of (a, b) ∈ R.

The set

{a ∈ A | aR b for some b ∈ B}
is called the domain of R. The set

{b ∈ B | aR b for some a ∈ A}
is called the range of R. For instance, in the relation “married to”
above, the domain is the set of married men, and the range is the set
of married women.

If A and B are the same set, then any subset of A × A will be a
binary relation in A. For instance, assume A = {1, 2, 3, 4}. Then the
binary relation “less than” in A will be:

<A= {(x, y) ∈ A× A | x < y}
= {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} .

Notation: A set A with a binary relation R is sometimes represented
by the pair (A,R). So, for instance, (Z,≤) means the set of integers
together with the relation of non-strict inequality.

2.3.2. Representations of Relations.

Arrow diagrams. Venn diagrams and arrows can be used for rep-
resenting relations between given sets. As an example, figure 2.8 rep-
resents the relation from A = {a, b, c, d} to B = {1, 2, 3, 4} given by
R = {(a, 1), (b, 1), (c, 2), (c, 3)}. In the diagram an arrow from x to y
means that x is related to y. This kind of graph is called directed graph
or digraph.

2.3. RELATIONS 33

a
b

c

1

2
3

4
d

A B

Figure 2.8. Relation.

Another example is given in diagram 2.9, which represents the di-
visibility relation on the set {1, 2, 3, 4, 5, 6, 7, 8, 9}.

1 2

3

4

5

6

7

8

9

Figure 2.9. Binary relation of divisibility.

Matrix of a Relation. Another way of representing a relation R

from A to B is with a matrix. Its rows are labeled with the elements
of A, and its columns are labeled with the elements of B. If a ∈ A
and b ∈ B then we write 1 in row a column b if aR b, otherwise we
write 0. For instance the relation R = {(a, 1), (b, 1), (c, 2), (c, 3)} from
A = {a, b, c, d} to B = {1, 2, 3, 4} has the following matrix:

1 2 3 4

a
b
c
d

1 0 0 0
1 0 0 0
0 1 1 0
0 0 0 0

2.3.3. Inverse Relation. Given a relation R from A to B, the

inverse of R, denoted R−1, is the relation from B to A defined as

bR−1 a ⇔ aR b .

2.3. RELATIONS 34

For instance, if R is the relation “being a son or daughter of”, then
R−1 is the relation “being a parent of”.

2.3.4. Composition of Relations. Let A, B and C be three sets.
Given a relation R from A to B and a relation S from B to C, then
the composition S ◦ R of relations R and S is a relation from A to C
defined by:

a (S ◦ R) c ⇔ there exists some b ∈ B such that aR b and b S c .

For instance, if R is the relation “to be the father of”, and S is the
relation “to be married to”, then S ◦R is the relation “to be the father
in law of”.

2.3.5. Properties of Binary Relations. A binary relation R on
A is called:

1. Reflexive if for all x ∈ A, xRx. For instance on Z the relation
“equal to” (=) is reflexive.

2. Transitive if for all x, y, z ∈ A, xR y and y R z implies xR z.
For instance equality (=) and inequality (<) on Z are transitive
relations.

3. Symmetric if for all x, y ∈ A, xR y ⇒ y Rx. For instance on Z,
equality (=) is symmetric, but strict inequality (<) is not.

4. Antisymmetric if for all x, y ∈ A, xR y and y Rx implies x = y.
For instance, non-strict inequality (≤) on Z is antisymmetric.

2.3.6. Partial Orders. A partial order, or simply, an order on a
set A is a binary relation “4” on A with the following properties:

1. Reflexive: for all x ∈ A, x 4 x.
2. Antisymmetric: (x 4 y) ∧ (y 4 x) ⇒ x = y.
3. Transitive: (x 4 y) ∧ (y 4 z) ⇒ x 4 z.

Examples:

1. The non-strict inequality (≤) in Z.

2. Relation of divisibility on Z+: a|b ⇔ ∃t, b = at.

2.3. RELATIONS 35

3. Set inclusion (⊆) on P(A) (the collection of subsets of a given
set A).

Exercise: prove that the aforementioned relations are in fact partial
orders. As an example we prove that integer divisibility is a partial
order:

1. Reflexive: a = a 1 ⇒ a|a.

2. Antisymmetric: a|b ⇒ b = at for some t and b|a ⇒ a = bt′ for
some t′. Hence a = att′, which implies tt′ = 1 ⇒ t′ = t−1. The
only invertible positive integer is 1, so t = t′ = 1 ⇒ a = b.

3. Transitive: a|b and b|c implies b = at for some t and c = bt′ for
some t′, hence c = att′, i.e., a|c.

Question: is the strict inequality (<) a partial order on Z?

Two elements a, b ∈ A are said to be comparable if either x 4 y
or y 4 x, otherwise they are said to be non comparable. The order
is called total or linear when every pair of elements x, y ∈ A are com-
parable. For instance (Z,≤) is totally ordered, but (Z+, |), where “|”
represents integer divisibility, is not. A totally ordered subset of a par-
tially ordered set is called a chain; for instance the set {1, 2, 4, 8, 16, . . . }
is a chain in (Z+, |).

2.3.7. Hasse diagrams. A Hasse diagram is a graphical represen-
tation of a partially ordered set in which each element is represented
by a dot (node or vertex of the diagram). Its immediate successors are
placed above the node and connected to it by straight line segments. As
an example, figure 2.10 represents the Hasse diagram for the relation
of divisibility on {1, 2, 3, 4, 5, 6, 7, 8, 9}.

Question: How does the Hasse diagram look for a totally ordered
set?

2.3.8. Equivalence Relations. An equivalence relation on a set
A is a binary relation “∼” on A with the following properties:

1. Reflexive: for all x ∈ A, x ∼ x.
2. Symmetric: x ∼ y ⇒ y ∼ x.
3. Transitive: (x ∼ y) ∧ (y ∼ z) ⇒ x ∼ z.

2.3. RELATIONS 36

1

4

8

6

2

7

9

3

5

Figure 2.10. Hasse diagram for divisibility.

For instance, on Z, the equality (=) is an equivalence relation.

Another example, also on Z, is the following: x ≡ y (mod 2) (“x is
congruent to y modulo 2”) iff x−y is even. For instance, 6 ≡ 2 (mod 2)
because 6− 2 = 4 is even, but 7 6≡ 4 (mod 2), because 7− 4 = 3 is not
even. Congruence modulo 2 is in fact an equivalence relation:

1. Reflexive: for every integer x, x−x = 0 is indeed even, so x ≡ x
(mod 2).

2. Symmetric: if x ≡ y (mod 2) then x − y = t is even, but
y − x = −t is also even, hence y ≡ x (mod 2).

3. Transitive: assume x ≡ y (mod 2) and y ≡ z (mod 2). Then
x− y = t and y− z = u are even. From here, x− z = (x− y) +
(y − z) = t + u is also even, hence x ≡ z (mod 2).

2.3.9. Equivalence Classes, Quotient Set, Partitions. Given
an equivalence relation ∼ on a set A, and an element x ∈ A, the
set of elements of A related to x are called the equivalence class of
x, represented [x] = {y ∈ A | y ∼ x}. Element x is said to be a
representative of class

[x]. The collection of equivalence classes, represented A/∼ = {[x] |
x ∈ A}, is called quotient set of A by ∼.

Exercise: Find the equivalence classes on Z with the relation of
congruence modulo 2.

One of the main properties of an equivalence relation on a set A
is that the quotient set, i.e. the collection of equivalence classes, is
a partition of A. Recall that a partition of a set A is a collection of

2.3. RELATIONS 37

non-empty subsets A1, A2, A3, . . . of A which are pairwise disjoint and
whose union equals A:

1. Ai ∩ Aj = ∅ for i 6= j,

2.
⋃

n An = A.

Example: in Z with the relation of congruence modulo 2 (call it
“∼2”), there are two equivalence classes: the set E of even integers and
the set O of odd integers. The quotient set of Z by the relation “∼2”
of congruence modulo 2 is Z/∼2 = {E, O}. We see that it is in fact a
partition of Z, because E ∩O = ∅, and Z = E ∪O.

Exercise: Let m be an integer greater than or equal to 2. On Z
we define the relation x ≡ y (mod m) ⇔ m|(y − x) (i.e., m divides
exactly y − x). Prove that it is an equivalence relation. What are the
equivalence classes? How many are there?

Exercise: On the Cartesian product Z × Z∗ we define the relation
(a, b) R (c, d) ⇔ ad = bc. Prove that R is an equivalence relation.
Would it still be an equivalence relation if we extend it to Z× Z?

2.4. FUNCTIONS 38

2.4. Functions

2.4.1. Correspondences. Suppose that to each element of a set
A we assign some elements of another set B. For instance, A = N,
B = Z, and to each element x ∈ N we assign all elements y ∈ Z such
that y2 = x (fig. 2.11).

1

8
9

10

0

2

3 4
5

6

−1
1

2

−2

−3

0

3

ZN

7

Figure 2.11. Correspondence x 7→ ±√x.

This operation can be interpreted as a relation, but when we want
to stress the fact that it is an assignment of some elements to other
elements, we call it a correspondence.

2.4.2. Functions. A function or mapping f from a set A to a set
B, denoted f : A → B, is a correspondence in which to each element
x of A corresponds exactly one element y = f(x) of B (fig. 2.12).

A B

Figure 2.12. Function.

Sometimes we represent the function with a diagram like this:

f : A → B

x 7→ y
or

A
f→ B

x 7→ y

2.4. FUNCTIONS 39

For instance, the following represents the function from Z to Z
defined by f(x) = 2x + 1:

f : Z → Z
x 7→ 2x + 1

The element y = f(x) is called the image of x, and x is a preimage
of y. For instance, if f(x) = 2x + 1 then f(7) = 2 · 7 + 1 = 15. The
set A is the domain of f , and B is its codomain. If A′ ⊆ A, the image
of A′ by f is f(A′) = {f(x) | x ∈ A′}, i.e., the subset of B consisting
of all images of elements of A′. The subset f(A) of B consisting of
all images of elements of A is called the range of f . For instance, the
range of f(x) = 2x + 1 is the set of all integers of the form 2x + 1 for
some integer x, i.e., all odd numbers.

Example: Two useful functions from R to Z are the following:

1. The floor function:

bxc = greatest integer less than or equal to x .

For instance: b2c = 2, b2.3c = 2, bπc = 3, b−2.5c = −3.

2. The ceiling function:

dxe = least integer greater than or equal to x .

For instance: d2e = 2, d2.3e = 3, dπe = 4, d−2.5e = −2.

Example: The modulus operator is the function mod : Z×Z+ → Z
defined:

x mod y = remainder when x is divided by y.

For instance 23 mod 7 = 2 because 23 = 3·7+2, 59 mod 9 = 5 because
59 = 6 · 9 + 5, etc.

Graph: The graph of a function f : A → B is the subset of A× B
defined by G(f) = {(x, f(x)) | x ∈ A} (fig. 2.13).

2.4.3. Types of Functions.

1. One-to-One or Injective: A function f : A → B is called one-
to-one or injective if each element of B is the image of at most
one element of A (fig. 2.14):

∀x, x′ ∈ A, f(x) = f(x′) ⇒ x = x′ .

2.4. FUNCTIONS 40

0

1

2

3

4

y

–2 –1 1 2
x

Figure 2.13. Graph of f(x) = x2.

For instance, f(x) = 2x from Z to Z is injective.

A B

Figure 2.14. One-to-one function.

2. Onto or Surjective: A function f : A → B is called onto or
surjective if every element of B is the image of some element of
A (fig. 2.15):

∀y ∈ B, ∃x ∈ A such that y = f(x) .

For instance, f(x) = x2 from R to R+ ∪ {0} is onto.

A B

Figure 2.15. Onto function.

2.4. FUNCTIONS 41

3. Bijective Function or Bijection: A function f : A → B is said to
be bijective or a bijection if it is one-to-one and onto (fig. 2.16).
For instance, f(x) = x + 3 from Z to Z is a bijection.

A B

Figure 2.16. Bijection.

2.4.4. Identity Function. Given a set A, the function 1A : A →
A defined by 1A(x) = x for every x in A is called the identity function
for A.

2.4.5. Function Composition. Given two functions f : A → B
and g : B → C, the composite function of f and g is the function
g ◦ f : A → C defined by (g ◦ f)(x) = g(f(x)) for every x in A:

A
x

f //
Â //

g◦f
((

B
y=f(x)

g //
Â //

C
z=g(y)=g(f(x))

For instance, if A = B = C = Z, f(x) = x + 1, g(x) = x2, then
(g ◦ f)(x) = f(x)2 = (x + 1)2. Also (f ◦ g)(x) = g(x) + 1 = x2 + 1 (the
composition of functions is not commutative in general).

Some properties of function composition are the following:

1. If f : A → B is a function from A to B, we have that f ◦ 1A =
1B ◦ f = f .

2. Function composition is associative, i.e., given three functions

A
f→ B

g→ C
h→ D ,

we have that h ◦ (g ◦ f) = (h ◦ g) ◦ f .

2.4. FUNCTIONS 42

Function iteration. If f : A → A is a function from A to A, then
it makes sense to compose it with itself: f2 = f ◦ f . For instance, if
f : Z → Z is f(x) = 2x + 1, then f2(x) = 2(2x + 1) + 1 = 4x + 3.

Analogously we can define f3 = f ◦f ◦f , and so on, fn = f ◦ (n times). . . ◦f .

2.4.6. Inverse Function. If f : A → B is a bijective function, its
inverse is the function f−1 : B → A such that f−1(y) = x if and only
if f(x) = y.

For instance, if f : Z → Z is defined by f(x) = x + 3, then its
inverse is f−1(x) = x− 3.

The arrow diagram of f−1 is the same as the arrow diagram of f
but with all arrows reversed.

A characteristic property of the inverse function is that f−1◦f = 1A

and f ◦ f−1 = 1B.

2.4.7. Operators. A function from A×A to A is called a binary
operator on A. For instance the addition of integers is a binary oper-
ator + : Z × Z → Z. In the usual notation for functions the sum of
two integers x and y would be represented +(x, y). This is called prefix
notation. The infix notation consists of writing the symbol of the bi-
nary operator between its arguments: x+y (this is the most common).
There is also a postfix notation consisting of writing the symbol after
the arguments: x y +.

Another example of binary operator on Z is (x, y) 7→ x · y.

A monary or unary operator on A is a function from A to A. For
instance the change of sign x 7→ −x on Z is a unary operator on Z. An
example of unary operator on R∗ (non-zero real numbers) is x 7→ 1/x.

CHAPTER 3

Algorithms

3.1. Algorithms

Consider the following list of instructions to find the maximum of
three numbers a, b, c:

1. Assign variable x the value of a.
2. If b > x then assign x the value of b.
3. If c > x then assign x the value of c.
4. Output the value of x.

After executing those steps the output will be the maximum of a, b, c.

In general an algorithm is a finite list of instructions with the fol-
lowing characteristics:

1. Precision. The steps are precisely stated.
2. Uniqueness. The result of executing each step is uniquely de-

termined by the inputs and the result of preceding steps.
3. Finiteness. The algorithm stops after finitely many instructions

have been executed.
4. Input. The algorithm receives input.
5. Output. The algorithm produces output.
6. Generality. The algorithm applies to a set of inputs.

Basically an algorithm is the idea behind a program. Conversely,
programs are implementations of algorithms.

3.1.1. Pseudocode. Pseudocode is a language similar to a pro-
gramming language used to represent algorithms. The main difference
respect to actual programming languages is that pseudocode is not re-
quired to follow strict syntactic rules, since it is intended to be just
read by humans, not actually executed by a machine.

43

3.1. ALGORITHMS 44

Usually pseudocode will look like this:

procedure ProcedureName(Input)

Instructions...

end ProcedureName

For instance the following is an algorithm to find the maximum of
three numbers a, b, c:

1: procedure max(a,b,c)

2: x := a

3: if b>x then
4: x := b

5: if c>x then
6: x := c

7: return(x)
8: end max

Next we show a few common operations in pseudocode.

The following statement means “assign variable x the value of vari-
able y:

x := y

The following code executes “action” if condition “p” is true:

if p then
action

The following code executes “action1” if condition “p” is true, oth-
erwise it executes “action2”:

if p then
action1

else
action2

The following code executes “action” while condition “p” is true:

while p do
action

The following is the structure of a for loop:

3.1. ALGORITHMS 45

for var := init to limit do
action

If an action contains more than one statement then we must enclose
them in a block:

begin
Instruction1

Instruction2

Instruction3

...

end

Comments begin with two slashes:

// This is a comment

The output of a procedure is returned with a return statement:

return(output)

Procedures that do not return anything are invoked with a call
statement:

call Procedure(arguments...)

As an example, the following procedure returns the largest number
in a sequence s1, s2, . . . sn represented as an array with n elements:
s[1], s[2],. . . , s[n]:

1: procedure largest element(s,n)

2: largest := s[1]

3: for k := 2 to n do
4: if s[k] > largest then
5: largest := s[k]

6: return(largest)
7: end largest element

3.1.2. Recursiveness.

Recursive Definitions. A definition such that the object defined oc-
curs in the definition is called a recursive definition. For instance,

3.1. ALGORITHMS 46

consider the Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, . . .

It can be defined as a sequence whose two first terms are F0 = 0,
F1 = 1 and each subsequent term is the sum of the two previous ones:
Fn = Fn−1 + Fn−2 (for n ≥ 2).

Other examples:

• Factorial:
1. 0! = 1
2. n! = n · (n− 1)! (n ≥ 1)

• Power:
1. a0 = 1
2. an = an−1 a (n ≥ 1)

In all these examples we have:

1. A Basis, where the function is explicitly evaluated for one or
more values of its argument.

2. A Recursive Step, stating how to compute the function from its
previous values.

Recursive Procedures. A recursive procedure is a procedure that in-
vokes itself. Also a set of procedures is called recursive if they invoke
themselves in a circle, e.g., procedure p1 invokes procedure p2, proce-
dure p2 invokes procedure p3 and procedure p3 invokes procedure p1.
A recursive algorithm is an algorithm that contains recursive proce-
dures or recursive sets of procedures. Recursive algorithms have the
advantage that often they are easy to design and are closer to natural
mathematical definitions.

As an example we show two alternative algorithms for computing
the factorial of a natural number, the first one iterative (non recursive),
the second one recursive.

1: procedure factorial iterative(n)

2: fact := 1

3: for k := 2 to n do
4: fact := k * fact

5: return(fact)
6: end factorial iterative

3.1. ALGORITHMS 47

1: procedure factorial recursive(n)

2: if n = 0 then
3: return(1)
4: else
5: return(n * factorial recursive(n-1))

6: end factorial recursive

While the iterative version computes n! = 1 · 2 · . . . n directly, the
recursive version resembles more closely the formula n! = n · (n− 1)!

A recursive algorithm must contain at least a basic case without
recursive call (the case n = 0 in our example), and any legitimate
input should lead to a finite sequence of recursive calls ending up at
the basic case. In our example n is a legitimate input if it is a natural
number, i.e., an integer greater than or equal to 0. If n = 0 then
factorial recursive(0) returns 1 immediately without performing
any recursive call. If n > then the execution of

factorial recursive(n)

leads to a recursive call

factorial recursive(n-1)

which will perform a recursive call

factorial recursive(n-2)

and so on until eventually reaching the basic case

factorial recursive(0)

After reaching the basic case the procedure returns a value to the last
call, which returns a value to the previous call, and so on up to the
first invocation of the procedure.

Another example is the following algorithm for computing the nth
element of the Fibonacci sequence:

3.1. ALGORITHMS 48

1: procedure fibonacci(n)

2: if n=0 then
3: return(0)
4: if n=1 then
5: return(1)
6: return(fibonacci(n-1) + fibonacci(n-2))

7: end fibonacci

In this example we have two basic cases, namely n = 0 and n = 1.

In this particular case the algorithm is inefficient in the sense that
it performs more computations than actually needed. For instance a
call to fibonacci(5) contains two recursive calls, one to fibonacci(4)
and another one to fibonacci(3). Then fibonacci(4) performs a call
to fibonacci(3) and another call to fibonacci(2), so at this point we
see that fibonacci(3) is being called twice, once inside fibonacci(5)
and again in fibonacci(4). Hence sometimes the price to pay for a
simpler algorithmic structure is a loss of efficiency.

However careful design may yield efficient recursive algorithms. An
example is merge sort, and algorithm intended to sort a list of ele-
ments. First let’s look at a simple non recursive sorting algorithm
called bubble sort. The idea is to go several times through the list
swapping adjacent elements if necessary. It applies to a list of numbers
si, si+1, . . . , sj represented as an array s[i], s[i+1],..., s[j]:

1: procedure bubble sort(s,i,j)

2: for p:=1 to j-i do
3: for q:=i to j-p do
4: if s[q] > s[q+1] then
5: swap(s[q],s[q+1])

6: end bubble sort

We can see that bubble sort requires n(n− 1)/2 comparisons and
possible swapping operations.

On the other hand, the idea of merge sort is to split the list into
two approximately equal parts, sort them separately and then merge
them into a single list:

3.1. ALGORITHMS 49

1: procedure merge sort(s,i,j)

2: if i=j then
3: return
4: m := floor((i+j)/2)

5: call merge sort(s,i,m)

6: call merge sort(s,m+1,j)

7: call merge(s,i,m,j,c)
8: for k:=i to j do
9: s[k] := c[k]

10: end merge sort

The procedure merge(s,i,m,j,c) merges the two increasing sequences
si, si+1, . . . , sm and sm+1, sm+2, . . . , sj into a single increasing sequence
ci, ci+1, . . . , cj. This algorithm is more efficient than bubble sort be-
cause it requires only about n log2 n operations (we will make this more
precise soon).

The strategy of dividing a task into several smaller tasks is called
divide and conquer.

3.1.3. Complexity. In general the complexity of an algorithm is
the amount of time and space (memory use) required to execute it.
Here we deal with time complexity only.

Since the actual time required to execute an algorithm depends on
the details of the program implementing the algorithm and the speed
and other characteristics of the machine executing it, it is in general
impossible to make an estimation in actual physical time, however it
is possible to measure the length of the computation in other ways,
say by the number of operations performed. For instance the following
loop performs the statement x := x + 1 exactly n times,

1: for i := 1 to n do
2: x := x + 1

The following double loop performs it n2 times:

1: for i := 1 to n do
2: for j := 1 to n do
3: x := x + 1

The following one performs it 1 + 2 + 3 + · · ·+ n = n(n + 1)/2 times:

3.1. ALGORITHMS 50

1: for i := 1 to n do
2: for j := 1 to i do
3: x := x + 1

Since the time that takes to execute an algorithm usually depends
on the input, its complexity must be expressed as a function of the
input, or more generally as a function of the size of the input. Since
the execution time may be different for inputs of the same size, we
define the following kinds of times:

1. Best-case time: minimum time needed to execute the algorithm
among all inputs of a given size n.

2. Wost-case time: maximum time needed to execute the algo-
rithm among all inputs of a given size n.

3. Average-case time: average time needed to execute the algo-
rithm among all inputs of a given size n.

For instance, assume that we have a list of n objects one of which is
colored red and the others are colored blue, and we want to find the one
that is colored red by examining the objects one by one. We measure
time by the number of objects examined. In this problem the minimum
time needed to find the red object would be 1 (in the lucky event that
the first object examined turned out to be the red one). The maximum
time would be n (if the red object turns out to be the last one). The
average time is the average of all possible times: 1, 2, 3, . . . , n, which is
(1+2+3+· · ·+n)/n = (n+1)/2. So in this example the best-case time
is 1, the worst-case time is n and the average-case time is (n + 1)/2.

Often the exact time is too hard to compute or we are interested
just in how it grows compared to the size of the input. For instance
and algorithm that requires exactly 7n2 +3n+10 steps to be executed
on an input of size n is said to be or order n2, represented Θ(n2). This
justifies the following notations:

Big Oh Notation. A function f(n) is said to be of order at most
g(n), written f(n) = O(g(n)), if there is a constant C1 such that

|f(n)| ≤ C1|g(n)|

for all but finitely many positive integers n.

3.1. ALGORITHMS 51

Omega Notation. A function f(n) is said to be of order at least
g(n), written f(n) = Ω(g(n)), if there is a constant C2 such that

|f(n)| ≥ C2|g(n)|
for all but finitely many positive integers n.

Theta Notation. A function f(n) is said to be of order g(n), written
f(n) = Θ(g(n)), if f(n) = O(g(n)) and f(n) = Ω(g(n)).

Remark : All logarithmic functions are of the same order: loga n =
Θ(logb n) for any a, b > 1, because loga n = logb n/ logb a, so they always
differ in a multiplicative constant. As a consequence, if the execution
time of an algorithm is of order a logarithmic function, we can just say
that its time is “logarithmic”, we do not need to specify the base of
the logarithm.

The following are several common growth functions:

Order Name

Θ(1) Constant
Θ(log log n) Log log
Θ(log n) Logarithmic
Θ(n log n) n log n
Θ(n) Linear
Θ(n2) Quadratic
Θ(n3) Cubic
Θ(nk) Polynomial
Θ(an) Exponential

Let’s see now how we find the complexity of algorithms like bubble sort

and merge sort.

Since bubble sort is just a double loop its complexity is easy to
find; the inner loop is executed

(n− 1) + (n− 2) + · · ·+ 1 = n(n− 1)/2

times, so it requires n(n− 1)/2 comparisons and possible swap opera-
tions. Hence its execution time is Θ(n2).

The estimation of the complexity of merge sort is more involved.
First, the number of operations required by the merge procedure is
Θ(n). Next, if we call T (n) (the order of) the number of operations

3.1. ALGORITHMS 52

required by merge sort working on a list of size n, we see that roughly:

T (n) = 2T (n/2) + n .

Replacing n with n/2 we have T (n/2) = 2T (n/4) + n/2, hence

T (n) = 2T (n/2) + n = 2(2T (n/4) + n/2) + n = 4T (n/4) + 2n .

Repeating k times we get:

T (n) = 2kT (n/2k) + kn .

So for k = log2 n we have

T (n) = nT (1) + n log2 n = Θ(n log n) .

3.2. THE EUCLIDEAN ALGORITHM 53

3.2. The Euclidean Algorithm

3.2.1. The Division Algorithm. The following result is known
as The Division Algorithm:1 If a, b ∈ Z, b > 0, then there exist unique
q, r ∈ Z such that a = qb + r, 0 ≤ r < b. Here q is called quotient of
the integer division of a by b, and r is called remainder.

3.2.2. Divisibility. Given two integers a, b, b 6= 0, we say that b
divides a, written b|a, if there is some integer q such that a = bq:

b|a ⇔ ∃q, a = bq .

We also say that b divides or is a divisor of a, or that a is a multiple
of b.

3.2.3. Prime Numbers. A prime number is an integer p ≥ 2
whose only positive divisors are 1 and p. Any integer n ≥ 2 that is not
prime is called composite. A non-trivial divisor of n ≥ 2 is a divisor d
of n such that 1 < d < n, so n ≥ 2 is composite iff it has non-trivial
divisors. Warning : 1 is not considered either prime or composite.

Some results about prime numbers:

1. For all n ≥ 2 there is some prime p such that p|n.

2. (Euclid) There are infinitely many prime numbers.

3. If p|ab then p|a or p|b. More generally, if p|a1a2 . . . an then p|ak

for some k = 1, 2, . . . , n.

3.2.4. The Fundamental Theorem of Arithmetic. Every in-
teger n ≥ 2 can be written as a product of primes uniquely, up to the
order of the primes.

It is customary to write the factorization in the following way:

n = ps1
1 ps2

2 . . . psk
k ,

where all the exponents are positive and the primes are written so that
p1 < p2 < · · · < pk. For instance:

13104 = 24 · 32 · 7 · 13 .

1The result is not really an “algorithm”, it is just a mathematical theorem.
There are, however, algorithms that allow us to compute the quotient and the
remainder in an integer division.

3.2. THE EUCLIDEAN ALGORITHM 54

3.2.5. Greatest Common Divisor. A positive integer d is called
a common divisor of the integers a and b, if d divides a and b. The
greatest possible such d is called the greatest common divisor of a and b,
denoted gcd(a, b). If gcd(a, b) = 1 then a, b are called relatively prime.

Example: The set of positive divisors of 12 and 30 is {1, 2, 3, 6}.
The greatest common divisor of 12 and 30 is gcd(12, 30) = 6.

A few properties of divisors are the following. Let m, n, d be
integers. Then:

1. If d|m and d|n then d|(m + n).
2. If d|m and d|n then d|(m− n).
3. If d|m then d|mn.

Another important result is the following: Given integers a, b, c, the
equation

ax + by = c

has integer solutions if and only if gcd(a, b) divides c. That is an
example of a Diophantine equation. In general a Diophantine equation
is an equation whose solutions must be integers.

Example: We have gcd(12, 30) = 6, and in fact we can write 6 =
1 ·30−2 ·12. The solution is not unique, for instance 6 = 3 ·30−7 ·12.

3.2.6. Finding the gcd by Prime Factorization. We have that
gcd(a, b) = product of the primes that occur in the prime factorizations
of both a and b, raised to their lowest exponent. For instance 1440 =
25 · 32 · 5, 1512 = 23 · 33 · 7, hence gcd(1440, 1512) = 23 · 32 = 72.

Factoring numbers is not always a simple task, so finding the gcd
by prime factorization might not be a most convenient way to do it,
but there are other ways.

3.2.7. The Euclidean Algorithm. Now we examine an alter-
native method to compute the gcd of two given positive integers a, b.
The method provides at the same time a solution to the Diophantine
equation:

ax + by = gcd(a, b) .

It is based on the following fact: given two integers a ≥ 0 and
b > 0, and r = a mod b, then gcd(a, b) = gcd(b, r). Proof: Divide a by

3.2. THE EUCLIDEAN ALGORITHM 55

b obtaining a quotient q and a reminder r, then

a = bq + r , 0 ≤ r < b .

If d is a common divisor of a and b then it must be a divisor of r = a−bq.
Conversely, if d is a common divisor of b and r then it must divide
a = bq + r. So the set of common divisors of a and b and the set of
common divisors of b and r are equal, and the greatest common divisor
will be the same.

The Euclidean algorithm is a follows. First we divide a by b, obtain-
ing a quotient q and a reminder r. Then we divide b by r, obtaining a
new quotient q′ and a reminder r′. Next we divide r by r′, which gives
a quotient q′′ and another remainder r′′. We continue dividing each
reminder by the next one until obtaining a zero reminder, and which
point we stop. The last non-zero reminder is the gcd.

Example: Assume that we wish to compute gcd(500, 222). Then we
arrange the computations in the following way:

500 = 2 · 222 + 56 → r = 56
222 = 3 · 56 + 54 → r′ = 54
56 = 1 · 54 + 2 → r′′ = 2
54 = 27 · 2 + 0 → r′′′ = 0

The last nonzero remainder is r′′ = 2, hence gcd(500, 222) = 2. Fur-
thermore, if we want to express 2 as a linear combination of 500 and
222, we can do it by working backward:

2 = 56− 1 · 54 = 56− 1 · (222− 3 · 56) = 4 · 56− 1 · 222

= 4 · (500− 2 · 222)− 1 · 222 = 4 · 500− 9 · 222 .

The algorithm to compute the gcd can be written as follows:

1: procedure gcd(a,b)

2: if a<b then // make a the largest

3: swap(a,b)

4: while b 6= 0 do
5: begin
6: r := a mod b

7: a := b

8: b := r

9: end
10: return(a)
11: end gcd

3.2. THE EUCLIDEAN ALGORITHM 56

The next one is a recursive version of the Euclidean algorithm:

1: procedure gcd recurs(a,b)

2: if b=0 then
3: return(a)
4: else
5: return(gcd recurs(b,a mod b))

6: end gcd recurs

3.3. MODULAR ARITHMETIC, RSA ALGORITHM 57

3.3. Modular Arithmetic, RSA Algorithm

3.3.1. Congruences Modulo m. Given an integer m ≥ 2, we
say that a is congruent to b modulo m, written a ≡ b (mod m), if
m|(a− b). Note that the following conditions are equivalent

1. a ≡ b (mod m).
2. a = b + km for some integer k.
3. a and b have the same remainder when divided by m.

The relation of congruence modulo m is an equivalence relation. It
partitions Z into m equivalence classes of the form

[x] = [x]m = {x + km | k ∈ Z} .

For instance, for m = 5, each one of the following rows is an equivalence
class:

. . . −10 −5 0 5 10 15 20 . . .

. . . −9 −4 1 6 11 16 21 . . .

. . . −8 −3 2 7 12 17 22 . . .

. . . −7 −2 3 8 13 18 23 . . .

. . . −6 −1 4 9 14 19 24 . . .

Each equivalence class has exactly a representative r such that 0 ≤ r <
m, namely the common remainder of all elements in that class when di-
vided by m. Hence an equivalence class may be denoted [r] or x+m Z,
where 0 ≤ r < m. Often we will omit the brackets, so that the equiva-
lence class [r] will be represented just r. The set of equivalence classes
(i.e., the quotient set of Z by the relation of congruence modulo m) is
denoted Zm = {0, 1, 2, . . . ,m− 1}. For instance, Z5 = {0, 1, 2, 3, 4}.

Remark : When writing “r” as a notation for the class of r we may
stress the fact that r represents the class of r rather than the integer r
by including “ (mod p)” at some point. For instance 8 = 3 (mod p).
Note that in “a ≡ b (mod m)”, a and b represent integers, while in
“a = b (mod m)” they represent elements of Zm.

Reduction Modulo m: Once a set of representatives has been chosen
for the elements of Zm, we will call “r reduced modulo m”, written
“r mod m”, the chosen representative for the class of r. For instance,
if we choose the representatives for the elements of Z5 in the interval
from 0 to 4 (Z5 = {0, 1, 2, 3, 4}), then 9 mod 5 = 4. Another possibility
is to choose the representatives in the interval from −2 to 2 (Z5 =
{−2,−1, 0, 1, 2}), so that 9 mod 5 = −1

3.3. MODULAR ARITHMETIC, RSA ALGORITHM 58

In Zm it is possible to define an addition and a multiplication in
the following way:

[x] + [y] = [x + y] ; [x] · [y] = [x · y] .

As an example, tables 3.3.1 and 3.3.2 show the addition and multi-
plication tables for Z5 and Z6 respectively.

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Table 3.3.1. Operational tables for Z5

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Table 3.3.2. Operational tables for Z6

A difference between this two tables is that in Z5 every non-zero
element has a multiplicative inverse, i.e., for every x ∈ Z5 such that
x 6= 0 there is an x−1 such that x · x−1 = x−1 · x = 1; e.g. 2−1 = 4
(mod 5). However in Z6 that is not true, some non-zero elements like
2 have no multiplicative inverse. Furthermore the elements without
multiplicative inverse verify that they can be multiply by some other
non-zero element giving a product equal zero, e.g. 2 · 3 = 0 (mod 6).
These elements are called divisors of zero. Of course with this definition
zero itself is a divisor of zero. Divisors of zero different from zero are
called proper divisors of zero. For instance in Z6 2 is a proper divisor
of zero. In Z5 there are no proper divisors of zero.

In general:

1. The elements of Zm can be classified into two classes:

3.3. MODULAR ARITHMETIC, RSA ALGORITHM 59

(a) Units : elements with multiplicative inverse.
(b) Divisors of zero: elements that multiplied by some other

non-zero element give product zero.
2. An element [a] ∈ Zm is a unit (has a multiplicative inverse) if

and only if gcd(a,m) = 1.
3. All non-zero elements of Zm are units if and only if m is a prime

number.

The set of units in Zm is denoted Z∗m. For instance:

Z∗2 = {1}
Z∗3 = {1, 2}
Z∗4 = {1, 3}
Z∗5 = {1, 2, 3, 4}
Z∗6 = {1, 5}
Z∗7 = {1, 2, 3, 4, 5, 6}
Z∗

8 = {1, 3, 5, 7}
Z∗

9 = {1, 2, 4, 5, 7, 8}

Given an element [a] in Z∗m, its inverse can be computed by using
the Euclidean algorithm to find gcd(a,m), since that algorithm also
provides a solution to the equation ax + my = gcd(a,m) = 1, which is
equivalent to ax ≡ 1 (mod m).

Example: Find the multiplicative inverse of 17 in Z∗64. Answer : We
use the Euclidean algorithm:

64 = 3 · 17 + 13 → r = 13
17 = 1 · 13 + 4 → r = 4
13 = 3 · 4 + 1 → r = 1
4 = 4 · 1 + 0 → r = 0

Now we compute backward:

1 = 13− 3 · 4 = 13− 3 · (17− 1 · 13) = 4 · 13− 3 · 17

= 4 · (64− 3 · 17)− 3 · 17 = 4 · 64− 15 · 17 .

Hence (−15) · 17 ≡ 1 (mod 64), but −15 ≡ 49 (mod 64), so the in-
verse of 17 in (Z∗64, ·) is 49. We will denote this by writing 17−1 = 49
(mod 64), or 17−1 mod 64 = 49.

3.3. MODULAR ARITHMETIC, RSA ALGORITHM 60

3.3.2. Euler’s Phi Function. The number of units in Zm is equal
to the number of positive integers not greater than and relatively
prime to m, i.e., the number of integers a such that 1 ≤ a ≤ m and
gcd(a,m) = 1. That number is given by the so called Euler’s phi
function:

φ(m) = number of positive integers not greater than m

and relatively prime to m .

For instance, the positive integers not greater than and relatively prime
to 15 are: 1, 2, 4, 7, 8, 11, 13, 14, hence φ(15) = 8.

We have the following results:

1. If p is a prime number and s ≥ 1, then φ(ps) = ps − ps−1 =
ps(1− 1/p). In particular φ(p) = p− 1.

2. If m1, m2 are two relatively prime positive integers, then φ(m1m2) =
φ(m1) φ(m2).

1

3. If m = ps1
1 ps2

2 . . . psk
k , where the pk are prime and the sk are

positive, then

φ(m) = m (1− 1/p1) (1− 1/p2) . . . (1− 1/pk) .

For instance

φ(15) = φ(3 · 5) = φ(3) · φ(5) = (3− 1) · (5− 1) = 2 · 4 = 8 .

3.3.3. Euler’s Theorem. If a and m are two relatively prime
positive integers, m ≥ 2, then

aφ(m) ≡ 1 (mod m) .

The particular case in which m is a prime number p, Euler’s theorem
is called Fermat’s Little Theorem:

ap−1 ≡ 1 (mod p) .

For instance, if a = 2 and p = 7, then we have, in fact, 27−1 = 26 =
64 = 1 + 9 · 7 ≡ 1 (mod 7).

A consequence of Euler’s Theorem is the following. If gcd(a,m) = 1
then

x ≡ y (mod φ(m)) ⇒ ax ≡ ay (mod m) .

1A function f(x) of positive integers such that gcd(a, b) = 1 ⇒ f(ab) =
f(a)f(b) is called multiplicative.

3.3. MODULAR ARITHMETIC, RSA ALGORITHM 61

Consequently, the following function is well defined:

Z∗m × Zφ(m) → Z∗m
([a]m, [x]φ(m)) 7→ [ax]m

Hence, we can compute powers modulo m in the following way:

an = an mod φ(m) (mod m) ,

if gcd(a,m) = 1. For instance:

39734888 mod 100 = 39734888 mod φ(100) mod 100

= 39734888 mod 40 mod 100 = 38 mod 100 = 6561 mod 100 = 61 .

An even more efficient way to compute powers modulo m is given
in Appendix A, paragraph A.1.

3.3.4. Application to Cryptography: RSA Algorithm. The
RSA algorithm is an encryption scheme designed in 1977 by Ronald
Rivest, Adi Shamir and Leonard Adleman. It allows encrypting a mes-
sage with a key (the encryption key) and decrypting it with a different
key (the decryption key). The encryption key is public and can be
given to everybody. The decryption key is private and is known only
by the recipient of the encrypted message.

The RSA algorithm is based on the following facts. Given two
prime numbers p and q, and a positive number m relatively prime to p
and q, Euler’s theorem tells us that:

mφ(pq) = m(p−1)(q−1) = 1 (mod pq) .

Assume now that we have two integers e and d such that e · d = 1
(mod φ(pq)). Then we have that

(me)d = me·d = m (mod pq) .

So, given me we can recover m modulo pq by raising to the dth power.

The RSA algorithm consists of the following:

1. Generate two large primes p and q. Find their product n = pq.

2. Find two numbers e and d (in the range from 2 to φ(n)) such
that e · d = 1 (mod φ(n)). This requires some trial and error.
First e is chosen at random, and the Euclidean algorithm is
used to find gcd(e,m), solving at the same time the equation
ex + my = gcd(e,m). If gcd(e,m) = 1 then the value obtained

3.3. MODULAR ARITHMETIC, RSA ALGORITHM 62

for x is d. Otherwise, e is no relatively prime to φ(n) and we
must try a different value for e.

3. The public encryption key will be the pair (n, e). The private
decryption key will be the pair (n, d). The encryption key is
given to everybody, while the decryption key is kept secret by
the future recipient of the message.

4. The message to be encrypted is divided into small pieces, and
each piece is encoded numerically as a positive integer m smaller
than n.

5. The number me is reduced modulo n; m′ = me mod n.

6. The recipient computes m′′ = m′d mod n, with 0 ≤ m′′ < n.

It remains to prove that m′′ = m. If m is relatively prime to p and
q, then from Euler’s theorem we get that m′′ = m (mod n), and since
both are in the range from 0 to n− 1 they must be equal. The case in
which p or q divides m is left as an exercise.

CHAPTER 4

Counting

4.1. Basic Principles

4.1.1. The Rule of Sum. If a task can be performed in m ways,
while another task can be performed in n ways, and the two tasks
cannot be performed simultaneously, then performing either task can
be accomplished in m + n ways.

Set theoretical version of the rule of sum: If A and B are disjoint
sets (A ∩B = ∅) then

|A ∪B| = |A|+ |B| .
More generally, if the sets A1, A2, . . . , An are pairwise disjoint, then:

|A1 ∪ A2 ∪ · · · ∪ An| = |A1|+ |A2|+ · · ·+ |An| .

For instance, if a class has 30 male students and 25 female students,
then the class has 30 + 25 = 45 students.

4.1.2. The Rule of Product. If a task can be performed in m
ways and another independent task can be performed in n ways, then
the combination of both tasks can be performed in mn ways.

Set theoretical version of the rule of product: Let A × B be the
Cartesian product of sets A and B. Then:

|A×B| = |A| · |B| .
More generally:

|A1 × A2 × · · · × An| = |A1| · |A2| · · · |An| .

For instance, assume that a license plate contains two letters fol-
lowed by three digits. How many different license plates can be printed?
Answer : each letter can be printed in 26 ways, and each digit can be
printed in 10 ways, so 26 · 26 · 10 · 10 · 10 = 676000 different plates can
be printed.

63

4.1. BASIC PRINCIPLES 64

Exercise: Given a set A with m elements and a set B with n ele-
ments, find the number of functions from A to B.

4.1.3. The Inclusion-Exclusion Principle. The inclusion-exclusion
principle generalizes the rule of sum to non-disjoint sets.

In general, for arbitrary (but finite) sets A, B:

|A ∪B| = |A|+ |B| − |A ∩B| .

Example: Assume that in a university with 1000 students, 200 stu-
dents are taking a course in mathematics, 300 are taking a course in
physics, and 50 students are taking both. How many students are
taking at least one of those courses?

Answer : If U = total set of students in the university, M = set
of students taking Mathematics, P = set of students taking Physics,
then:

|M ∪ P | = |M |+ |P | − |M ∩ P | = 300 + 200− 50 = 450

students are taking Mathematics or Physics.

For three sets the following formula applies:

|A ∪B ∪ C| =
|A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C| ,

and for an arbitrary union of sets:

|A1 ∪ A2 ∪ · · · ∪ An| = s1 − s2 + s3 − s4 + · · · ± sn ,

where sk = sum of the cardinalities of all possible k-fold intersections
of the given sets.

4.2. COMBINATORICS 65

4.2. Combinatorics

4.2.1. Permutations. Assume that we have n objects. Any ar-
rangement of any k of these objects in a given order is called a per-
mutation of size k. If k = n then we call it just a permutation of the
n objects. For instance, the permutations of the letters a, b, c are the
following: abc, acb, bac, bca, cab, cba. The permutations of size 2 of
the letters a, b, c, d are: ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc.

Note that the order is important. Given two permutations, they
are considered equal if they have the same elements arranged in the
same order.

We find the number P (n, k) of permutations of size k of n given
objects in the following way: The first object in an arrangement can
be chosen in n ways, the second one in n − 1 ways, the third one in
n− 2 ways, and so on, hence:

P (n, k) = n× (n− 1)× (k factors)· · · × (n− k + 1) =
n!

(n− k)!
,

where n! = 1× 2× 3× (n factors)· · · × n is called “n factorial”.

The number P (n, k) of permutations of n objects is

P (n, n) = n! .

By convention 0! = 1.

For instance, there are 3! = 6 permutations of the 3 letters a, b, c.
The number of permutations of size 2 of the 4 letters a, b, c, d is P (4, 2) =
4× 3 = 12.

Exercise: Given a set A with m elements and a set B with n ele-
ments, find the number of one-to-one functions from A to B.

4.2.2. Combinations. Assume that we have a set A with n ob-
jects. Any subset of A of size r is called a combination of n ele-
ments taken r at a time. For instance, the combinations of the letters
a, b, c, d, e taken 3 at a time are: abc, abd, abe, acd, ace, ade, bcd, bce,
bde, cde, where two combinations are considered identical if they have
the same elements regardless of their order.

4.2. COMBINATORICS 66

The number of subsets of size r in a set A with n elements is:

C(n, r) =
n!

r! (n− r)!
.

The symbol
(

n
r

)
(read “n choose r”) is often used instead of C(n, r).

One way to derive the formula for C(n, r) is the following. Let A
be a set with n objects. In order to generate all possible permutations
of size r of the elements of A we 1) take all possible subsets of size
r in the set A, and 2) permute the k elements in each subset in all
possible ways. Task 1) can be performed in C(n, r) ways, and task
2) can be performed in P (r, r) ways. By the product rule we have
P (n, r) = C(n, r)× P (r, r), hence

C(n, r) =
P (n, r)

P (r, r)
=

n!

r! (n− r)!
.

4.3. GENERALIZED PERMUTATIONS AND COMBINATIONS 67

4.3. Generalized Permutations and Combinations

4.3.1. Permutations with Repeated Elements. Assume that
we have an alphabet with k letters and we want to write all possible
words containing n1 times the first letter of the alphabet, n2 times the
second letter,. . . , nk times the kth letter. How many words can we
write? We call this number P (n; n1, n2, . . . , nk), where n = n1 + n2 +
· · ·+ nk.

Example: With 3 a’s and 2 b’s we can write the following 5-letter
words: aaabb, aabab, abaab, baaab, aabba, ababa, baaba, abbaa, babaa,
bbaaa.

We may solve this problem in the following way, as illustrated with
the example above. Let us distinguish the different copies of a letter
with subscripts: a1a2a3b1b2. Next, generate each permutation of this
five elements by choosing 1) the position of each kind of letter, then 2)
the subscripts to place on the 3 a’s, then 3) these subscripts to place on
the 2 b’s. Task 1) can be performed in P (5; 3, 2) ways, task 2) can be
performed in 3! ways, task 3) can be performed in 2!. By the product
rule we have 5! = P (5; 3, 2)× 3!× 2!, hence P (5; 3, 2) = 5!/3! 2!.

In general the formula is:

P (n; n1, n2, . . . , nk) =
n!

n1! n2! . . . nk!
.

4.3.2. Combinations with Repetition. Assume that we have a
set A with n elements. Any selection of r objects from A, where each
object can be selected more than once, is called a combination of n
objects taken r at a time with repetition. For instance, the combinations
of the letters a, b, c, d taken 3 at a time with repetition are: aaa, aab,
aac, aad, abb, abc, abd, acc, acd, add, bbb, bbc, bbd, bcc, bcd, bdd, ccc, ccd,
cdd, ddd. Two combinations with repetition are considered identical
if they have the same elements repeated the same number of times,
regardless of their order.

Note that the following are equivalent:

1. The number of combinations of n objects taken r at a time with
repetition.

4.3. GENERALIZED PERMUTATIONS AND COMBINATIONS 68

2. The number of ways r identical objects can be distributed among
n distinct containers.

3. The number of nonnegative integer solutions of the equation:

x1 + x2 + · · ·+ xn = r .

Example: Assume that we have 3 different (empty) milk containers
and 7 quarts of milk that we can measure with a one quart measuring
cup. In how many ways can we distribute the milk among the three
containers? We solve the problem in the following way. Let x1, x2, x3 be
the quarts of milk to put in containers number 1, 2 and 3 respectively.
The number of possible distributions of milk equals the number of non
negative integer solutions for the equation x1 + x2 + x3 = 7. Instead
of using numbers for writing the solutions, we will use strokes, so for
instance we represent the solution x1 = 2, x2 = 1, x3 = 4, or 2 + 1 + 4,
like this: ||+ |+ ||||. Now, each possible solution is an arrangement of 7
strokes and 2 plus signs, so the number of arrangements is P (9; 7, 2) =
9!/7! 2! =

(
9
7

)
.

The general solution is:

P (n + r − 1; r, n− 1) =
(n + r − 1)!

r! (n− 1)!
=

(
n + r − 1

r

)
.

4.4. BINOMIAL COEFFICIENTS 69

4.4. Binomial Coefficients

4.4.1. Binomial Theorem. The following identities can be easily
checked:

(x + y)0 = 1

(x + y)1 = x + y

(x + y)2 = x2 + 2 xy + y2

(x + y)3 = x3 + 3 x2y + 3 xy2 + y3

They can be generalized by the following formula, called the Binomial
Theorem:

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk

=

(
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·

+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn .

We can find this formula by writing

(x + y)n = (x + y)× (x + y)× (n factors)· · · × (x + y) ,

expanding, and grouping terms of the form xayb. Since there are n
factors of the form (x + y), we have a + b = n, hence the terms must
be of the form xn−kyk. The coefficient of xn−kyk will be equal to the
number of ways in which we can select the y from any k of the factors
(and the x from the remaining n− k factors), which is C(n, k) =

(
n
k

)
.

The expression
(

n
k

)
is often called binomial coefficient.

Exercise: Prove
n∑

k=0

(
n

k

)
= 2n and

n∑
k=0

(−1)k

(
n

k

)
= 0 .

Hint: Apply the binomial theorem to (1 + 1)2 and (1− 1)2.

4.4.2. Properties of Binomial Coefficients. The binomial co-
efficients have the following properties:

1.

(
n

k

)
=

(
n

n− k

)

4.4. BINOMIAL COEFFICIENTS 70

2.

(
n + 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)

The first property follows easily from

(
n

k

)
=

n!

k!(n− k)!
.

The second property can be proved by choosing a distinguished
element a in a set A of n + 1 elements. The set A has

(
n+1
k+1

)
subsets

of size k + 1. Those subsets can be partitioned into two classes: that
of the subsets containing a, and that of the subsets not containing a.
The number of subsets containing a equals the number of subsets of
A− {a} of size k, i.e.,

(
n
k

)
. The number of subsets not containing a is

the number of subsets of A − {a} of size k + 1, i.e.,
(

n
k+1

)
. Using the

sum principle we find that in fact
(

n+1
k+1

)
=

(
n
k

)
+

(
n

k+1

)
.

4.4.3. Pascal’s Triangle. The properties shown in the previous
section allow us to compute binomial coefficients in a simple way. Look
at the following triangular arrangement of binomial coefficients:(

0
0

)(
1
0

) (
1
1

)(
2
0

) (
2
1

) (
2
2

)(
3
0

) (
3
1

) (
3
2

) (
3
3

)(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
We notice that each binomial coefficient on this arrangement must

be the sum of the two closest binomial coefficients on the line above it.
This together with

(
n
0

)
=

(
n
n

)
= 1, allows us to compute very quickly

the values of the binomial coefficients on the arrangement:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

This arrangement of binomial coefficients is called Pascal’s Trian-
gle.1

1Although it was already known by the Chinese in the XIV century.

4.5. THE PIGEONHOLE PRINCIPLE 71

4.5. The Pigeonhole Principle

4.5.1. The Pigeonhole Principle. The pigeonhole principle is
used for proving that a certain situation must actually occur. It says
the following: If n pigeonholes are occupied by m pigeons and m > n,
then at least one pigeonhole is occupied by more than one pigeon.1

Example: In any given set of 13 people at least two of them have
their birthday during the same month.

Example: Let S be a set of eleven 2-digit numbers. Prove that
S must have two elements whose digits have the same difference (for
instance in S = {10, 14, 19, 22, 26, 28, 49, 53, 70, 90, 93}, the digits of
the numbers 28 and 93 have the same difference: 8 − 2 = 6, 9 − 3 =
6.) Answer : The digits of a two-digit number can have 10 possible
differences (from 0 to 9). So, in a list of 11 numbers there must be two
with the same difference.

Example: Assume that we choose three different digits from 1 to
9 and write all permutations of those digits. Prove that among the
3-digit numbers written that way there are two whose difference is a
multiple of 500. Answer : There are 9 · 8 · 7 = 504 permutations of
three digits. On the other hand if we divide the 504 numbers by 500
we can get only 500 possible remainders, so at least two numbers give
the same remainder, and their difference must be a multiple of 500.

Exercise: Prove that if we select n + 1 numbers from the set S =
{1, 2, 3, . . . , 2n}, among the numbers selected there are two such that
one is a multiple of the other one.

1The Pigeonhole Principle (Schubfachprinzip) was first used by Dirichlet in
Number Theory. The term pigeonhole actually refers to one of those old-fashioned
writing desks with thin vertical wooden partitions in which to file letters.

4.6. PROBABILITY 72

4.6. Probability

4.6.1. Introduction. Assume that we perform an experiment such
as tossing a coin or rolling a die. The set of possible outcomes is called
the sample space of the experiment. An event is a subset of the sample
space. For instance, if we toss a coin three times, the sample space is

S = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT} .

The event “at least two heads in a row” would be the subset

E = {HHH,HHT, THH} .

If all possible outcomes of an experiment have the same likelihood of
occurrence, then the probability of an event A ⊂ S is given by Laplace’s
rule:

P (E) =
|E|
|S| .

For instance, the probability of getting at least two heads in a row in
the above experiment is 3/8.

4.6.2. Probability Function. In general the likelihood of differ-
ent outcomes of an experiment may not be the same. In that case
the probability of each possible outcome x is a function P (x). This
function verifies:

0 ≤ P (x) ≤ 1 for all x ∈ S

and ∑
x∈S

P (x) = 1 .

The probability of an event E ⊆ S will be

P (E) =
∑
x∈E

P (x)

Example: Assume that a die is loaded so that the probability of
obtaining n point is proportional to n. Find the probability of getting
an odd number when rolling that die.

Answer : First we must find the probability function P (n) (n =
1, 2, . . . , 6). We are told that P (n) is proportional to n, hence P (n) =
kn. Since P (S) = 1 we have P (1)+P (2)+· · ·P (6) = 1, i.e., k ·1+k ·2+
· · ·+ k · 6 = 21k = 1, so k = 1/21 and P (n) = n/21. Next we want to

4.6. PROBABILITY 73

find the probability of E = {2, 4, 6}, i.e. P (E) = P (2)+P (4)+P (6) =

2

21
+

4

21
+

6

21
=

12

21
.

4.6.3. Properties of probability. Let P be a probability func-
tion on a sample space S. Then:

1. For every event E ⊆ S,

0 ≤ P (E) ≤ 1 .

2. P (∅) = 0, P (S) = 1.
3. For every event E ⊆ S, if E = is the complement of E (“not

E”) then
P (E) = 1− P (E) .

4. If E1, E2 ⊆ S are two events, then

P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2) .

In particular, if E1∩E2 = ∅ (E1 and E2 are mutually exclusive,
i.e., they cannot happen at the same time) then

P (E1 ∪ E2) = P (E1) + P (E2) .

Example: Find the probability of getting a sum different from 10 or
12 after rolling two dice. Answer : We can get 10 in 3 different ways:
4+6, 5+5, 6+4, so P (10) = 3/36. Similarly we get that P (12) = 1/36.
Since they are mutually exclusive events, the probability of getting 10
or 12 is P (10)+P (12) = 3/36+1/36 = 4/36 = 1/9. So the probability
of not getting 10 or 12 is 1− 1/9 = 8/9.

4.6.4. Conditional Probability. The conditional probability of
an event E given F , represented P (E | F), is the probability of E
assuming that F has occurred. It is like restricting the sample space
to F . Its value is

P (E | F) =
P (E ∩ F)

P (F)
.

Example: Find the probability of obtaining a sum of 11 after rolling
two fair dice. Find the probability of that event if we know that at least
one of the dice shows 5 points.

Answer : We call E = “obtaining sum 10” and F = “at least one of
the dice shows 5 points”. The number of possible outcomes is 6× 6 =
36. The event “obtaining a sum 10” is E = {(4, 6), (5, 5), (6, 4)}, so

4.6. PROBABILITY 74

|E| = 3. Hence the probability is P (E) = |E|/|S| = 3/36 = 1/12.
Now, if we know that at least one of the dice shows 5 points then the
sample space shrinks to

F = {(1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5), (5, 1), (5, 2), (5, 3), (5, 4), (5, 6)} ,

so |F | = 11, and the ways to obtain a sum 10 are E ∩ F = {(5, 5)},
|E ∩F | = 1, so the probability is P (E | F) = P (E ∩F)/P (F) = 1/11.

4.6.5. Independent Events. Two events E and F are said to be
independent if the probability of one of them does not depend on the
other, e.g.:

P (E | F) = P (E) .

In this circumstances:

P (E ∩ F) = P (E) · P (F) .

Note that if E is independent of F then also F is independent of E,
e.g., P (F | E) = P (F).

Example: Assume that the probability that a shooter hits a target
is p = 0.7, and that hitting the target in different shots are independent
events. Find:

1. The probability that the shooter does not hit the target in one
shot.

2. The probability that the shooter does not hit the target three
times in a row.

3. The probability that the shooter hits the target at least once
after shooting three times.

Answer :

1. P (not hitting the target in one shot) = 1− 0.7 = 0.3.
2. P (not hitting the target three times in a row) = 0.33 = 0.027.
3. P (hitting the target at least once in three shots) = 1−0.027 =

0.973.

4.6.6. Bayes’ Theorem. Suppose that a sample space S is parti-
tioned into n classes C1, C2, . . . , Cn which are pairwise mutually exclu-
sive and whose union fills the whole sample space. Then for any event
F we have

P (F) =
n∑

i=1

P (F | Ci) P (Ci)

4.6. PROBABILITY 75

and

P (Cj | F) =
P (F | Cj) P (Cj)

P (F)
.

Example: In a country with 100 million people 100 thousand of
them have disease X. A test designed to detect the disease has a 99%
probability of detecting it when administered to a person who has it,
but it also has a 5% probability of giving a false positive when given to
a person who does not have it. A person is given the test and it comes
out positive. What is the probability that that person has the disease?

Answer : The classes are C1 = “has the disease” and C2 = “does
not have the disease”, and the event is F = “the test gives a positive”.
We have: |S| = 100, 000, 000, |C1| = 100, 000, |C2| = 99, 900, 000,
hence P (C1) = |C1|/|S| = 0.001, P (C2) = |C2|/|S| = 0.999. Also
P (F | C1) = 0.99, P (F | C2) = 0.05. Hence:

P (F) = P (F | C1) · P (C1) + P (F | C2) · P (C2)

= 0.99 · 0.001 + 0.05 · 0.999 = 0.05094 ,

and by Bayes’ theorem:

P (C1 | F) =
P (F | C1) · P (C1)

P (F)
=

0.99 · 0.001

0.05094

= 0.019434628 · · · ≈ 2% .

(So the test is really of little use when given to a random person—
however it might be useful in combination with other tests or other
evidence that the person might have the disease.)

CHAPTER 5

Recurrence Relations

5.1. Recurrence Relations

Here we look at recursive definitions under a different point of view.
Rather than definitions they will be considered as equations that we
must solve. The point is that a recursive definition is actually a def-
inition when there is one and only one object satisfying it, i.e., when
the equations involved in that definition have a unique solution. Also,
the solution to those equations may provide a closed-form (explicit)
formula for the object defined.

The recursive step in a recursive definition is also called a recurrence
relation. We will focus on kth-order linear recurrence relations, which
are of the form

C0 xn + C1 xn−1 + C2 xn−2 + · · ·+ Ck xn−k = bn ,

where C0 6= 0. If bn = 0 the recurrence relation is called homogeneous.
Otherwise it is called non-homogeneous.

The basis of the recursive definition is also called initial conditions
of the recurrence. So, for instance, in the recursive definition of the
Fibonacci sequence, the recurrence is

Fn = Fn−1 + Fn−2

or

Fn − Fn−1 − Fn−2 = 0 ,

and the initial conditions are

F0 = 0, F1 = 1 .

One way to solve some recurrence relations is by iteration, i.e., by
using the recurrence repeatedly until obtaining a explicit close-form
formula. For instance consider the following recurrence relation:

xn = r xn−1 (n > 0) ; x0 = A .

76

5.1. RECURRENCE RELATIONS 77

By using the recurrence repeatedly we get:

xn = r xn−1 = r2 xn−2 = r3 xn−3 = · · · = rn x0 = Arn ,

hence the solution is xn = Arn.

In the following we assume that the coefficients C0, C1, . . . , Ck are
constant.

5.1.1. First Order Recurrence Relations. The homogeneous
case can be written in the following way:

xn = r xn−1 (n > 0) ; x0 = A .

Its general solution is

xn = Arn ,

which is a geometric sequence with ratio r.

The non-homogeneous case can be written in the following way:

xn = r xn−1 + cn (n > 0) ; x0 = A .

Using the summation notation, its solution can be expressed like this:

xn = Arn +
n∑

k=1

ck rn−k .

We examine two particular cases. The first one is

xn = r xn−1 + c (n > 0); x0 = A .

where c is a constant. The solution is

xn = Arn + c
n∑

k=1

rn−k = Arn + c
rn − 1

r − 1
if r 6= 1 ,

and

xn = A + c n if r = 1 .

Example: Assume that a country with currently 100 million people
has a population growth rate (birth rate minus death rate) of 1% per
year, and it also receives 100 thousand immigrants per year (which
are quickly assimilated and reproduce at the same rate as the native
population). Find its population in 10 years from now. (Assume that
all the immigrants arrive in a single batch at the end of the year.)

5.1. RECURRENCE RELATIONS 78

Answer : If we call xn = population in year n from now, we have:

xn = 1.01 xn−1 + 100, 000 (n > 0); x0 = 100, 000, 000 .

This is the equation above with r = 1.01, c = 100, 000 and A =
100, 000, 00, hence:

xn = 100, 000, 000 · 1.01n + 100, 000
1.01n − 1

1.01− 1
= 100, 000, 000 · 1.01n + 1000 (1.01n − 1) .

So:

x10 = 110, 462, 317 .

The second particular case is for r = 1 and cn = c + d n, where c
and d are constant (so cn is an arithmetic sequence):

xn = xn−1 + c + d n (n > 0) ; x0 = A .

The solution is now

xn = A +
n∑

k=1

(c + d k) = A + c n +
d n (n + 1)

2
.

5.1.2. Second Order Recurrence Relations. Now we look at
the recurrence relation

C0 xn + C1 xn−1 + C2 xn−2 = 0 .

First we will look for solutions of the form xn = c rn. By plugging in
the equation we get:

C0 c rn + C1 c rn−1 + C2 c rn−2 = 0 ,

hence r must be a solution of the following equation, called the char-
acteristic equation of the recurrence:

C0 r2 + C1 r + C2 = 0 .

Let r1, r2 be the two (in general complex) roots of the above equation.
They are called characteristic roots. We distinguish three cases:

1. Distinct Real Roots. In this case the general solution of the
recurrence relation is

xn = c1 rn
1 + c2 rn

2 ,

where c1, c2 are arbitrary constants.

5.1. RECURRENCE RELATIONS 79

2. Double Real Root. If r1 = r2 = r, the general solution of the
recurrence relation is

xn = c1 rn + c2 n rn ,

where c1, c2 are arbitrary constants.

3. Complex Roots. In this case the solution could be expressed
in the same way as in the case of distinct real roots, but in
order to avoid the use of complex numbers we write r1 = r eαi,
r2 = r e−αi, k1 = c1 + c2, k2 = (c1 − c2) i, which yields:1

xn = k1 rn cos nα + k2 rn sin nα .

Example: Find a closed-form formula for the Fibonacci sequence
defined by:

Fn+1 = Fn + Fn−1 (n > 0) ; F0 = 0, F1 = 1 .

Answer : The recurrence relation can be written

Fn − Fn−1 − Fn−2 = 0 .

The characteristic equation is

r2 − r − 1 = 0 .

Its roots are:2

r1 = φ =
1 +

√
5

2
; r2 = −φ−1 =

1−√5

2
.

They are distinct real roots, so the general solution for the recurrence
is:

Fn = c1 φn + c2 (−φ−1)n .

Using the initial conditions we get the value of the constants:{
(n = 0) c1 + c2 = 0

(n = 1) c1 φ + c2 (−φ−1) = 1
⇒

{
c1 = 1/

√
5

c2 = −1/
√

5

Hence:

Fn =
1√
5

{
φn − (−φ)−n

}
.

1Reminder: eαi = cos α + i sin α.
2φ = 1+

√
5

2 is the Golden Ratio.

CHAPTER 6

Graph Theory

6.1. Graphs

6.1.1. Graphs. Consider the following examples:

1. A road map, consisting of a number of towns connected with
roads.

2. The representation of a binary relation defined on a given set.
The relation of a given element x to another element y is rep-
resented with an arrow connecting x to y.

The former is an example of (undirected) graph. The latter is an
example of a directed graph or digraph.

a b

cd

Figure 6.1. Undirected Graph.

In general a graph G consists of two things:

1. The vertex set V , whose elements are called vertices, nodes or
points.

2. The edge set E or set of edges connecting pairs of vertices. If
the edges are directed then they are also called directed edges
or arcs. Each edge e ∈ E is associated with a pair of vertices.

80

6.1. GRAPHS 81

a b

cd

Figure 6.2. Directed Graph.

A graph is sometimes represented by the pair (V,E) (we assume V
and E finite).

If the graph is undirected and there is a unique edge e connecting x
and y we may write e = {x, y}, so E can be regarded as set of unordered
pairs. In this context we may also write e = (x, y), understanding that
here (x, y) is not an ordered pair, but the name of an edge.

If the graph is directed and there is a unique edge e pointing from
x to y, then we may write e = (x, y), so E may be regarded as a set
of ordered pairs. If e = (x, y), the vertex x is called origin, source or
initial point of the edge e, and y is called the terminus, terminating
vertex or terminal point.

b

cd

a

Figure 6.3. Graph with parallel edges.

Two vertices connected by an edge are called adjacent. They are
also the endpoints of the edge, and the edge is said to be incident to
each of its endpoints. If the graph is directed, an edge pointing from
vertex x to vertex y is said to be incident from x and incident to y. An
edge connecting a vertex to itself is called a loop. Two edges connecting
the same pair of points are called parallel. A graph with neither loops
nor parallel edges is called a simple graph.

6.1. GRAPHS 82

The degree of a vertex v, represented δ(v), is the number of edges
that contain it (loops are counted twice). A vertex of degree zero (not
connected to any other vertex) is called isolated. A vertex of degree 1
is called pendant.

A path is a sequence of vertices (vk) and edges (ek) of the form
v0, e1, v1, e2, v2, . . . , en, vn, where each edge ek connects vk−1 with vk

(and points from vk−1 to vk if the graph is directed).

A weighted graph is a graph whose edges have been labeled with
numbers. The length of a path in a weighted graph is the sum of the
weights of the edges in the path.

a b

d c

6 3

4

6

7

Figure 6.4. Weighted Graph.

6.1.2. Special Graphs. Here we examine a few special graphs.

The n-cube: A graph with with 2n vertices labeled 0, 1, . . . , 2n − 1
so that two of them are connected with an edge if their binary repre-
sentation differs in exactly one bit.

000 001

010 011

100 101

110 111

Figure 6.5. 3-cube.

Complete Graph: a simple undirected graph G such that every pair
of distinct vertices in G are connected by an edge. The complete graph

6.1. GRAPHS 83

of n vertices is represented Kn (fig. 6.6). A complete directed graph is
a simple directed graph G = (V,E) such that every pair of distinct
vertices in G are connected by exactly one edge—so, for each pair of
distinct vertices, either (x, y) or (y, x) (but not both) is in E.

a

b

cd

e

Figure 6.6. Complete graph K5.

Bipartite Graph: a graph G = (V,E) in which V can be partitioned
into two subsets V1 and V2 so that each edge in G connects some vertex
in V1 to some vertex in V2. A bipartite simple graph is called complete
if each vertex in V1 is connected to each vertex in V2. If |V1| = m and
|V2| = n, the corresponding complete bipartite graph is represented
Km,n (fig. 6.7).

A graph is bipartite iff its vertices can be colored with two colors
so that every edge connects vertices of different color.

Question: Is the n-cube bipartite. Hint: color in red all vertices
whose binary representation has an even number of 1’s, color in blue
the ones with an odd number of 1’s.

b

p

q

r

s

a

c

Figure 6.7. Complete bipartite graph K3,4.

Regular Graph: a simple graph whose vertices have all the same
degree. For instance, the n-cube is regular.

6.1. GRAPHS 84

6.1.3. Subgraph. Given a graph G = (V,E), a subgraph G′ =
(V ′, E ′) of G is another graph such that V ′ ⊆ V and E ′ ⊆ E. If
V ′ = V then G′ is called a spanning subgraph of G.

Given a subset of vertices U ⊆ V , the subgraph of G induced by
U , denoted 〈U〉, is the graph whose vertex set is U , and its edge set
contains all edges from G connecting vertices in U .

6.2. PATHS AND CYCLES 85

6.2. Paths and Cycles

6.2.1. Paths. A path from v0 to vn of length n is a sequence of
n+1 vertices (vk) and n edges (ek) of the form v0, e1, v1, e2, v2, . . . , en, vn,
where each edge ek connects vk−1 with vk. If there are no parallel edges
we only need to specify the vertices: v0, v1, v2, . . . , vn.

A simple path from v to w is a path from v to w with no repeated
vertices. A cycle (or circuit) is a path of non-zero length from v to
v with no repeated edges. A simple cycle is a cycle with no repeated
vertices (except for the beginning and ending vertex).

Remark : If a graph contains a cycle from v to v, then it contains
a simple cycle from v to v. Proof: if a given vertex vi occurs twice in
the cycle, we can remove the part of it that goes from vi and back to
vi. If the resulting cycle still contains repeated vertices we can repeat
the operation until there are no more repeated vertices.

6.2.2. Connected Graphs. A graph G is called connected if there
is a path between any two distinct vertices of G. Otherwise the graph
is called disconnected. A directed graph is connected if its associated
undirected graph (obtained by ignoring the directions of the edges) is
connected. A connected component of G is any connected subgraph
G′ = (V ′, E ′) of G = (V,E) such that there is not edge (in G) from a
vertex in V to a vertex in V −V ′. Given a vertex in G, the component
of G containing v is the subgraph G′ of G consisting of all edges and
vertices of g contained in some path beginning at v.

6.2.3. The Seven Bridges of Kënigsberg. This is a classical
problem that started the discipline today called graph theory.

During the eighteenth century the city of Königsberg (in East Prus-
sia) was divided into four sections, including the island of Kneiphop,
by the Pregel river. Seven bridges connected the regions, as shown in
figure 6.8. It was said that residents spent their Sunday walks trying
to find a way to walk about the city so as to cross each bridge exactly
once and then return to the starting point. The first person to solve
the problem (in the negative) was the Swiss mathematician Leonhard
Euler in 1736. He represented the sections of the city and the seven
bridges by the graph of figure 6.9, and proved that it is impossible to
find a path in it that transverses every edge of the graph exactly once.
In the next section we study why this is so.

6.2. PATHS AND CYCLES 86

Figure 6.8. The Seven Bridges of Königsberg.

Figure 6.9. Graph for the Seven Bridges of Königsberg.

6.2.4. Euler paths and cycles. Let G = (V,E) be a graph with
no isolated vertices. An Euler path in G is a path that transverses
every edge of the graph exactly once. Analogously, an Euler cycle in
G is a cycle that transverses every edge of the graph exactly once.

The graphs that have an Euler path can be characterized by looking
at the degree of their vertices. Recall that the degree of a vertex v, rep-
resented δ(v), is the number of edges that contain v (loops are counted
twice). An even vertex is a vertex with even degree; an odd vertex is
a vertex with odd degree. The sum of the degrees of all vertices in a
graph equals twice its number of edges, so it is an even number. As a
consequence, the number of odd vertices in a graph is always even.

Then G contains an Euler cycle if and only if G is connected and
all its vertices have even degree. Also, G contains an Euler path from
vertex a to vertex b (6= a) if and only if G is connected, a and b have
odd degree, and all its other vertices have even degree.

6.2.5. Hamiltonian Cycles. A Hamiltonian cycle in a graph G
is a cycle that contains each vertex of G once (except for the starting

6.2. PATHS AND CYCLES 87

and ending vertex, which occurs twice). A Hamiltonian path in G is a
path (not a cycle) that contains each vertex of G once. Note that by
deleting an edge in a Hamiltonian cycle we get a Hamilton path, so if
a graph has a Hamiltonian cycle, then it also has a Hamiltonian path.
The converse is not true, i.e., a graph may have a Hamiltonian path but
not a Hamiltonian cycle. Exercise: Find a graph with a Hamiltonian
path but no Hamiltonian cycle.

c

d

e

f

g

hb

a

i

j

k

l

m n

o p

q
r

st

Figure 6.10. Hamilton’s puzzle.

In general it is not easy to determine if a given graph has a Hamil-
tonian path or cycle, although often it is possible to argue that a graph
has no Hamiltonian cycle. For instance if G = (V,E) is a bipartite
graph with vertex partition {V1, V2} (so that each edge in G connects
some vertex in V1 to some vertex in V2), then G cannot have a Hamil-
tonian cycle if |V1| 6= |V2|, because any path must contain alternatively
vertices from V1 and V2, so any cycle in G must have the same number
of vertices from each of both sets.

Edge removal argument. Another kind of argument consists of re-
moving edges trying to make the degree of every vertex equal two. For
instance in the graph of figure 6.11 we cannot remove any edge because
that would make the degree of b, e or d less than 2, so it is impossi-
ble to reduce the degree of a and c. Consequently that graph has no
Hamiltonian cycle.

The Traveling Salesperson Problem. Given a weighted graph, the
traveling salesperson problem (TSP) consists of finding a Hamiltonian
cycle of minimum length in this graph. The name comes from a classical
problem in which a salesperson must visit a number of cities and go
back home traveling the minimum distance possible. One way to solve
the problem consists of searching all possible Hamiltonian cycles and
computing their length, but this is very inefficient. Unfortunately no

6.2. PATHS AND CYCLES 88

b

c

d

a e

Figure 6.11. Graph without Hamiltonian cycle.

efficient algorithm is known for solving this problem (and chances are
that none exists).

Remark : (Digression on P/NP problems.) Given a weighted graph
with n vertices the problem of determining whether it contains a Hamil-
tonian cycle of length not greater than a given L is known to be NP-
complete. This means the following. First it is a decision problem, i.e.,
a problem whose solution is “yes” or “no”. A decision problem is said
to be polynomial, or belong to the class P, if it can be solved with an
algorithm of complexity O(nk) for some integer k. It is said to be non-
deterministic polynomial, or belong to the class NP, if in all cases when
the answer is “yes” this can be determined with a non-deterministic
algorithm of complexity O(nk). A non-deterministic algorithm is an
algorithm that works with an extra hint, for instance in the TSP, if G
has a Hamiltonian cycle of length not greater than L the hint could
consist of a Hamiltonian cycle with length not greater than L—so the
task of the algorithm would be just to check that in fact that length
is not greater than L.1 Currently it is not known whether the class
NP is strictly larger than the class P, although it is strongly suspected
that it is. The class NP contains a subclass called NP-complete con-
taining the “hardest” problems of the class, so that their complexity
must be higher than polynomial unless P=NP. The TSP is one of these
problems.

Gray Codes. A Gray code is a sequence s1, s2, . . . , s2n of n-binary
strings verifying the following conditions:

1Informally, P problems are “easy to solve”, and NP problems are problems
whose answer is “easy to check”. In a sense the P=NP problem consist of de-
termining whether every problem whose solution is easy to check is also easy to
solve.

6.2. PATHS AND CYCLES 89

1. Every n-binary string appears somewhere in the sequence.
2. Two consecutive strings si and si+1 differ exactly in one bit.
3. s2n and s1 differ in exactly one bit.

For instance: 000, 001, 011, 010, 110, 111, 101, 100,

The problem of finding a gray code is equivalent to finding a Hamil-
tonian cycle in the n-cube.

6.2.6. Dijkstra’s Shortest-Path Algorithm. This is an algo-
rithm to find the shortest path from a vertex a to another vertex z in
a connected weighted graph. Edge (i, j) has weight w(i, j) > 0, and
vertex x is labeled L(x) (minimum distance from a if known, otherwise
∞). The output is L(z) = length of a minimum path from a to z.

1: procedure dijkstra(w,a,z,L)

2: L(a) := 0

3: for all vertices x 6= a do
4: L(x) := ∞
5: T := set of all vertices

// T is the set of all vertices whose shortest

// distance from a has not been found yet

6: while z in T do
7: begin
8: choose v in T with minimum L(v)

9: T := T - {v}
10: for each x in T adjacent to v do
11: L(x) := min{L(x),L(v)+w(v,x)}
12: end
13: return(L(z))
14: end dijkstra

For instance consider the graph in figure 6.12.

The algorithm would label the vertices in the following way in each
iteration (the boxed vertices are the ones removed from T):

6.2. PATHS AND CYCLES 90

a

b c

z
d

e f

2

1

32

3 1

2

4 4

Figure 6.12. Shortest path from a to z.

iteration a b c d e f z
0 0 ∞ ∞ ∞ ∞ ∞ ∞
1 0 2 ∞ 3 4 ∞ ∞
2 0 2 3 3 4 ∞ ∞
3 0 2 3 3 4 ∞ 6

4 0 2 3 3 4 ∞ 4

5 0 2 3 3 4 6 4

6 0 2 3 3 4 6 4

At this point the algorithm returns the value 4.

Complexity of Dijkstra’s algorithm. For an n-vertex, simple, con-
nected weighted graph, Dijkstra’s algorithm has a worst-case run time
of Θ(n2).

6.3. REPRESENTATIONS OF GRAPHS 91

6.3. Representations of Graphs

6.3.1. Adjacency matrix. The adjacency matrix of a graph is a
matrix with rows and columns labeled by the vertices and such that
its entry in row i, column j, i 6= j, is the number of edges incident on
i and j. If i = j then the entry is twice the number of loops incident
on i. For instance the following is the adjacency matrix of the graph
of figure 6.13:

a b c d

a
b
c
d

0 1 0 1
1 0 2 0
0 2 0 0
1 0 0 2

b

a

d

c

e1

e2

e3

e5e4

Figure 6.13

One of the uses of the adjacency matrix A of a simple graph G is
to compute the number of paths between two vertices, namely entry
(i, j) of An is the number of paths of length n from i to j.

6.3.2. Incidence matrix. The incidence matrix of a graph G is a
matrix with rows labeled by vertices and columns labeled by edges, so
that entry for row v column e is 1 if e is incident on v, and 0 otherwise.
As an example, the following is the incidence matrix of graph of figure
6.13:

6.3. REPRESENTATIONS OF GRAPHS 92

e1 e2 e3 e4 e5

a
b
c
d

1 0 0 1 0
1 1 1 0 0
0 1 1 0 0
0 0 0 1 1

6.3.3. Graph Isomorphism. Two graphs G1 = (V1, E1), G2 =

(V2, E2), are called isomorphic if there is a bijection f : V1 → V2 and a
bijection g : E1 → E2 such that an edge e is adjacent to vertices v and
w if and only if g(e) is adjacent to f(v) and f(w) (fig. 6.14).

a1 b1

c1

d1

e1

a2 b2

c2

d2

e2

Figure 6.14. Two isomorphic graphs.

Two graphs are isomorphic if and only if for some ordering of their
vertices their adjacency matrices are equal.

An invariant is a property such that if a graph has it then all graphs
isomorphic to it also have it. Examples of invariants are their number
of vertices, their number of edges, “has a vertex of degree k”, “has a
simple cycle of length l”, etc. It is possible to prove that two graphs are
not isomorphic by showing an invariant property that one has and the
other one does not have. For instance the graphs in figure 6.15 cannot
be isomorphic because one has a vertex of degree 2 and the other one
doesn’t.

6.3. REPRESENTATIONS OF GRAPHS 93

a

b

c

e

f

3

4

51

2

Figure 6.15. Non isomorphic graphs.

6.4. PLANAR GRAPHS 94

6.4. Planar Graphs

6.4.1. Planar Graphs. A graph G is planar if it can be drawn
in the plane with its edges intersecting at their vertices only. One such
drawing is called an embedding of the graph in the plane.

A particular planar representation of a planar graph is called a map.
A map divides the plane into a number of regions or faces (one of them
infinite).

6.4.2. Graph Homeomorphism. If a graph G has a vertex v of
degree 2 and edges (v, v1), (v, v2) with v1 6= v2, we say that the edges
(v, v1) and (v, v2) are in series. Deleting such vertex v and replacing
(v, v1) and (v, v2) with (v1, v2) is called a series reduction. For instance,
in the third graph of figure 6.16, the edges (h, b) and (h, d) are in series.
By removing vertex h we get the first graph in the left.

Two graphs are said to be homeomorphic if they are isomorphic or
can be reduced to isomorphic graphs by a sequence of series reductions
(fig. 6.16).

d

e a

b d

e

f c

d

ea

b

a

b

h

c c

Figure 6.16. Three homeomorphic graphs.

Note that if a graph G is planar, then all graphs homeomorphic to
G are also planar.

6.4.3. Some Results About Planar Graphs.

1. Euler’s Formula: Let G = (V,E) be a connected planar graph,
and let v = |V |, e = |E|, and f = number of faces (regions) in
which some given embedding of G divides the plane. Then:

v − e + f = 2 .

6.4. PLANAR GRAPHS 95

Note that this implies that all plane embeddings of a given
graph define the same number of faces.

2. Let G = (V,E) be a simple connected planar graph with v
vertices, e ≥ 3 edges and f faces. Then 3f ≤ 2e and e ≤ 3v−6.

3. The graph K5 is non-planar. Proof: in K5 we have v = 5 and
e = 10, hence 3v − 6 = 9 < e = 10, which contradicts the
previous result.

4. The graph K3,3 is non-planar. Proof: in K3,3 we have v = 6 and
e = 9. If K3,3 were planar, from Euler’s formula we would have
f = 5. On the other hand, each face is bounded by at least four
edges, so 4f ≤ 2e, i.e., 20 ≤ 18, which is a contradiction.

5. Kuratowski’s Theorem: A graph is non-planar if and only if it
contains a subgraph that is homeomorphic to either K5 or K3,3.

6.4.4. Dual Graph of a Map. A map is defined by some planar
graph G = (V,E) embedded in the plane. Assume that the map divides
the plane into a set of regions R = {r1, r2, . . . , rk}. For each region ri,
select a point pi in the interior of ri. The dual graph of that map is the
graph Gd = (V d, Ed), where V d = {p1, p2, . . . , pk}, and for each edge in
E separating the regions ri and rj, there is an edge in Ed connecting pi

and pj. Warning : Note that a different embedding of the same graph
G may give different (and non-isomorphic) dual graphs. Exercise: Find
the duals of the maps shown in figure 6.14, and prove that they are not
isomorphic.

a

b

dc
e

Figure 6.17. Dual graph of a map.

6.4.5. Graph Coloring. Consider the problem of coloring a map
M in such a way that no adjacent regions (sharing a border) have the

6.4. PLANAR GRAPHS 96

same color. This is equivalent to coloring the vertices of the dual map
of M in such a way that no adjacent vertices have the same color.

In general, a coloring of a graph is an assignment of a color to
each vertex of the graph. The coloring is called proper if there are
no adjacent vertices with the same color. If a graph can be properly
colored with n colors we say that it is n-colorable. The minimum
number of colors needed to properly color a given graph G = (V,E) is
called the chromatic number of G, and is represented χ(G). Obviously
χ(G) ≤ |V |.

6.4.6. Some Results About Graph Coloring.

1. χ(Kn) = n.

2. Let G be a simple graph. The following statement are equiva-
lent:
(a) χ(G) = 2.
(b) G is bipartite.
(c) Every cycle in G has even length

3. Five Color Theorem (Kempe, Heawood) (not hard to prove):
Every simple, planar graph is 5-colorable.

4. Four Color Theorem (Appel and Haken, 1976), proved with
an intricate computer analysis of configurations: Every simple,
planar graph is 4-colorable.

Exercise: Find a planar graph G such that χ(G) = 4.

CHAPTER 7

Trees

7.1. Trees

7.1.1. Terminology. Let T be a graph with n vertices. The fol-
lowing properties are equivalent:

1. T is connected and acyclic (has no cycles).
2. T is connected and has n− 1 edges.
3. T is acyclic and has n− 1 edges.
4. If v and w are vertices in T , there is a unique simple path from

v to w.

A graph having any of the above equivalent properties is called a
free tree or simply tree. A union of trees, or equivalently a simple graph
with no cycles, is called forest.

A rooted tree is a tree in which a particular vertex is designated as
the root.

r

a b c

d e f g
h i

j k l m n o p

Figure 7.1. A rooted tree.

The level of a vertex v is the length of the simple path from the root
to v. The height of a rooted tree is the maximum level of its vertices.

Let T be a tree with root v0. Suppose that x, y and z are vertices
in T and that (v0, v1, . . . , vn) is a simple path in T . Then:

97

7.1. TREES 98

1. vn−1 is the parent of vn.
2. v0, v1, . . . , vn−1 are ancestors of vn.
3. vn is a child of vn−1.
4. If x is an ancestor of y, y is a descendant of x.
5. If x and y are children of z, x and y are siblings.
6. If x has no children, it is called a terminal vertex or leaf.
7. If x is not a terminal vertex, it is an internal or branch vertex.
8. The subtree of T rooted at x is the graph (V,E), where V is x

together with its descendants and E = edges of simple paths
from x to some vertex in E.

7.1.2. Huffman Codes. Usually characters are represented in a
computer with fix length bit strings. Huffman codes provide an alter-
native representation with variable length bit strings, so that shorter
strings are used for the most frequently used characters. As an example
assume that we have an alphabet with four symbols: A = {a, b, c, d}.
Two bits are enough for representing them, for instance a = 11, b = 10,
c = 01, d = 00 would be one such representation. With this encoding
n-character words will have 2n bits. However assume that they do not
appear with the same frequency, instead some are more frequent that
others, say a appears with a frequency of 50%, b 30%, c 15% and d
5%. Then the following enconding would be more efficient than the fix
length encoding: a = 1, b = 01, c = 001, d = 000. Now in average an
n-character word will have 0.5n a’s, 0.3n b’s, 0.15n c’s and 0.05n d’s,
hence its length will be 0.5n·1+0.3n·2+0.15n·3+0.05n·3 = 1.7n, which
is shorter than 2n. In general the length per character of a given en-
coding with characters a1, a2, . . . , an whose frequencies are f1, f2, . . . , fn

is
1

F

n∑
k=1

fk l(ak) ,

where l(ak) = length of ak and F =
∑n

k=1 fk. The problem now is,
given an alphabet and the frequencies of its characters, find an optimal
encoding that provides minimum average length for words.

Fix length and Huffman codes can be represented by trees like in
figure 7.2. The code of each symbol consists of the sequence of labels of
the edges in the path from the root to the leaf with the desired symbol.

7.1.3. Constructing an Optimal Huffman Code. An optimal
Huffman code is a Huffman code in which the average length of the
symbols is minimum. In general an optimal Huffman code can be made

7.1. TREES 99

a b d

0

1 0 1 0

1

a

b

c d

1 0

1 0

1 0

Huffman codeFix length code

c

Figure 7.2. Fix length code and Huffman code.

as follows. First we list the frequencies of all the codes and represent
the symbols as vertices (which at the end will be leaves of a tree).
Then we replace the two smallest frequencies f1 and f2 with their sum
f1 + f2, and join the corresponding two symbols to a common vertex
above them by two edges, one labeled 0 and the other one labeled 1.
Than common vertex plays the role of a new symbol with a frequency
equal to f1 +f2. Then we repeat the same operation with the resulting
shorter list of frequencies until the list is reduced to one element and
the graph obtained becomes a tree.

Example: Find the optimal Huffman code for the following table of
symbols:

character frequency
a 2
b 3
c 7
d 8
e 12

Answer : : The successive reductions of the list of frequencies are as
follows:

2, 3︸︷︷︸
5

, 7, 8, 12 → 5, 7︸︷︷︸
12

, 8, 12 → 12, 8, 12

Here we have a choice, we can choose to add the first 12 and 8, or
8 and the second 12. Let’s choose the former:

12, 8︸︷︷︸
20

, 12 → 20, 12︸ ︷︷ ︸
32

→ 32

7.1. TREES 100

The tree obtained is the following:

a b

d

e

1

1

1

1 0

0

0

0

2 3

7

8

12

5

12

20

32

c

Figure 7.3. Optimal Huffman code 1.

The resulting code is as follows:

character code
a 1111
b 1110
c 110
d 10
e 0

The other choice yields the following:

12, 8, 12︸︷︷︸
20

→ 20, 12︸ ︷︷ ︸
32

→ 32

a b

c d e

1 0

1

1 0

0 1

32

12 20

5 7 8 12

2 3

0

Figure 7.4. Optimal Huffman code 2.

7.1. TREES 101

character code
a 111
b 110
c 10
d 01
e 00

7.2. SPANNING TREES 102

7.2. Spanning Trees

7.2.1. Spanning Trees. A tree T is a spanning tree of a graph G
if T is a subgraph of G that contains all the vertices of G. For instance
the graph of figure 7.5 has a spanning tree represented by the thicker
edges.

b

c

d

e

f

g

h

a

i

Figure 7.5. Spanning tree.

Every connected graph has a spanning tree which can be obtained
by removing edges until the resulting graph becomes acyclic. In prac-
tice, however, removing edges is not efficient because finding cycles is
time consuming.

Next, we give two algorithms to find the spanning tree T of a loop-
free connected undirected graph G = (V,E). We assume that the
vertices of G are given in a certain order v1, v2, . . . , vn. The resulting
spanning tree will be T = (V ′, E ′).

7.2.2. Breadth-First Search Algorithm. The idea is to start
with vertex v1 as root, add the vertices that are adjacent to v1, then the
ones that are adjacent to the latter and have not been visited yet, and
so on. This algorithm uses a queue (initially empty) to store vertices
of the graph. In consists of the following:

1. Add v1 to T , insert it in the queue and mark it as “visited”.
2. If the queue is empty, then we are done. Otherwise let v be the

vertex in the front of the queue.
3. For each vertex v′ of G that has not been visited yet and is

adjacent to v (there might be none) taken in order of increasing
subscripts, add vertex v′ and edge (v, v′) to T , insert v′ in the
queue and mark it as “visited”.

4. Delete v from the queue.

7.2. SPANNING TREES 103

5. Go to step 2.

A pseudocode version of the algorithm is as follows:

1: procedure bfs(V,E)

2: S := (v1) // ordered list of vertices of a fix level

3: V’ := {v1} // v1 is the root of the spanning tree

4: E’ := {} // no edges in the spanning tree yet

5: while true do
6: begin
7: for each x in S, in order, do
8: for each y in V - V’ do
9: if (x,y) is an edge then
10: add edge (x,y) to E’ and vertex y to V’

11: if no edges were added then
12: return(T)
13: S := children of S

14: end
15: end bfs

Figure 7.6 shows the spanning tree obtained using the breadth-first
search algorithm on the graph with its vertices ordered lexicographi-
cally: a, b, c, d, e, f, g, h, i.

a

b

c

d

e

f

g

h

i

Figure 7.6. Breadth-First Search.

7.2.3. Depth-First Search Algorithm. The idea of this algo-
rithm is to make a path as long as possible, and then go back (back-
track) to add branches also as long as possible.

This algorithm uses a stack (initially empty) to store vertices of the
graph. In consists of the following:

1. Add v1 to T , insert it in the stack and mark it as “visited”.

7.2. SPANNING TREES 104

2. If the stack is empty, then we are done. Otherwise let v be the
vertex on the top of the stack.

3. If there is no vertex v′ that is adjacent to v and has not been
visited yet, then delete v and go to step 2 (backtrack). Oth-
erwise, let v′ be the first non-visited vertex that is adjacent to
v.

4. Add vertex v′ and edge (v, v′) to T , insert v′ in the stack and
mark it as “visited”.

5. Go to step 2.

An alternative recursive definition is as follows. We define recur-
sively a process P applied to a given vertex v in the following way:

1. Add vertex v to T and mark it as “visited”.
2. If there is no vertex v′ that is adjacent to v and has not been

visited yet, then return. Otherwise, let v′ be the first non-visited
vertex that is adjacent to v.

3. Add the edge (v, v′) to T .
4. Apply P to v′.
5. Go to step 2 (backtrack).

The Depth-First Search Algorithm consists of applying the process just
defined to v1.

A pseudocode version of the algorithm is as follows:

1: procedure dfs(V,E)

2: V’ := {v1} // v1 is the root of the spanning tree

3: E’ := {} // no edges in the spanning tree yet

4: w := v1

5: while true do
6: begin
7: while there is an edge (w,v) that when added

8: to T does not create a cycle in T do
9: begin
10: Choose first v such that (w,v)

11: does not create a cycle in T

12: add (w,v) to E’

13: add v to V’

14: w := v

15: end
16: if w = v1 then

7.2. SPANNING TREES 105

17: return(T)
18: w := parent of w in T // backtrack

19: end
20: end

Figure 7.7 shows the spanning tree obtained using the breadth-first
search algorithm on the graph with its vertices ordered lexicographi-
cally: a, b, c, d, e, f, g, h, i.

a

b

c

d

e

f

g

h

i

Figure 7.7. Depth-First Search.

7.2.4. Minimal Spanning Tress. Given a connected weighted
tree G, its minimal spanning tree is a spanning tree of G such that the
sum of the weights of its edges is minimum. For instance for the graph
of figure 7.8, the spanning tree shown is the one of minimum weight.

a b

c d

e f

4

1

52

6

3

2

6

Figure 7.8. Minimum Spanning Tree.

Prim’s Algorithm. An algorithm to find a minimal spanning tree is
Prim’s Algorithm. It starts with a single vertex and at each iteration
adds to the current tree a minimum weight edge that does not complete
a cycle.

7.2. SPANNING TREES 106

The following is a pseudocode version of Prim’s algorithm. If (x, y)
is an edge in G = (V,E) then w(x, y) is its weight, otherwise w(x, y) =
∞. The starting vertex is s.

1: procedure prim(V,w,s)

2: V’ := {s} // vertex set starts with s

3: E’ = {} // edge set initially empty

4: for i := 1 to n-1 do // put n edges in spanning tree

5: begin
6: find x in V’ and y in V - V’ with minimum w(x,y)

7: add y to V’

8: add (x,y) to E’

9: end
10: return(E’)
11: end prim

Prim’s algorithm is an example of a greedy algorithm. A greedy
algorithm is an algorithm that optimized the choice at each iteration
without regard to previous choices (“doing the best locally”). Prim’s
algorithm makes a minimum spanning tree, but in general a greedy
algorithm not always finds an optimal solution to a given problem.
For instance in figure 7.9 a greedy algorithm to find the shortest path
from a to z, working by adding the shortest available edge to the most
recently added vertex, would return acz, which is not the shortest path.

a

b

c

z

1

2 4

100

101

Figure 7.9

Kruskal’s Algorithm. Another algorithm to find a minimal span-
ning tree in a connected weighted tree G = (V,E) is Kruskal’s Algo-
rithm. It starts with all n vertices of G and no edges. At each iteration
we add an edge having minimum weight that does not complete a cycle.
We stop after adding n− 1 edges.

7.2. SPANNING TREES 107

1: procedure kruskal(E,w,n)

2: V’ := V

3: E’ := {}
4: while |E’| < n-1 do
5: begin
6: among all edges not completing a cycle in T

7: choose e of minimum weight and add it to E

8: end
9: T’ = (V’,E’)

10: return(T’)
11: end kruskal

7.3. BINARY TREES 108

7.3. Binary Trees

7.3.1. Binary Trees. A binary tree is a rooted tree in which each
vertex has at most two children, designated as left child and right child.
If a vertex has one child, that child is designated as either a left child
or a right child, but not both. A full binary tree is a binary tree in
which each vertex has exactly two children or none. The following are
a few results about binary trees:

1. If T is a full binary tree with i internal vertices, then T has i+1
terminal vertices and 2i + 1 total vertices.

2. If a binary tree of height h has t terminal vertices, then t ≤ 2h.

7.3.2. Binary Search Trees. Assume S is a set in which elements
(which we will call “data”) are ordered; e.g., the elements of S can be
numbers in their natural order, or strings of alphabetic characters in
lexicographic order. A binary search tree associated to S is a binary
tree T in which data from S are associate with the vertices of T so
that, for each vertex v in T , each data item in the left subtree of v is
less than the data item in v, and each data item in the right subtree of
v is greater than the data item in v.

Example: Figure 7.10 contains a binary search tree for the set S =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. In order to find a element we start at the root
and compare it to the data in the current vertex (initially the root).
If the element is greater we continue through the right child, if it is
smaller we continue through the left child, if it is equal we have found
it. If we reach a terminal vertex without founding the element, then
that element is not present in S.

5

2

1 3 7

6

9

10

84

Figure 7.10. Binary Search Tree.

7.3. BINARY TREES 109

7.3.3. Making a Binary Search Tree. We can store data in
a binary search tree by randomly choosing data from S and placing
it in the tree in the following way: The first data chosen will be the
root of the tree. Then for each subsequent data item, starting at the
root we compare it to the data in the current vertex v. If the new
data item is greater than the data in the current vertex then we move
to the right child, if it is less we move to the left child. If there is
no such child then we create one and put the new data in it. For
instance, the tree in figure 7.11 has been made from the following list
of words choosing them in the order they occur: “IN A PLACE OF LA
MANCHA WHOSE NAME I DO NOT WANT TO REMEMBER”.

A

I

DO

WHOSE

PLACE

OF

IN

LA

REMEMBER

TO

WANT

MANCHA

NAME

NOT

Figure 7.11. Another binary Search Tree.

7.3.4. Tree Transversal’s. In order to motivate this subject, we
introduce the concept of Polish notation. Given a (not necessarily
commutative) binary operation ◦, it is customary to represent the result
of applying the operation to two elements a, b by placing the operation
symbol in the middle:

a ◦ b .

This is called infix notation. The Polish notation consists of placing
the symbol to the left:

◦ a b .

The reverse Polish notation consists of placing the symbol to the right:

a b ◦ .

The advantage of Polish notation is that it allows us to write ex-
pressions without need for parenthesis. For instance, the expression
a∗ (b+c) in Polish notation would be ∗ a+b c, while a∗b+c is +∗a b c.
Also, Polish notation is easier to evaluate in a computer.

7.3. BINARY TREES 110

In order to evaluate an expression in Polish notation, we scan the
expression from right to left, placing the elements in a stack.1 Each
time we find an operator, we replace the two top symbols of the stack
by the result of applying the operator to those elements. For instance,
the expression ∗+ 2 3 4 (which in infix notation is “(2 + 3) ∗ 4”) would
be evaluated like this:

expression stack

∗+ 2 3 4
∗+ 2 3 4
∗+ 2 3 4
∗+ 2 3 4
∗ 5 4

20

An algebraic expression can be represented by a binary rooted tree
obtained recursively in the following way. The tree for a constant or
variable a has a as its only vertex. If the algebraic expression S is of
the form SL ◦ SR, where SL and SR are subexpressions with trees TL

and TR respectively, and ◦ is an operator, then the tree T for S consists
of ◦ as root, and the subtrees TL and TR (fig. 7.12).

o

T L T R

Figure 7.12. Tree of S1 ◦ S2.

For instance, consider the following algebraic expression:

a + b ∗ c + d ↑ e ∗ (f + h) ,

where + denotes addition, ∗ denotes multiplication and ↑ denotes ex-
ponentiation. The binary tree for this expression is given in figure 7.13.

1A stack or last-in first-out (LIFO) system, is a linear list of elements in which
insertions and deletions take place only at one end, called top of the list. A queue
or first-in first-out (FIFO) system, is a linear list of elements in which deletions
take place only at one end, called front of the list, and insertions take place only
at the other end, called rear of the list.

7.3. BINARY TREES 111

+

*

+

d e f h

*

b c

+

a

Figure 7.13. Tree for a + b ∗ c + d ↑ e ∗ (f + h).

Given the binary tree of an algebraic expression, its Polish, reverse
Polish and infix representation are different ways of ordering the ver-
tices of the tree, namely in preorder, postorder and inorder respectively.

The following are recursive definitions of several orderings of the
vertices of a rooted tree T = (V,E) with root r. If T has only one
vertex r, then r by itself constitutes the preorder, postorder and inorder
transversal of T . Otherwise, let T1, . . . , Tk the subtrees of T from left
to right (fig. 7.14). Then:

r

T1 T2 ... Tk

Figure 7.14. Ordering of trees.

1. Preorder Transversal : Pre(T) = r, Pre(T1), . . . , Pre(Tk).

2. Postorder Transversal : Post(T) = Post(T1), . . . , Post(Tk), r.

3. Inorder Transversal. If T is a binary tree with root r, left sub-
tree TL and right subtree TR, then: In(T) = In(TL), r, In(TR).

7.4. DECISION TREES, TREE ISOMORPHISMS 112

7.4. Decision Trees, Tree Isomorphisms

7.4.1. Decision Trees. A decision tree is a tree in which each
vertex represents a question and each descending edge from that vertex
represents a possible answer to that question.

Example: The Five-Coins Puzzle. In this puzzle we have five coins
C1, C2, C3, C4, C5 that are identical in appearance, but one is either
heavier or lighter that the others. The problem is to identify the bad
coin and determine whether it is lighter or heavier using only a pan
balance and comparing the weights of two piles of coins. The problem
can be solved in the following way. First we compare the weights of C1

and C2. If C1 is heavier than C2 then we know that either C1 is the
bad coin and is heavier, or C2 is the bad coin and it is lighter. Then
by comparing say C1 with any other the other coins, say C5, we can
determine whether the bad coin is C1 and is heavier (if C1 it is heavier
than C5) or it is C2 and is lighter (if C1 has the same weight as C5). If
C1 is lighter than C2 we proceed as before with “heavier” and “lighter”
reversed. If C1 and C2 have the same weight we can try comparing C3

and C4 in a similar manner. If their weight is the same then we know
that the bad coin is C5, and we can determine whether it is heavier or
lighter by comparing it to say C1. The corresponding decision tree is
the following:

C1:C5

C1:C2

C3:C4 C1:C5

C3:C5 C1:C5 C3:C5

C1,H C2,L

C4,H C3,L

C2,H C1,L

C5,HC5,LC4,LC3,H

left right
balanced

balanced balanced right
left right

right
balanced

rightleft
balancedleft

left

balanced

Figure 7.15. Decision tree for the 5 coins puzzle.

In each vertex “Ci : Cj” means that we compare coins Ci and Cj by
placing Ci on the left pan and Cj on the right pan of the balance, and
each edge is labeled depending on what side of the balance is heavier.
The terminal vertices are labeled with the bad coin and whether it is
heavier (H) or lighter (L). The decision tree is optimal in the sense
that in the worst case it uses three weighings, and there is no way to
solve the problem with less than that—with two weighings we can get

7.4. DECISION TREES, TREE ISOMORPHISMS 113

at most nine possible outcomes, which are insufficient to distinguish
among ten combinations of 5 possible bad coins and the bad coin being
heavier or lighter.

7.4.2. Complexity of Sorting. Sorting algorithms work by com-
paring elements and rearranging them as needed. For instance we can
sort three elements a1, a2, a3 with the decision tree shown in figure 7.16

a1<a2?

a1<a3?

a2<a3? a1<a3?

a1,a2,a3

a1,a3,a2 a3,a1,a2 a2,a3,a1 a3,a2,a1

a2,a1,a3 a2<a3?

YES

YES YES NO

NO YES NOYES

NO

NO

.

Figure 7.16. Sorting three elements.

Since there are 3! = 6 possible arrangements of 3 elements, we need
a decision tree with at least 6 possible outcomes or terminal vertices.
Recall that in a binary tree of height h with t terminal vertices the
following inequality holds: t ≤ 2h. Hence in our case 6 < 2h, which
implies h ≥ 3, so the algorithm represented by the decision tree in
figure 7.16 is optimal in the sense that it uses the minimum possible
number of comparisons in the worst-case.

More generally in order to sort n elements we need a decision tree
with n! outcomes, so its height h(n) will verify n! ≤ 2h(n). Since
log2 (n!) = Θ(n log2 n),1 we have h(n) = Ω(n log2 n). So the worse
case complexity of a sorting algorithm is Ω(n log2 n). Since the merge-
sort algorithm uses precisely Θ(n log2 n) comparisons, we know that it
is optimal.

7.4.3. Isomorphisms of Trees. Assume that T1 is a tree with
vertex set V1 and T2 is another tree with vertex set V2. If they are
rooted trees then we call their roots r1 and r2 respectively. We will
study three different kinds of tree-isomorphisms between T1 and T2.

1According to Stirling’s formula, n! ≈ nne−n
√

2πn, so taking logarithms
log2 n! ≈ n log2 n− n log2 e + 1

2 log2 (2πn) = Θ(n log2 n).

7.4. DECISION TREES, TREE ISOMORPHISMS 114

1. Usual graph-isomorphism between trees: T1 and T2 are isomor-
phic if there is a bijection f : V1 → V2 that preserves adjacency,
i.e., f(v) is adjacent to f(w) if and only if v is adjacent to w.

2. Root-tree-isomorphism: T1 and T2 are isomorphic if there is a
bijection f : V1 → V2 that preserves adjacency and the root
vertex, i.e.:
(a) f(v) is adjacent to f(w) if and only if v is adjacent to w.
(b) f(r1) = r2.

3. Binary-tree-isomorphism: Two binary trees T1 and T2 are iso-
morphic if there is a bijection f : V1 → V2 that preserves adja-
cency, and the root vertex, and left/right children, i.e.:
(a) f(v) is adjacent to f(w) if and only if v is adjacent to w.
(b) f(r1) = r2.
(c) f(v) is a left child of f(w) if and only if v is a left child of

w.
(d) f(v) is a right child of f(w) if and only if v is a right child

of w.

Example: Figure 7.17 shows three trees which are graph-isomorphic.
On the other hand as rooted trees T2 and T3 are isomorphic, but they
are not isomorphic to T1 because the root of T1 has degree 3, while the
roots of T2 and T3 have degree 2. Finally T2 and T3 are not isomorphic
as binary trees because the left child of the root in T2 is a terminal
vertex while the left child of the root of T3 has two children.

T1 T2 T3

Figure 7.17. Trees with different kinds of isomorphisms.

Exercise: Find all non-isomorphic 3-vertex free trees, 3-vertex rooted
trees and 3-vertex binary trees. Answer : Figure 7.18 shows all 5 non-
isomorphic 3-vertex binary trees. As rooted trees T2–T5 are isomorphic,
but T1 is not isomorphic to the others, so there are 2 non-isomorphic
3-vertex rooted trees represented for instance by T1 and T2. All of them

7.4. DECISION TREES, TREE ISOMORPHISMS 115

are isomorphic as free trees, so there is only 1 non-isomorphic 3-vertex
free tree.

T1 T3T2 T4 T5

Figure 7.18. Non-isomorphic binary trees.

7.4.4. Game Trees. Trees are used in the analysis of some games.
As an example we study the following game using a tree: Initially
there are two piles with 3 coins and 1 coin respectively. Taking turns
two players remove any number of coins from one of the piles. The
player that removes the last coin loses. The following tree represents
all possible sequences of choices. Each node shows the number of coins
in each pile, and each edge represents a possible “move” (choice) from
one of the players. The first player is represented with a box and the
second player is represented with an circle.

1
0

0
1

0
0

0
0

0
0

1
1

0
1

0
1

2
0

0
0

1
0

0
0

0
0

1
0

0
1

0
0

0
0

1
1

2
1

1
0

0
0

0
0

1
0

0
0

0
0

2
0

3
0

3
1

1 1 1

0 0 0

1

1

0

1

00
1 1

1

1

0

1

0 0
0 1

0

1

00

1

1

Figure 7.19. Tree of a game.

The analysis of the game starts by labeling each terminal vertex
with “1” if it represents a victory for the first player and “0” if it
represents a victory for the second player. This numbers represent
the “value” of each position of the game, so that the first player is
interested in making it “maximum” and the second player wants to
make it “minimum”. Then we continue labeling the rest of the vertices
in the following way. After all the children of a given vertex have

7.4. DECISION TREES, TREE ISOMORPHISMS 116

been labeled, we label the vertex depending on whether it is a “first
player” position (box) or a “second player” position (circle). First
player positions are labeled with the maximum value of the labels of
its children, second player positions are labeled with the minimum
value of the labels of its children. This process is called the minimax
procedure. Every vertex labeled “1” will represent a position in which
the first player has advantage and can win if he/she works without
making mistakes; on the other hand, vertices labeled “0” represent
positions for which the second player has advantage. Now the strategy
is for the first player to select at each position a children with maximum
value, while the second player will be interested in selecting children
with minimum value. If the starting position has been labeled “1” that
means that the first player has a winning strategy, otherwise the second
player has advantage. For instance in the present game the first player
has advantage at the initial position, and only one favorable movement
at that point:

(
3
1

) → (
0
1

)
, i.e., he/she must remove all 3 coins from

the first pile. If for any reason the first player makes a mistake and
removes say one coin from the first pile, going to position

(
2
1

)
, then the

second player has one favorable move to vertex
(
0
1

)
, which is the one

with minimum “value”.

Alpha-beta pruning. In some games the game tree is so complicated
that it cannot be fully analyzed, so it is built up to a given depth only.
The vertices reached at that depth are not terminal, but they can
be “evaluated” using heuristic methods (for instance in chess usually
losing a knight is a better choice than losing the queen, so a position
with one queen and no knights will have a higher value than one with
no queen and one knight). Even so the evaluation and labeling of the
vertices can be time consuming, but we can bypass the evaluation of
many vertices using the technique of alpha-beta pruning. The idea is
to skip a vertex as soon as it becomes obvious that its value will not
affect the value of its parent. In order to do that with a first player
(boxed) vertex v, we assign it an alpha value equal to the maximum
value of its children evaluated so far. Assume that we are evaluating
one of its children w, which will be a second player (circled) position. If
at any point a children of w gets a value less than or equal to the alpha
value of v then it will become obvious that the value of w is going to
be less than the current alpha value of v, so it will not affect the value
of v and we can stop the process of evaluation of w (prone the subtree
at w). That is called an alpha cutoff. Similarly, at a second player
(circled) vertex v, we assign a beta value equal to the minimum value
of its children evaluated so far, and practice a beta cutoff when one of

7.4. DECISION TREES, TREE ISOMORPHISMS 117

its grandchildren gets a value greater than or equal to the current beta
value of v, i.e., we prone the subtree at w, where w is the parent of
that grandchildren.

4

43

5634 5 1 ?

v

w

(4)

1

7

Figure 7.20. Alpha cutoff.

CHAPTER 8

Boolean Algebras

8.1. Combinatorial Circuits

8.1.1. Introduction. At their lowest level digital computers han-
dle only binary signals, represented with the symbols 0 and 1. The
most elementary circuits that combine those signals are called gates.
Figure 8.1 show three gates: OR, AND and NOT.

x1

x2

x1

x2

x x

x1

x1

x2

x2

OR GATE

NOT GATE

AND GATE

Figure 8.1. Gates.

Their outputs can be expressed as a function of their inputs by the
following logic tables :

x1 x2 x1 ∨ x2

1 1 1
1 0 1
0 1 1
0 0 0

OR GATE

118

8.1. COMBINATORIAL CIRCUITS 119

x1 x2 x1 ∧ x2

1 1 1
1 0 0
0 1 0
0 0 0

AND GATE

x x̄
1 0
0 1

NOT GATE

These are examples of combinatorial circuits. A combinatorial cir-
cuit is a circuit whose output is uniquely defined by its inputs. They
do not have memory, previous inputs do not affect their outputs. Some
combinations of gates can be used to make more complicated combi-
natorial circuits. For instance figure 8.2 is combinatorial circuit with
the logic table shown below, representing the values of the Boolean
expression y = (x1 ∨ x2) ∧ x3.

x1

x2 y

x3

Figure 8.2. A combinatorial circuit.

x1 x2 x3 y = (x1 ∨ x2) ∧ x3

1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 1

However the circuit in figure 8.3 is not a combinatorial circuit. If
x1 = 1 and x2 = 0 then y can be 0 or 1. Assume that at a given time
y = 0. If we input a signal x2 = 1, the output becomes y = 1, and

8.1. COMBINATORIAL CIRCUITS 120

stays so even after x2 goes back to its original value 0. That way we
can store a bit. We can “delete” it by switching input x1 to 0.

x2

x1

y

Figure 8.3. Not a combinatorial circuit.

8.1.2. Properties of Combinatorial Circuits. Here Z2 = {0, 1}
represents the set of signals handled by combinatorial circuits, and the
operations performed on those signals by AND, OR and NOT gates are
represented by the symbols ∧, ∨ and ¯ respectively. Then their prop-
erties are the following (a, b, c are elements of Z2, i.e., each represents
either 0 or 1):

1. Associative
(a ∨ b) ∨ c = a ∨ (b ∨ c)

(a ∧ b) ∨ c = a ∧ (b ∧ c)

2. Commutative
a ∨ b = b ∨ a

a ∧ b = b ∧ a

3. Distributive
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

4. Identity
a ∨ 0 = a

a ∧ 1 = 1

5. Complement
a ∨ ā = 1

a ∧ ā = 0

A system satisfying those properties is called a Boolean algebra.

Two Boolean expressions are defined to be equal is they have the
same values for all possible assignments of values to their literals. Ex-
ample: x ∨ y = x̄ ∧ ȳ, as shown in the following table:

8.1. COMBINATORIAL CIRCUITS 121

x y x ∨ y x̄ ∧ ȳ
1 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0

8.1.3. Boolean Algebras. Here we deal with general Boolean
algebras; combinatorial circuits are an example, but there are others.

A Boolean algebra B = (S, +, ·, ′, 0, 1) is set S containing two dis-
tinguished elements 0 and 1, two binary operators + and · on S, and
a unary operator ′ on S, satisfying the following properties (x, y, z are
elements of S):

1. Associative

(x + y) + z = x + (y + z)

(x · y) + z = x · (y · z)

2. Commutative

x + y = y + x

x · y = y · x
3. Distributive

x · (y + z) = (x · y) + (x · z)

x + (y · z) = (x + y) · (x + z)

4. Identity

x + 0 = x

x · 1 = x

5. Complement

x + x′ = 1

x · x′ = 0

Example: (Z2,∨,∧, ¯, 0, 1) is a Boolean algebra.

Example: If U is a universal set and P(U)= the power set of S
(collection of subsets of S) then (P(U),∪,∩, ¯, ∅, U). is a Boolean
algebra.

8.1. COMBINATORIAL CIRCUITS 122

8.1.4. Other Properties of Boolean Algebras. The properties
mentions above define a Boolean algebra, but Boolean algebras also
have other properties:

1. Idempotent
x + x = x

x · x = x

2. Bound
x + 1 = 1

x · 0 = 0

3. Absorption
x + xy = x

x · (x + y) = x

4. Involution
(x′)′ = x

5. 0 and 1
0′ = 1

1′ = 0

6. De Morgan’s
(x + y)′ = x′ · y′
(x · y)′ = x′ + y′

For instance the first idempotent law can be proved like this: x =
x + 0 = x + x · x′ = (x + x) · (x + x′) = (x + x) · 1 = x + x.

8.2. BOOLEAN FUNCTIONS, APPLICATIONS 123

8.2. Boolean Functions, Applications

8.2.1. Introduction. A Boolean function is a function from Zn
2

to Z2. For instance, consider the exclusive-or function, defined by the
following table:

x1 x2 x1 Y x2

1 1 0
1 0 1
0 1 1
0 0 0

The exclusive-or function can interpreted as a function Z2
2 → Z2

that assigns (1, 1) 7→ 0, (1, 0) 7→ 1, (0, 1) 7→ 1, (0, 0) 7→ 0. It can also
be written as a Boolean expression in the following way:

x1 Y x2 = (x1 ∧ x̄2) ∨ (x̄1 ∧ x2)

Every Boolean function can be written as a Boolean expression as
we are going to see next.

8.2.2. Disjunctive Normal Form. We start with a definition.
A minterm in the symbols x1, x2 . . . , xn is a Boolean expression of the
form y1 ∧ y2 ∧ · · · ∧ yn, where each yi is either xi or x̄i.

Given any Boolean function f : Zn
2 → Z2 that is not identically

zero, it can be represented

f(x1, . . . , xn) = m1 ∨m2 ∨ · · · ∨mk ,

where m1,m2, . . . ,mk are all the minterms mi = y1 ∧ y2 ∧ · · · ∧ yn such
that f(a1, a2, . . . , an) = 1, where yj = xj if aj = 1 and yj = x̄j if aj = 0.
That representation is called disjunctive normal form of the Boolean
function f .

Example: We have seen that the exclusive-or can be represented
x1 Y x2 = (x1 ∧ x̄2) ∨ (x̄1 ∧ x2). This provides a way to implement the
exclusive-or with a combinatorial circuit as shown in figure 8.4.

8.2.3. Conjunctive Normal Form. A maxterm in the symbols
x1, x2 . . . , xn is a Boolean expression of the form y1∨y2∨· · ·∨yn, where
each yi is either xi or x̄i.

8.2. BOOLEAN FUNCTIONS, APPLICATIONS 124

x1

x2

x2x1

Figure 8.4. Exclusive-Or.

Given any Boolean function f : Zn
2 → Z2 that is not identically

one, it can be represented

f(x1, . . . , xn) = M1 ∧M2 ∧ · · · ∧Mk ,

where M1,M2, . . . ,Mk are all the maxterms Mi = y1 ∨ y2 ∨ · · · ∨ yn

such that f(a1, a2, . . . , an) = 0, where yj = xj if aj = 0 and yj = x̄j if
aj = 1. That representation is called conjunctive normal form of the
Boolean function f .

Example: The conjunctive normal form of the exclusive-or is

x1 Y x2 = (x1 ∨ x2) ∧ (x̄1 ∨ x̄2) .

8.2.4. Functionally Complete Sets of Gates. We have seen
how to design combinatorial circuits using AND, OR and NOT gates.
Here we will see how to do the same with other kinds of gates. In the
following gates will be considered as functions from Zn

2 into Z2 intended
to serve as building blocks of arbitrary boolean functions.

A set of gates {g1, g2, . . . , gk} is said to be functionally complete
if for any integer n and any function f : Zn

2 → Z2 it is possible to
construct a combinatorial circuit that computes f using only the gates
g1, g2, . . . , gk. Example: The result about the existence of a disjunctive
normal form for any Boolean function proves that the set of gates
{AND,OR, NOT} is functionally complete. Next we show other sets
of gates that are also functionally complete.

1. The set of gates {AND, NOT} is functionally complete. Proof:
Since we already know that {AND, OR, NOT} is functionally
complete, all we need to do is to show that we can compute
x ∨ y using only AND and NOT gates. In fact:

x ∨ y = x̄ ∧ ȳ ,

hence the combinatorial circuit of figure 8.5 computes x ∨ y.

8.2. BOOLEAN FUNCTIONS, APPLICATIONS 125

x1 x2
x2

x1

Figure 8.5. OR with AND and NOT.

2. The set of gates {OR, NOT} is functionally complete. The
proof is similar:

x ∧ y = x̄ ∨ ȳ ,

hence the combinatorial circuit of figure 8.6 computes x∨y.

x1
x1 x2

x2

Figure 8.6. AND with OR and NOT.

3. The gate NAND, denoted ↑ and defined as

x1 ↑ x2 =

{
0 if x1 = 1 and x2 = 1

1 otherwise,

is functionally complete.

x1
x1 x2

x2

Figure 8.7. NAND gate.

Proof: Note that x ↑ y = x ∧ y. Hence x̄ = x ∧ x = x ↑ x,
so the NOT gate can be implemented with a NAND gate. Also
the OR gate can be implemented with NAND gates: x ∨ y =
x̄ ∧ ȳ = (x ↑ x) ↑ (y ↑ y). Since the set {OR, NOT} is func-
tionally complete and each of its elements can be implemented
with NAND gates, the NAND gate is functionally complete.

8.2.5. Minimization of Combinatorial Circuits. Here we ad-
dress the problems of finding a combinatorial circuit that computes a
given Boolean function with the minimum number of gates. The idea
is to simplify the corresponding Boolean expression by using algebraic

8.2. BOOLEAN FUNCTIONS, APPLICATIONS 126

x y

x
x

x

y

Figure 8.8. NOT and OR functions implemented with
NAND gates.

properties such as (E ∧ a) ∨ (E ∧ ā) = E and E ∨ (E ∧ a) = E, where
E is any Boolean expression. For simplicity in the following we will
represent a ∧ b as ab, so for instance the expressions above will look
like this: Ea ∨ Eā = E and E ∨ Ea = E.

Example: Let F (x, y, z) the Boolean function defined by the follow-
ing table:

x y z f(x,y,z)

1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

Its disjunctive normal form is f(x, y, z) = xyz ∨ xyz̄ ∨ xȳz̄. This
functions can be implemented with the combinatorial circuit of figure
8.9.

z

y
x

.f(x,y,z)

Figure 8.9. A circuit that computes f(x, y, z) = xyz ∨
xyz̄ ∨ xȳz̄.

8.2. BOOLEAN FUNCTIONS, APPLICATIONS 127

But we can do better if we simplify the expression in the following
way:

f(x, y, z) =

xy︷ ︸︸ ︷
xyz ∨ xyz̄ ∨xȳz̄

= xy ∨ xȳz̄

= x(y ∨ ȳz̄)

= x(y ∨ ȳ)(y ∨ z̄)

= x(y ∨ z̄) ,

which corresponds to the circuit of figure 8.10.

f(x,y,z)
.y

x

z

Figure 8.10. A simpler circuit that computes
f(x, y, z) = xyz ∨ xyz̄ ∨ xȳz̄.

8.2.6. Multi-Output Combinatorial Circuits. Example: Half-
Adder. A half-adder is a combinatorial circuit with two inputs x and
y and two outputs s and c, where s represents the sum of x and y and
c is the carry bit. Its table is as follows:

x y s c
1 1 0 1
1 0 1 0
0 1 1 0
0 0 0 0

So the sum is s = xY y (exclusive-or) and the carry bit is c = x∧ y.
Figure 8.11 shows a half-adder circuit.

y
s

c

x

Figure 8.11. Half-adder circuit.

CHAPTER 9

Automata, Grammars and Languages

9.1. Finite State Machines

9.1.1. Finite-State Machines. Combinatorial circuits have no
memory or internal states, their output depends only on the current
values of their inputs. Finite state machines on the other hand have
internal states, so their output may depend not only on its current
inputs but also on the past history of those inputs.

A finite-state machine consists of the following:

1. A finite set of input symbols I.
2. A finite set of output symbols O.
3. A finite set of states S.
4. A next-state function f : S× I → S.
5. An output function g : S× I → O.
6. An initial state σ ∈ S.

We represent the machine M = (I,O, S, f, g, σ)

Example: We describe a finite state machine with two input symbols
I = {a, b} and two output symbols O = {0, 1} that accepts any string
from I∗ and outputs as many 1’s as a’s there are at the beginning of the
string, then it outputs only 0’s. The internal states are S = {σ0, σ1},
where σ0 will the initial state—we interpret it as not having seeing any
“b” yet; then the machine will switch to σ1 as soon as the first “b”
arrives. The next-state and output functions are as follows:

f g
I a b a b

S

σ0 σ0 σ1 1 0
σ1 σ1 σ1 0 0

128

9.1. FINITE STATE MACHINES 129

This finite-state machine also can be represented with the following
transition diagram:

start // GFED@ABCσ0

a/1

§§
b/0

// GFED@ABCσ1

a/0

§§

b/0
gg

The vertices of the diagram are the states. If in state σ an input
i causes the machine to output o and go to state σ′ then we draw an
arrow from σ to σ′ labeled i/o.

Example: The following example is similar to the previous one but
the machine outputs 1 only after a change of input symbol, otherwise
it outputs 0:

start // GFED@ABCσ0

a/0

~~||
||

||
||

|
b/0

ÃÃB
BB

BB
BB

BB

GFED@ABCσ1

a/0

33
b/1

,, GFED@ABCσ2

b/0

kk
a/1

mm

Example: A Serial-Adder. A serial adder accepts two bits and out-
puts its sum. So the input set is I = {00, 01, 10, 11}. The output
set is O = {0, 1}. The set of states is S = {NC,C}, which stands
for “no carry” and “carry” respectively. The transition diagram is the
following:

start // ONMLHIJKNC

00/0

µµ

01/1

§§

10/1

LL

11/0
,, GFED@ABCC

01/0

§§ 10/1
rr

11/1

XX00/1

ll

9.1.2. Finite-State Automata. A finite-state automaton is a
finite-state machine with only two output symbols: O = {0, 1}. Those
states for which the last output is 1 are called accepting states.

An alternative definition is as follows. A finite-state automaton
consists of:

1. A finite set of input symbols I.

9.1. FINITE STATE MACHINES 130

2. A finite set of states S.
3. A next-state function f : S× I → S.
4. A subset A of S of accepting states.
5. An initial state σ ∈ S.

We represent the automaton A = (I, S, f,A, σ). We say that an au-
tomaton accepts a given string of input symbols if that strings takes
the automaton from the starting state to an accepting state.

Example: The following transition diagrams represent an automa-
ton accepting any string of a’s and b’s ending with an a. The first
diagram uses the same scheme as with finite-state machines:

start // GFED@ABCσ0

b/0

§§ a/1
,, GFED@ABCσ1

b/0

ll

a/1

§§

The second kind of diagram omits the outputs and represents the
accepting states with double circles:

start // GFED@ABCσ0

b

§§ a ,, GFED@ABC?>=<89:;σ1

b

ll

a

§§

Two finite-state automata that accept exactly the same set of strings
are said to be equivalent. For instance the following automaton also
accepts precisely strings of a’s abd b’s that end with an a, so it is
equivalent to the automaton shown above:

start // GFED@ABCσ0

b

§§ a ,, GFED@ABC?>=<89:;σ1

b

ll
a // GFED@ABC?>=<89:;σ2

b

ZZ

a

§§

Example: The following automaton accepts strings of a’s and b’s
with exactly an even number of a’s:

9.1. FINITE STATE MACHINES 131

start // GFED@ABC?>=<89:;E

b

§§ a ++ GFED@ABCO
a

kk

b

§§

Example: The following automaton accepts strings starting with
one a followed by any number of b’s:

start // GFED@ABCσ0
a //

b

DD
GFED@ABC?>=<89:;σ1

a //

b

§§ GFED@ABCσ2

a

§§

b
gg

Example: The following automaton accepts strings ending with aba:

start // GFED@ABCσ0
a //

b

RR
GFED@ABCσ1

b //

a

FF

b // GFED@ABCσ2

a ,,

b

xx GFED@ABC?>=<89:;σ3

b

ll

a

ZZ

9.2. LANGUAGES AND GRAMMARS 132

9.2. Languages and Grammars

9.2.1. Formal Languages. Consider algebraic expressions writ-
ten with the symbols A = {x, y, z, +, ∗, (,)}. The following are some
of them: “x + y ∗ y”, “y + (x ∗ y + y) ∗ x”, “(x + y) ∗ x + z”, etc.
There are however some strings of symbols that are not legitimate al-
gebraic expressions, because they have some sort of syntax error, e.g.:
“(x + y”, “z + +y ∗ x”, “x(∗y) + z”, etc. So syntactically correct al-
gebraic expressions are a subset of the whole set A∗ of possible strings
over A.

In general, given a finite set A (the alphabet), a (formal) language
over A is a subset of A∗ (set of strings of A).

Although in principle any subset of A∗ is a formal language, we are
interested only in languages with certain structure. For instance: let
A = {a, b}. The set of strings over A with an even number of a’s is a
language over A.

9.2.2. Grammars. A way to determine the structure of a lan-
guage is with a grammar. In order to define a grammar we need two
kinds of symbols: non-terminal, used to represent given subsets of the
language, and terminal, the final symbols that occur in the strings
of the language. For instance in the example about algebraic expres-
sions mentioned above, the final symbols are the elements of the set
A = {x, y, z, +, ∗, (,)}. The non-terminal symbols can be chosen to
represent a complete algebraic expression (E), or terms (T) consisting
of product of factors (F). Then we can say that an algebraic expression
E consists of a single term

E → T ,

or the sum of an algebraic expression and a term

E → E + T .

A term may consists of a factor or a product of a term and a factor

T → F

T → T ∗ F

A factor may consists of an algebraic expression between parenthesis

9.2. LANGUAGES AND GRAMMARS 133

F → (E),

or an isolated terminal symbol

F → x,

F → y,

F → z.

Those expressions are called productions, and tell us how we can
generate syntactically correct algebraic expressions by replacing suc-
cessively the symbols on the left by the expressions on the right. For
instance the algebraic expression “‘y +(x∗y +y)∗x” can be generated
like this:

E ⇒ E +T ⇒ T +T ⇒ F +T ⇒ y+T ⇒ y+T ∗F ⇒ y+F ∗F ⇒
y+(E)∗F ⇒ y+(E+T)∗F ⇒ y+(T +T)∗F ⇒ y+(T ∗F +T)∗F ⇒
y + (F ∗F + T) ∗F ⇒ y + (x ∗T + T) ∗F ⇒ y + (x ∗F + T) ∗F ⇒
y + (x ∗ y + T) ∗ F ⇒ y + (x ∗ y + F) ∗ T ⇒ y + (x ∗ y + y) ∗ F ⇒
y + (x ∗ y + y) ∗ x .

In general a phrase-structure grammar (or simply, grammar) G
consists of

1. A finite set N of nonterminal symbols.
2. A finite set T of terminal symbols, where N ∩ T = ∅.
3. A finite subset P of [(N ∪ T)∗ − T ∗] × (N ∪ T)∗ called the set

of productions.
4. A starting symbol σ ∈ N .

We write G = (N, T, P, σ).

A production (A,B) ∈ P is written:

A → B .

The right hand side of a production can be any combination of
terminal and nonterminal symbols. The left hand side must contain at
least one nonterminal symbol.

9.2. LANGUAGES AND GRAMMARS 134

If α → β is a production and xαy ∈ (N ∪ T)∗, we say that xβy is
directly derivable from xαy, and we write

xαy ⇒ xβy .

If we have α1 ⇒ α2 ⇒ · · · ⇒ αn (n ≥ 0), we say that αn is derivable

from α1, and we write α1
∗⇒ αn (by convention also α1

∗⇒ α1.)

Given a grammar G, the language L(G) associated to this grammar
is the subset of T ∗ consisting of all strings derivable from σ.

9.2.3. Backus Normal Form. The Backus Normal Form or BNF
is an alternative way to represent productions. The production S → T
is written S ::= T . Productions of the form S ::= T1, S ::= T2, . . . ,
S ::= Tn, can be combined as

S ::= T1 | T2 | · · · | Tn .

So, for instance, the grammar of algebraic expressions defined above
can be written in BNF as follows:

E ::= T | E + T

T ::= F | T ∗ F

F ::= (E) | x | y | z

9.2.4. Combining Grammars. Let G1 = (N1, T1, P1, σ1) and
G2 = (N2, T2, P2, σ2) be two grammars, where N1 and N2 are dis-
joint (rename nonterminal symbols if necessary). Let L1 = L(G1) and
L2 = L(G2) be the languages associated respectively to G1 and G2.
Also assume that σ is a new symbol not in N1 ∪N2 ∪ T1 ∪ T2. Then

1. Union Rule: the language union of L1 and L1

L1 ∪ L2 = {α | α ∈ L1 or α ∈ L1}
starts with the two productions

σ → σ1 , σ → σ2 .

2. Product Rule: the language product of L1 and L2

L1L2 = {αβ | α ∈ L1, β ∈ L1}

9.2. LANGUAGES AND GRAMMARS 135

where αβ = string concatenation of α and β, starts with the
production

σ → σ1σ2 .

3. Closure Rule: the language closure of L1

L∗1 = L0
1 ∪ L1

1 ∪ L2
1 ∪ . . .

were L0
1 = {λ} and Ln

1 = {α1α2 . . . αn | αk ∈ L1, k = 1, 2, . . . , n}
(n = 1, 2, . . .), starts with the two productions

σ → σ1σ , σ → λ .

9.2.5. Types of Grammars (Chomsky’s Classification). Let
G be a grammar and let λ denote the null string.

0. G is a phrase-structure (or type 0) grammar if every production
is of the form:

α → β ,

where α ∈ (N ∪ T)∗ − T ∗, δ ∈ (N ∪ T)∗.

1. G is a context-sensitive (or type 1) grammar if every production
is of the form:

αAβ → αδβ

(i.e.: we may replace A with δ in the context of α and β), where
α, β ∈ (N ∪ T)∗, A ∈ N , δ ∈ (N ∪ T)∗ − {λ}.

2. G is a context-free (or type 2) grammar if every production is
of the form:

A → δ ,

where A ∈ N , δ ∈ (N ∪ T)∗.

3. G is a regular (or type 3) grammar if every production is of the
form:

A → a or A → aB or A → λ ,

where A,B ∈ N , a ∈ T .

A language L is context-sensitive (respectively context-free, regu-
lar) if there is a context-sensitive (respectively context-free, regular)
grammar G such that L = L(G).

The following examples show that these grammars define different
kinds of languages.

9.2. LANGUAGES AND GRAMMARS 136

Example: The following language is type 3 (regular):

L = {anbm | n = 1, 2, 3 . . . ; m = 1, 2, 3, . . . } .

A type 3 grammar for that language is the following: T = {a, b},
N = {σ, S}, with productions:

σ → aσ , σ → aS , S → bS , S → b ,

and starting symbol σ.

Example: The following language is type 2 (context-free) but not
type 3:

L = {anbn | n = 1, 2, 3, . . . } .

A type 2 grammar for that language is the following:

T = {a, b}, N = {σ}, with productions

σ → aσb , σ → ab ,

and starting symbol σ.

Example: The following language is type 1 (context-sensitive) but
not type 2:

L = {anbncn | n = 1, 2, 3, . . . } .

A type 1 grammar for that language is the following:

T = {a, b, c}, N = {σ,A,C}, with productions

σ → abc , σ → aAbc ,
A → abC , A → aAbC ,
Cb → bC , Cc → cc .

and starting symbol σ.

There are also type 0 languages that are not type 1, but they harder
to describe.

9.2.6. Equivalent Grammars. Two grammars G and G′ are equiv-
alent if L(G) = L(G′).

Example: The grammar of algebraic expressions defined at the be-
ginning of the section is equivalent to the following one:

Terminal symbols = {x, y, z, +, ∗, (,)}, nonterminal symbols = {E, T, F, L},
with the productions

E → T, E → E + T,

9.2. LANGUAGES AND GRAMMARS 137

T → F, T → T ∗ F

F → (E), F → L,

L → x, L → y, L → z,

and starting symbol E.

9.2.7. Context-Free Interactive Lindenmayer Grammar. A
context-free interactive Lindenmayer grammar is similar to a usual
context-free grammar with the difference that it allows productions
of the form A → B where A ∈ N ∪ T (in a context free grammar A
must be nonterminal). Its rules for deriving strings also are different.
In a context-free interactive Lindenmayer grammar, to derive string β
from string α, all symbols in α must be replaced simultaneously.

Example: The von Koch Snowflake. The von Koch Snowflake is
a fractal curve obtained by starting with a line segment and then at
each stage transforming all segments of the figure into a four segment
polygonal line, as shown below. The von Koch Snowflake fractal is the
limit of the sequence of curves defined by that process.

Figure 9.1. Von Koch Snowflake, stages 1–3.

Figure 9.2. Von Koch Snowflake, stages 4–5

A way to represent an intermediate stage of the making of the
fractal is by representing it as a sequence of movements of three kinds:
’d’= draw a straight line (of a fix length) in the current direction, ’r’=
turn right by 60◦, ’l’= turn left by 60◦. For instance we start with a
single horizontal line d, which we then transform into the polygonal
dldrrdld, then each segment is transformed into a polygonal according
to the rule d → dldrrdld, so we get

dldrrdldldldrrdldrrdldrrdldldldrrdld

9.2. LANGUAGES AND GRAMMARS 138

If we represent by D a segment that may no be final yet, then the
sequences of commands used to build any intermediate stage of the
curve can be defined with the following grammar:

N = {D}, T = {d, r, l}, with productions:

D → DlDrrDlD , D → d , r → r , l → l ,

and starting symbol D.

Example: The Peano curve. The Peano curve is a space filling curve,
i.e., a function f : [0, 1] → [0, 1]2 such that the range of f is the whole
square [0, 1]2, defined as the limit of the sequence of curves shown in
the figures below.

Figure 9.3. Peano curve, stages 1–4.

Each element of that sequence of curves can be described as a se-
quence of 90◦ arcs drawn either anticlockwise (’l’) or clockwise (’r’).
The corresponding grammar is as follows:

T = {l, r}, N = {C,L,R}, with productions

C → LLLL ,

L → RLLLR , R → RLR ,

L → l , R → r , l → l , r → r ,

and starting symbol C.

9.3. REGULAR LANGUAGES 139

9.3. Regular Languages

9.3.1. Properties of Regular Languages. Recall that a regu-
lar language is the language associated to a regular grammar, i.e., a
grammar G = (N, T, P, σ) in which every production is of the form:

A → a or A → aB or A → λ ,

where A,B ∈ N , a ∈ T .

Regular languages over an alphabet T have the following properties
(recall that λ = ’empty string’, αβ = ’concatenation of α and β’, αn =
’α concatenated with itself n times’):

1. ∅, {λ}, and {a} are regular languages for all a ∈ T .

2. If L1 and L2 are regular languages over T the following lan-
guages also are regular:

L1 ∪ L2 = {α | α ∈ L1 or α ∈ L2}
L1L2 = {αβ | α ∈ L1, β ∈ L2}
L∗1 = {α1 . . . αn | αk ∈ L1, n ∈ N} ,

T ∗ − L1 = {α ∈ T ∗ | α /∈ L1} ,

L1 ∩ L2 = {α | α ∈ L1 and α ∈ L2} .

We justify the above claims about L1 ∪L2, L1L2 and L∗1 as follows.
We already know how to combine two grammars (see 9.2.4) L1 and L2

to obtain L1∪L2, L1L2 and L∗1, the only problem is that the rules given
in section 9.2.4 do no have the form of a regular grammar, so we need
to modify them slightly (we use the same notation as in section 9.2.4):

1. Union Rule: Instead of adding σ → σ1 and σ → σ2, add all
productions of the form σ → RHS, where RHS is the right
hand side of some production (σ1 → RHS) ∈ P1 or (σ2 →
RHS) ∈ P2.

2. Product Rule: Instead of adding σ → σ1σ2, use σ1 as starting
symbol and replace each production (A → a) ∈ P1 with A →
aσ2 and (A → λ) ∈ P1 with A → σ2.

3. Closure Rule: Instead of adding σ → σ1σ and σ → λ, use σ1

as starting symbol, add σ1 → λ, and replace each production
(A → a) ∈ P1 with A → aσ1 and (A → λ) ∈ P1 with A → σ1.

9.3. REGULAR LANGUAGES 140

9.3.2. Regular Expressions. Regular languages can be charac-
terized as languages defined by regular expressions. Given an alphabet
T , a regular expression over T is defined recursively as follows:

1. ∅, λ, and a are regular expressions for all a ∈ T .

2. If R and S are regular expressions over T the following expres-
sions are also regular: (R), R + S, R · S, R∗.

In order to use fewer parentheses we assign those operations the fol-
lowing hierarchy (from do first to do last): ∗, ·, +. We may omit the
dot: α · β = αβ.

Next we define recursively the language associated to a given regular
expression:

L(∅) = ∅ ,

L(λ) = {λ} ,

L(a) = {a} for each a ∈ T ,

L(R + S) = L(R) ∪ L(S) ,

L(R · S) = L(R)L(S) (language product),

L(R∗) = L(R)∗ (language closure).

So, for instance, the expression a∗bb∗ represents all strings of the
form anbm with n ≥ 0, m > 0, a∗(b + c) is the set of strings consisting
of any number of a’s followed by a b or a c, a(a + b)∗b is the set of
strings over {a, b} than start with a and end with b, etc.

Another way of characterizing regular languages is as sets of strings
recognized by finite-state automata, as we will see next. But first we
need a generalization of the concept of finite-state automaton.

9.3.3. Nondeterministic Finite-State Automata. A nonde-
terministic finite-state automaton is a generalization of a finite-state
automaton so that at each state there might be several possible choices
for the “next state” instead of just one. Formally a nondeterministic
finite-state automaton consists of

1. A finite set of input symbols I.
2. A finite set of states S.
3. A next-state function f : S× I → P(S).
4. A subset A of S of accepting states.

9.3. REGULAR LANGUAGES 141

5. An initial state σ ∈ S.

We represent the automaton A = (I, S, f,A, σ). We say that a nonde-
terministic finite-state automaton accepts a given string of input sym-
bols if in its transition diagram there is a path from the starting state
to an accepting state with its edges labeled by the symbols of the given
string. A path (which we can express as a sequence of states) whose
edges are labeled with the symbols of a string is said to represent the
given string.

Example: Consider the nondeterministic finite-state automaton de-
fined by the following transition diagram:

start //GFED@ABCσ

b

¦¦
a // GFED@ABCC

b

§§
b // GFED@ABC?>=<89:;F

This automaton accepts precisely the strings of the form bnabm,
n ≥ 0, m > 0. For instance the string bbabb is represented by the path
(σ, σ, σ, C, C, F). Since that path ends in an accepting state, the string
is accepted by the automaton.

Next we will see that there is a precise relation between regular
grammars and nondeterministic finite-state automata.

Regular grammar associated to a nondeterministic finite-state au-
tomaton. Let A be a non-deterministic finite-state automaton given as
a transition diagram. Let σ be the initial state. Let T be the set of
inputs symbols and let N be the set of states. Let P be the set of
productions

S → xS ′

if there is an edge labeled x from S to S ′ and

S → λ

if S is an accepting state. Let G be the regular grammar

G = (N, T, P, σ) .

Then the set of strings accepted by A is precisely L(G).

Example: For the nondeterministic automaton defined above the
corresponding grammar will be:

9.3. REGULAR LANGUAGES 142

T = {a, b}, N = {σ,C, F}, with the productions

σ → bσ , σ → aC , C → bC , C → bF , F → λ .

The string bbabb can be produced like this:

σ ⇒ bσ ⇒ bbσ ⇒ bbaC ⇒ bbabC ⇒ bbabbF ⇒ bbabb .

Nondeterministic finite-state automaton associated to a given regu-
lar grammar. Let G = (N,T, P, σ) be a regular grammar. Let

I = T

S = N ∪ {F} , where F /∈ N ∪ T

f(S, x) = {S ′ | S → xS ′ ∈ P} ∪ {F | S → x ∈ P}
A = {F} ∪ {S | S → λ ∈ P} .

Then the nondeterministic finite-state automaton A = (I, S, f, A, σ)
accepts precisely the strings in L(G).

9.3.4. Relationships Between Regular Languages and Au-
tomata. In the previous section we saw that regular languages coin-
cide with the languages accepted by nondeterministic finite-state au-
tomata. Here we will see that the term “nondeterministic” can be
dropped, so that regular languages are precisely those accepted by
(deterministic) finite-state automata. The idea is to show that given
any nondeterministic finite-state automata it is possible to construct
an equivalent deterministic finite-state automata accepting exactly the
same set of strings. The main result is the following:

Let A = (I, S, f,A, σ) be a nondeterministic finite-state automaton.
Then A is equivalent to the finite-state automaton A′ = (I′, S′, f ′,A′, σ′),
where

1. S′ = P(S).
2. I′ = I.
3. σ′ = {σ}.
4. A′ = {X ⊆ S | X ∩A 6= ∅}.
5. f ′(X, x) =

⋃
S∈X

f(S, x) , f ′(∅, x) = ∅ .

9.3. REGULAR LANGUAGES 143

Example: Find a (deterministic) finite-state automaton A′ equiva-
lent to the following nondeterministic finite-state automaton A:

start //GFED@ABCσ

b

¦¦
a // GFED@ABCC

b

§§
b // GFED@ABC?>=<89:;F

Answer : The set of input symbols is the same as that of the given
automaton: I′ = I = {a, b}. The set of states is the set of subsets of
S = {σ,C, F}, i.e.:

S′ = {∅, {σ}, {C}, {F}, {σ,C}, {σ, F}, {C,F}, {σ,C, F}} .

The starting state is {σ}. The accepting states of A′ are the elements
of S′ containing some accepting state of A:

A′ = {{F}, {σ, F}, {C,F}, {σ,C, F}} .

Then for each element X of S′ we draw an edge labeled x from X

to
⋃

S∈X

f(S, x) (and from ∅ to ∅):

start //GF ED@A BC{σ} a //

b

©© GF ED@A BC{C}
a

²²
b

¾¾6
66

66
66

66
66

66
66

66
66

GF ED@A BC?> =<89 :;{σ,C, F}aoo

b

©©

GF ED@A BC?> =<89 :;{σ, F}

a
;;xxxxxxxx

b

OO

GFED@ABC∅
a

22
b

rr GF ED@A BC{σ,C}

a
ddIIIIIIIII

b

OO

GF ED@A BC?> =<89 :;{F}

a

LL

b

RR

GF ED@A BC?> =<89 :;{C,F}
a

ddIIIIIIIIIII
b

©©

We notice that some states are unreachable from the starting state.
After removing the unreachable states we get the following simplified
version of the finite-state automaton:

start //GF ED@A BC{σ} a //

b

©© GF ED@A BC{C}
a

88
b //GF ED@A BC?> =<89 :;{C,F} a //

b

©© GFED@ABC∅
a

¨¨

b
ee

9.3. REGULAR LANGUAGES 144

So, once proved that every nondeterministic finite-state automaton
is equivalent to some deterministic finite-state automaton, we obtain
the main result of this section: A language L is regular if and only if
there exists a finite-state automaton that accepts precisely the strings
in L.

APPENDIX A

A.1. Efficient Computation of Powers Modulo m

We illustrate an efficient method of computing powers modulo m
with an example. Assume that we want to compute 3547 mod 10.
First write 547 in base 2: 1000100011, hence 547 = 29 + 25 + 2 + 1 =
((24 +1) 24 +1) 2+1, so: 3547 = ((324 ·3)24 ·3)2 ·3. Next we compute the
expression beginning with the inner parenthesis, and reducing modulo
10 at each step: 32 = 9 (mod 10), 322

= 92 = 81 = 1 (mod 10),

323
= 12 = 1 (mod 10), 324

= 12 = 1 (mod 10), 324 · 3 = 1 · 3 = 3
(mod 10), etc. At the end we find 3547 = 7 (mod 10).

The algorithm in pseudocode would be like this:

1: procedure pow mod(a,x,m) // computes a^x mod m

2: p := 1

3: bx := binary array(x) // x as a binary array

4: t := a mod m

5: for k := 1 to length(bx) do
6: begin
7: p := (p * p) mod m

8: if bx[k] = 1 then
// if k-th binary digit of x is 1

9: p := (p * t) mod m

10: end
11: return(p)
12: end pow mod

145

A.1. EFFICIENT COMPUTATION OF POWERS MODULO M 146

The following is a program in C implementing the algorithm:

int pow(int a, int x, int m) {

int p = 1;

int y = (1 << (8 * size of(int) - 2));

a %= m;

while (!(y & x)) y >>= 1;

while (y) {

p *= p;

p %= m;

if (x & y) {

p *= a;

p %= m;

}

y >>= 1;

}

return p;

}

The following is an alternative algorithm equivalent to running
through the binary representation of the exponent from right to left
instead of left to right:

1: procedure pow mod(a,x,m) // computes a^x mod m

2: p := 1

3: t := a mod m

4: while x > 0 do
5: begin
6: if x is odd then
7: p := (p * t) mod m

8: t := (t * t) mod m

9: x := floor(x/2)

10: end
11: return(p)
12: end pow mod

A.2. MACHINES AND LANGUAGES 147

A.2. Machines and Languages

A.2.1. Turing Machines. A Turing machine is a theoretical de-
vice intended to define rigorously the concept of algorithm. It consists
of

1. An infinite tape made of a sequence of cells. Each cell may be
empty or may contain a symbol from a given alphabet.

2. A control unit containing a finite set of instructions.
3. A tape head able to read and write (or delete) symbols from the

tape.

Tape head

Tape

control

unit

Figure A.1. Turing Machine.

Each machine instruction contains the following five parts:

1. The current machine state.
2. A tape symbol read from the current tape cell.
3. A tape symbol to write into the current tape cell.
4. A direction for the tape head to move: L = ’move one cell to

the left’, R = ’move one cell to the right’, S = ’stay in the
current cell’.

5. The next machine state.

Turing machines are generalizations of finite-state automata. A
finite-state automaton is just a Turing machine whose tape head moves
always from left to right and never writes to the tape. The input of
the finite-state automaton is presented as symbols written in the tape.

In general we make the following assumptions:

1. An input is represented on the tape by placing the letters of
the strings in contiguous tape cells. All other cells contain the
blank symbol, which we may denote λ.

A.2. MACHINES AND LANGUAGES 148

2. The tape is initially positioned at the leftmost cell of the input
string unless specified otherwise.

3. There is one start state.
4. There is one halt state, which we denote by “Halt”.

The execution of a Turing machine stops when it enters the Halt state
or when it enters a state for which there is no valid move. The output
of the Turing machine is the contents of the tape when the machine
stops.

We say that an input string is accepted by a Turing machine if
the machine enters the Halt state. Otherwise the string is rejected.
This can happen in two ways: by entering a state other than the Halt
state from which there is no move, or by running forever (for instance
executing an infinite loop).

If a Turing machine has at least two instructions with the same state
and input letter, then the machine is nondeterministic. Otherwise it is
deterministic.

Finite-State Automata. A finite-state automata can be interpreted
as a Turing machine whose tape head moves only from left to right and
never writes to the tape.

Pushdown Automata. A pushdown automaton is finite-state au-
tomaton with a stack, i.e., a storage structure in which symbols can be
put and extracted from it by two operations: push (place on the top of
the stack) and pop (take from the top of the stack)—consequently the
last symbol put into the stack is the first symbol taken out. Addition-
ally there is a third operation, nop, that leaves the stack intact. The
next state function takes into account not only the current state and
the symbol read from the input, but also the symbol at the top of the
stack. After reading the next input symbol and the symbol at the top
of the stack, the automaton executes a stack operation and goes to the
next state. Initially there is a single symbol in the stack.

Linearly Bounded Automata. A linearly bounded automaton is a
Turing machine whose tape is limited to the size of its input string
plus two boundary cells that may not be changed.

Computable Functions. Consider a Turing machine T working on
symbols from an alphabet of only one symbol A = {|} (“stroke”). Let
f : N → N the function defined so that f(n) = m means that if the

A.2. MACHINES AND LANGUAGES 149

initial input of T consists of a string of n + 1 strokes, the output of T
is a string of m + 1 strokes. We say that f is computed by the Turing
machine T . A computable function is a function computed by some
Turing machine. A computable function f(n) halts for a given value
of its argument n if T with input n + 1 strokes halts. A computable
function f is total if f(n) halts for every n.

An effective enumeration of a set is a listing of its elements by an
algorithm.

A.2.2. Hierarchy of Languages. Here we mention a hierarchy
of languages that includes (and extends) Chomsky’s classification, in
increasing order of inclusion.

1. Regular languages. They are recognized by finite-state automata.
Example: {ambn | m,n = 1, 2, 3 . . . }.

2. Deterministic context-free languages, recognized by determinis-
tic pushdown automata. Example: {anbn | n = 1, 2, 3 . . . }.

3. Context-free languages, recognized by nondeterministic push-
down automata. Example: palindromes over {a, b}.

4. Context-sensitive languages, languages without λ recognized by
linearly bounded automata. Example: {anbncn | n = 1, 2, 3 . . . }

5. Unrestricted or phrase-structure grammars, recognized by Tur-
ing machines.

6. Recursively enumerable languages. A language is recursively
enumerable if there is a Turing machine that outputs all the
strings of the language. Example: {an | fn(n) halts}, where
f0, f1, f2, . . . is an effective enumeration of all computable func-
tions.

7. Nongramatical languages, languages that are not definable by
any grammar and cannot be recognized by Turing machines.
Example: {an | fn is total}.

