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Abstract. We discuss a vulnerability involving a category of attribution methods used to provide
explanations for the outputs of convolutional neural networks working as classifiers. It is known

that this type of networks are vulnerable to adversarial attacks, in which imperceptible perturba-
tions of the input may alter the outputs of the model. In contrast, here we focus on effects that

small modifications in the model may cause on the attribution method without altering the model

outputs.

1. Introduction

The black box nature of current artificial intelligence (AI) models is considered problematic in areas
with low tolerance to errors, such as Computer Aided Diagnosis (CAD) and autonomous vehicles.
To palliate the effect of mistakes and increase confidence in the model, explanation methods have
been developed to justify the model outputs [2].

A class of explanation methods widely used on convolutional neural networks (CNN) take the form
of attribution methods that determine how much different parts of the input of a model contribute to
produce its final output. In general, the networks on which these methods are used consist of several
convolutional layers that produce a vector of outputs z = (z1, z2, . . . , zn), which is then transformed
with a softmax function into a vector of probabilities y = (y1, y2, . . . , yn), where n is the number
of classes. (Figure 1). Each post-softmax output can be interpreted as the amount of confidence
about the input sample belonging to each of the several classes 1, 2, . . . , n. In classification tasks,
the output with maximum value corresponds to the class to which the input sample is considered
to belong.

Gradient-based attribution methods for convolutional networks work by computing the gradient
∇xS = (∂S/∂x1, . . . , ∂S/∂xN ) of an output or “score” S of the network respect to a set of inputs
or unit activations x = (x1, . . . , xN ), where N is the number of inputs or internal units, and S
may represent either one of the pre-softmax outputs zi, or one of the post-softmax outputs yi. The
assumption is that each derivative ∂S/∂xi provides a measure of the impact of xi on the score S. A
few examples of attribution methods using this approach are Grad-CAM [11], Integrated Gradients
(IG) [14], and RSI Grad-CAM [9].

In [8] there is a detailed analysis of the differences between using gradients of pre-softmax versus
post-softmax outputs. In that paper it is argued that the post-softmax version of gradient-based
methods is more robust and not affected by a vulnerability suffered by the pre-softmax version.
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Figure 1. Structure of a typical classifier network. After a number of convolutional
blocks this kind of network ends with a fully connected network producing a (pre-
softmax) output z, followed by a softmax activation function with (post-softmax)
output y.

Here we will provide a brief overview of the main argument leading to that conclusion, and a way
in which the vulnerability could be exploited.

2. Previous Work

The possibility of fooling a classification network with adversarial attacks by using slightly modified
inputs is well known [1,4]. On the other hand, the possibility of altering the output of an attribution
method without modifying the model predictions has not been studied in the same extent, but there
are also some findings in that direction. Since terminology may vary across works we must clarify
that we use the term attribution method where other authors use explanation or interpretation
method. We made this decision to stress the fact that an attribution method may not quite fulfill
human expectations for an explanation, in particular Grad-CAM-like methods seem to do a good
job in locating the parts of an input containing a sample of a class, i.e., it helps to determine where
the object corresponding to the class predicted by the model is in the input image, but that does
not necessarily explains why the output of the network is what it is. However, when citing a work
we keep the authors terminology in this regard.

In [3] adversarial attacks against interpretation methods are tried and tested. They work in a
similar way to adversarial attacks against network predictions, the main idea is to search for small
perturbations of sample inputs that change the output of interpretation methods without altering
the network predictions. The work is mainly experimental and requires extensive testing.

The works mentioned above focus on how perturbation of inputs can alter outputs of attribution
methods. On the other hand, the authors of [6] study the possibility of fooling interpretation methods
by adversarial model manipulation without perturbing model accuracy. Their approach consists of
applying fine tuning to a given model with a loss term that includes the interpretation results in
the penalty term of the objective function. So, rather than perturbing inputs the approach of the
authors is to perturb the model itself. Again, the work is mainly empirical and requires extensive
testing.

Concerned with the quality of explanation methods, the authors of [5] have built Quantus, a compre-
hensible tool for XAI evaluation, and they list a number of metrics that can be applied to explanation
methods. The metric that is most closely related to our work is robustness, which (in their words)
measures to what extent explanations are stable when subject to slight perturbations in the input,
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assuming that the model output approximately stayed the same. As indicated, the metric is based on
the effects of perturbations applied to input samples.

Before showing the details of our work we state how it differs from previous work in identifying
possible adversarial attacks against attribution methods. First, our work does not require to perturb
inputs. Second, our method does not require training or fine tuning a model. We just identify a
vulnerability of Grad-CAM-like methods using pre-softmax scores, and show how the model can be
modified to exploit the vulnerability. Going beyond the theory we show an specific modification
that has the desired effect, and illustrate it with several examples as a proof of concept.

3. A vulnerability of attribution methods using pre-softmax scores.

In this section we examine a vulnerability that affects attribution methods for CNNs that work
with pre-softmax scores, with a special emphasis on gradient-based methods, although many of
the considerations can be easily extended to methods that work with finite differences rather than
gradients, such as Layer-wise Relevance Propagation (LRP) [10] and DeepLIFT [12].

Figure 2. Example of alteration of a classifier network that changes attributions
based on pre-softmax scores without changing post-softmax scores.

3.1. The softmax function. The output of the softmax function applied to a vector z = (z1, z2, . . . , zn)
is the vector y = (y1, y2, . . . , yn) whose components are:

(1) yc =
ezc∑n
i=1 e

zi
.

The outputs of the softmax verify 0 < yc < 1 for all classes c = 1, . . . , n, and
∑n

c=1 yc = 1, so the yc
are usually interpreted as probabilities.

Note that adding an amount t independent of the class i to all the arguments of the softmax,
z′i = zi + t, has no effect on its outputs:

(2)

y′c =
ez

′
c∑n

i=1 e
z′
i

=
ezc+t∑n
i=1 e

zi+t
=

et ezc∑n
i=1 e

tezi

=
et ezc

et
∑n

i=1 e
zi

=
ezc∑n
i=1 e

zi
= yc .

So, the change zi 7→ zi + t for every i does not change the network post-softmax outputs yc. Note
that t does not need to be a constant, all that is required is that t is independent of i.
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Since adding t has no effect in the output of the softmax, the derivatives of the outputs of the
softmax won’t change after adding t to its arguments:

(3)
∂y′i
∂x

=
∂yi
∂x

,

however the derivatives of the pre-softmax zi may change:

(4)
∂z′i
∂x

=
∂(z′i + t)

∂x
=

∂zi
∂x

+
∂t

∂x
,

so that
∂z′

i

∂x ̸= ∂zi
∂x if ∂t

∂x ̸= 0.

This theoretical result and its potential impact in gradient-based attribution methods are carefully
examined in [8]. In the following section we will provide a proof of concept showing how this results
can be used to radically modify a heatmap produced by an attribution method such as Grad-CAM.

Figure 3. Heatmaps produced by Grad-CAM using pre-softmax and post-softmax
outputs respectively, intended to locate the position of the soccer ball. The origi-
nal model is a VGG19 network pretrained on ImageNet. The altered model is the
same VGG19 network slightly modified, but still functionally equivalent (same final
outputs) to the original network. The heatmaps are computed at the last convolu-
tional layer of each model. Note that Grad-CAM working on pre-softmax outputs
has been tricked to produce wrong heatmaps. The heatmaps obtained using post-
softmax outputs remain unchanged.

3.2. A vulnerability of attribution methods using pre-softmax scores. Equation (2) shows
that the softmax function has no unique inverse because we can add to its arguments z1, . . . , zn any
scalar t independent of i without changing the output of the softmax.

In the example shown here (Figure 2) the network is a VGG19 pretrained on ImageNet [13]. Then,
t is the result of adding the activations of the units placed in position (0, 0) of the final pool layer
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(block5 pool) across all its channels multiplied by a constant K. More specifically, if Aijk presents
the activation of unit in position (i, j) of channel k of the last pooling layer, then:

(5) t = K
∑
k

A00k ,

where K is a constant—in our experiment we used K = 10.

After t is added to the original zi pre-softmax scores of the network we get new pre-softmax scores
z′i = zi + t. This makes the new pre-softmax scores strongly dependent on the units in position
(0, 0) of the final pool layer without altering the post-softmax scores of the network. Consequently,
we expect that heatmaps produced by Grad-CAM to strongly highlight the upper left area of the
image regardless of whether that part of the image is related to the network final output.

Figures 3–5 show that, for the altered model, the heatmaps produced using pre-softmax scores are
strongly distorted, while the heatmaps produced using post-softmax scores remain unchanged.

Figure 4. The altered model tends to produce the same heatmap regardless of the
class assigned to the image. In this case Grad-CAM is used to locate a “maze”
rather than a soccer ball in the image. The pre-softmax version of the heatmap
on the altered model keeps highlighting the same upper left corner, while the other
heatmaps focus on the lines drawn on the grass.

On the other hand, since the final (post-softmax) output of the network remains unchanged, the
loss function used for training would sit on the same local minimum for both models (original
and modified). Further training of the models won’t make a difference since the added connection
cannot backpropagate error. More specifically, if E is the loss function used for training, then for
the modified model we have (using multivariate chain rule):

(6)
∂E

∂t
=

n∑
i=1

∂E

∂y′i

∂y′i
∂t

= 0

because y′i = yi, which does not depend on t, hence
∂y′

i

∂t = ∂yi

∂t = 0 for all i. Consequently, the
trainable parameters of both models would change in the same way, and if the error function E is
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Figure 5. Another example showing the heatmap computed with pre-softmax
outputs of the altered model concentrated in the upper left corner of the image.
Heatmaps computed with post-softmax outputs remain unaltered highlighting the
position of the dog.

at or near a minimum for the original model, the same would hold for the modified model. Also, if
we trained the modified VGG19 network from scratch and with the same parameter initialization,
the final trainable parameters would be the same as those of the original VGG19.

4. Discussion

We note that the main property behind the vulnerability shown here is the possibility of altering
pre-softmax scores of a classifier CNN without altering its post-softmax scores. One question could
be whether this vulnerability can be exploited to deploy a malicious attack intended to undermine
confidence in the model. This kind of attack would be available for anybody having access to model
repositories. Since after modification the new model would be functionally equivalent to the original
one (its outputs will not change) it would be hard to notice that it has been modified. Also, it is
conceivable that the problem pointed out may manifest itself in an unintended way because, after
training, both the original and modified model may end up at the same local minimum of the loss
function used for training.

The phenomenon discussed may seem to have some similarities with Clever Hans effects [7], which
also causes heatmaps to highlight wrong areas of the input. Clever Hans effects are due to the
ability of a classifier to exploit spurious or artifactual correlations. For instance, in a dataset in
which images of horses contain a watermark, the model may learn to correctly classify the image of
a horse by paying attention only to the presence of the watermark rather than the horse. In that
case, an appropriate attribution method would consistently highlight the area of the watermark in
the images with horses, which is outside the actual area of interest. However, that would not happen
because of a problem in the attribution method, which would be correctly revealing a problem with
the model (trained with a biased dataset). On the contrary, the vulnerability discussed here tells
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nothing about the ability of the model to extract the right information from the right parts of its
inputs, it only depends on the fact that the gradients of the pre-softmax scores may not provide the
right information to determine the impact of the inputs on the final (post-softmax) outputs.

5. Conclusions

We have shown that attribution methods using pre-softmax scores are vulnerable to a class of ad-
versarial attacks that may modify the heatmaps produced without changing the model outputs.
Post-softmax outputs are not vulnerable to this kind of attack. We have also noted that the vul-
nerability discussed here is not a Clever Hans effect. Future work can be used to determine in what
extent the problem applies to a wider class of attribution methods.
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