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This research deals with the problem of finding extremal majorants

for given functions, a subject started by Beurling and Selberg in the 1930’s.

We prove some general results useful in finding extremal majorants and mi-

norants for a wide class of even functions, extending results previously found

by Graham and Vaaler in 1985, and we apply them to the particular case of

log |x|. Next we study in some detail the properties of the extremal majo-

rant for log |x|, and use it to prove an “Erdős-Turán”-type inequality useful

to estimate the sup norm of polynomials on the unit circle. We also prove an

analogue of Montgomery and Vaughan’s inequality. Next we state several con-

jectures and suggest some possible directions to continue the research. Also,

we prove a few theorems concerning harmonic majorants.
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Chapter 1

Introduction

One subject of interest in the theory of uniform distribution modulo one is the

estimation of the discrepancy of a sequence x1, x2, . . . , xM by an expression

depending on trigonometric sums of the form
�M

m=1 e
2πinxm . The discrepancy

gives a measure of how much a given sequence gets apart from uniform distri-

bution, and is defined as follows:

Δ∗(x1, . . . , xM) = Δ∗
M = sup

0<t−s<1

�����
M�

m=1

χs,t(xm)−M(t− s)

����� , (1.1)

where

χs,t(x) =





1 if s < x− n < t for some n ∈ Z,
1
2

if s− x ∈ Z or t− x ∈ Z,
0 otherwise.

(1.2)

It is interesting to note that an estimation of the discrepancy could have

practical applications, such as the estimation of the error of algorithms for

numerical integration, particularly those based on computing means of values

of the integrand at points of the interval of integration. This is accomplished by

the Koksma’s inequality: Let f be a function on the interval [0, 1] of bounded

variation V (f), and suppose we are given M points in [0, 1] with discrepancy

Δ∗
M . Then: �����

M�

n=1

f(xn)−M

� 1

0

f(t) dt

����� ≤ V (f)Δ∗
M . (1.3)

1
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One well known upper bound for the discrepancy is given by the Erdős-

Turán inequality [3], which has the form

Δ∗
M ≤ c1

M

N
+ c2

N�

n=1

1

n

�����
M�

m=1

e2πinxm

����� , (1.4)

where c1 and c2 are positive constants and N is an integer that can be chosen

so as to minimize the right hand side of (1.4).

That result has been refined by Vaaler [11], using a slightly different

definition for the discrepancy:

Δ(x1, . . . , xM) = ΔM = sup
y∈R

�����
M�

m=1

ψ(y − xm)

����� , (1.5)

where

ψ(x) =

�
x− [x]− 1

2
if x �∈ Z,

0 if x ∈ Z.
(1.6)

It can be verified thatΔM ≤ Δ∗
M ≤ 2ΔM , so the two discrepancies differ

insignificantly. The refinement was made by using some extremal functions,

as discussed in [10]. A short exposition of the main results will be given in the

next chapter.

1.1 Notations, Definitions, Conventions and Basic Re-
sults

Here we give some miscellaneous definitions and notations that will be used

later.

We use the standard notations for number sets such as the integers

(Z), the real numbers (R) and the complex numbers (C). The real part of a

complex number z is represented as �(z), and its imaginary part is �(z). We
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Figure 1.1: The function ψ(x)

denote the right half plane R = {z ∈ C : �(z) > 0}, and the upper half plane

H+ = {z ∈ C : �(z) > 0}.

An entire function F : C → C is said to be of exponential type if

lim sup
|z|→∞

log |F (z)|
|z| = τ(F ) < ∞ (1.7)

Then the nonnegative number τ(F ) is the exponential type of F . A function

is said the be real entire if it is entire and takes real values on R.

Following [8], the definition of Fourier transform �f of a function f in
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L1(R) will be the following:

�f(t) =

� ∞

−∞
f(x) e−2πitx dx. (1.8)

The Fourier transform can be extended to L2(R) as shown in [8, II.2]. Also,

for certain functions that are not absolutely integrable, the Fourier transform

can be defined by

�f(t) = lim
M→∞

� M

−M

f(x) e−2πitx dx. (1.9)

The following expression converges even for a wider class of functions:

�f(t) = lim
M→∞

� M

−M

f(x)

�
1− |x|

M

�
e−2πitx dx. (1.10)

An infinite sum of the form
�∞

n=−∞ an, which is unambiguous when the

series is absolutely convergent, will be interpreted as the limit of the symmetric

partial sums limT→∞
�T

n=−T an in other cases, as long as the limit exists.

We mention here the Poisson summation formula, which is used often

in this work.

Theorem (Poisson Summation Formula). If f is absolutely integrable over R,

of bounded variation and normalized in the sense that for every x,

f(x) =
1

2
lim
h→0

{f(x+ h) + f(x− h)},

then
∞�

n=−∞
f(n) = lim

T→∞

T�

k=−T

�f(k). (1.11)

See [12, II.13] for a more general formulation that includes the case in

which f is not absolutely integrable. See also lemma 8.2 for a particular case

in which the function is not of bounded variation.



Chapter 2

Some Extremal Functions in Fourier Analysis

2.1 An Extremal Majorant for the Signum Function

In the late 1930’s A. Beurling observed that the entire function

B(z) =

�
sin πz

π

�2
� ∞�

n=0

1

(z − n)2
−

−1�

n=−∞

1

(z − n)2
+

2

z

�
(2.1)

has the following properties:

1. It is real entire of exponential type 2π.

2. It majorizes sgn(x) (the signum of x) along the real axis:

sgn(x) ≤ B(x) for every x ∈ R.

3. It satisfies: � ∞

−∞
{B(x)− sgn(x) } dx = 1. (2.2)

4. It is extremal, in the sense that among all functions satisfying 1 and 2,

it is the one that minimizes integral (2.2) in 3.

In general, given a real function f : R → R, if F : C → C is a real

entire function of exponential type at most 2π which majorizes f along the

5
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Figure 2.1: Beurling’s function B(x) majorizing sgn(x)

real axis:

f(x) ≤ F (x) for every x ∈ R.

we say that F is a majorant of f . If among all functions with those properties

F minimizes the integral

� ∞

−∞
{F (x)− f(x) } dx,

then we say that F is an extremal majorant of f . The definitions of mino-

rant and extremal minorant are analogous, but with F (x) ≤ f(x), and F
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minimizing the integral

� ∞

−∞
{ f(x)− F (x) } dx.

In 1974 Selberg found an extremal majorant for the characteristic func-

tion χE of an interval E = [α, β], where β − α is an integer (see [7]), and ob-

tained a sharp form of the large sieve inequality. Selberg’s function coincides

with

CE(z) =
1

2
{B(β − z) + B(z − α)}, (2.3)

so that

χE(x) =
1

2
{sgn(β − z) + sgn(z − α)} ≤ CE(x). (2.4)

Beurling’s function is a particular case of a more general class of func-

tions. If F (z) is an entire function of exponential type 2π, bounded on R, and

odd, then it can be represented by the interpolation formula:

F (z) =

�
sin πz

π

�2
� ∞�

n=−∞

F (n)

(z − n)2
+ lim

T→∞

T�

n=−T

F �(n)

z − n

�
. (2.5)

So, by giving suitable values to the numerators of the terms of that series

it is possible to “force” F and its derivative to take prescribed values at the

integers.

A similar result follows if F is in Ep for some finite p, where Ep is the

space of entire functions of exponential type at most 2π such that

� ∞

−∞
|F (x)|p dx < ∞ (2.6)

(see [10, theorem 9]).
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Figure 2.2: Selberg’s function CE(x) majorizing the characteristic function of
an interval

Note that B(z) can be interpreted as a function that majorizes sgn(x),

and interpolates that function and its derivative at the nonzero integers, i.e.,

B(n) = sgn(n) and B�(n) = sgn�(n) = 0 for every n ∈ Z \ {0}. Since we

are interested in a majorizing function, B(0) must be 1. On the other hand

sgn(x) has no derivative at zero, so B�(0) can be left as a parameter to be

determined later. It turns out that the “right” value for B�(0) is precisely 2.

Modifying the definition of B(z) by giving it a value of zero at zero yields a
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slightly different (and more symmetric) function (note that sgn(0) = 0):

H(z) =

�
sin πz

π

�2
� ∞�

n=−∞

sgn(n)

(z − n)2
+

2

z

�
. (2.7)

-1

-0.5

0

0.5

1

-3 -2 -1 0 1 2 3

x

Figure 2.3: Function H(x)

Now H(z) interpolates sgn(x) at the integers and its derivative at the

nonzero integers, but it is not a majorizing function of sgn(x) any more. How-

ever we recover B(z) just by adding the following function:

K(z) =

�
sin πz

πz

�2

, (2.8)
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i.e.:

B(z) = H(z) + K(z). (2.9)

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

x

Figure 2.4: Function K(x)

By subtracting K(z) from H(z) we get

−B(−z) = H(z) − K(z), (2.10)

which has the property of minorizing sgn(x) along the real axis:

−B(−x) ≤ sgn(x) for every x ∈ R. (2.11)
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The facts that B(z) is an extremal function in the sense of minimizing

integral (2.2), and is also an interpolating function for sgn(x) at the integers,

are connected. In fact, if F (z) is some other function with the same proper-

ties 1 and 2 as B(z), writing D(x) = B(x) − sgn(x) and using the Poisson

summation formula we get:

∞�

l=−∞
D(x+ l) = lim

T→∞

T�

m=−T

�D(m) e2πimx, (2.12)

where

�D(t) =

� ∞

−∞
D(x) e−2πitx dx (2.13)

is the Fourier transform of D(x).

It can be proven that the Fourier transform of F �(x) is supported in

[−1, 1], and this implies that for |t| ≥ 1, �D(t) equals the Fourier transform of

B(x)− sgn(x), which is 1
πit

(for |t| ≥ 1), hence:

∞�

l=−∞
D(x+ l) = �D(0) + lim

T→∞

T�

m=−T
m�=0

1

πim
e2πimx = �D(0) + 2ψ(x), (2.14)

where ψ(x) is the function defined in (1.6). Note that ψ(0+) = −1
2
, hence:

∞�

l=−∞
D(l+) = �D(0) − 1. (2.15)

Since D(x) is nonnegative, we get that:

� ∞

−∞
D(x) dx = �D(0) ≥ 1, (2.16)

so that B is in fact extremal. Furthermore, if we want F to be extremal, then

we need �D(0) = 1; but this implies:

∞�

l=−∞
D(l+) = 0, (2.17)
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so that D(l+) = 0, i.e., F (l+) = sgn(l+) for every integer l. Since F (x) ≥

sgn(x), also F �(l) = 0 for every nonzero integer l (the derivative at zero can be

determined by a slightly more refined argument). Hence F is an interpolating

function for sgn(x) at the integers. Actually, by using the expansion (2.5) we

get that F is precisely B, i.e., B is the only function possessing properties 1–3.

A few examples of application of the properties of B are shown next.

Theorem 2.1 (The Large Sieve). Let

S(x) =
M+N�

n=M+1

an e
2πnx (2.18)

be a trigonometric polynomial with period 1, and let ξ1, ξ2, . . . , ξR be real num-

bers which are well spaced modulo 1 in the sense that �ξr − ξs� ≥ δ > 0 for

r �= s, where �x� = distance from x to the nearest integer. Then the large

sieve inequality
R�

r=1

|S(ξr)|2 ≤ Δ(N, δ)
M+N�

n=M+1

|an|2 (2.19)

holds with Δ(N, δ) = N − 1 + 1
δ
, which is sharp.

Proof. See [10, pp.185–186]. The proof actually uses Selberg’s function CE(z) =

1
2
{B(β − z) + B(z − α)}.

Theorem 2.2 (Montgomery and Vaughan). Let λ1, . . . ,λN be real numbers

satisfying |λm − λn| ≥ δ > 0 whenever m �= n, and let a(1), . . . , a(N) be

arbitrary complex numbers. Then
��������

N�

m=1

N�

n=1
m�=n

a(m) a(n)

λm − λn

��������
≤ π

δ

N�

n=1

|a(n)|2. (2.20)
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Proof. See [10, theorem 16].

Theorem 2.3 (Erdős-Turán inequality). If x1, x2, . . . , xM are real numbers

and if N is a positive integer, then

ΔM ≤ M

2N
+

�
1 +

1

π

� N�

n=1

1

n

�����
M�

m=1

e2πnxm

����� . (2.21)

Hence the Erdős-Turán inequality (1.4) holds with c1 =
1
2
and c2 = 1 + 1

π
.

Proof. The result can be easily derived from [11, theorem 1].

2.2 An Extremal Majorant for the Logarithm

A way to study a sequence x1, x2, . . . modulo 1 is by looking at the sequence

e2πixm on the unit circle. An analogue of the concept of “discrepancy” of M

points x1, x2, . . . , xM can be obtained by considering the following expression:

ΓM =
1

π
log sup

y∈R

�����
M�

m=1

(e2πiy − e2πixm)

����� = sup
y∈R

M�

m=1

ϕ(y − xm), (2.22)

where

ϕ(x) =

�
1
π
log |2 sin πx| if x ∈ R \ Z,

−∞ if x ∈ Z.
(2.23)

Note the similarity with the definition (1.5) of the discrepancy ΔM .

Also note that ψ and ϕ are (Fourier) conjugate functions, as can be deduced

from their Fourier expansions:1

�ψ(n) =

�
− 1

2πin
if n �= 0,

0 if n = 0,
(2.24)

1See [12] for the relation between Fourier and harmonic conjugate functions.
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Figure 2.5: The function ϕ(x)

and

�ϕ(n) =

�
− 1

2π|n| if n �= 0,

0 if n = 0,
(2.25)

so that

ψ(x) = − 1

π

∞�

n=1

1

n
sin(2πnx), (2.26)

and

ϕ(x) = − 1

π

∞�

n=1

1

n
cos(2πnx). (2.27)

Another interesting remark is that ΓM can be interpreted as 1
π
times
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the supremum in the unit disk of the absolute value of a polynomial whose

roots all lie on the unit circle:

ΓM = Γ(x1, x2, . . . , xM) =
1

π
sup {|PM(z)| : |z| ≤ 1}, (2.28)

where

PM(z) =
M�

m=1

(z − e2πixm). (2.29)

Recall that ψ(x) appeared naturally in (2.14) after applying the Poisson

summation formula to
�∞

l=−∞ {B(x+ l)−sgn(x+ l)}. This justifies to pose an

analogous problem for the the conjugate function of sgn(x), namely 2
π
log |x|.

If we get an entire function F (z) of exponential type 2π that majorizes log |x|

along the real axis and proceed analogously to the Beurling function, then we

get (see lemma 8.2):

∞�

l=−∞
D(x+ l) = �D(0) + lim

T→∞

T�

m=−T
m�=0

1

2|m| e
2πimx = �D(0)− π ϕ(x), (2.30)

now with D(x) = F (x)− log |x|. Since D(x) ≥ 0 then

�D(0) ≥ π ϕ(x). (2.31)

The maximum of ϕ(x) is 1
π
log 2, attained at n + 1

2
(n ∈ Z). If we want F to

be extremal in the same sense as the Beurling’s function, then:
� ∞

−∞
D(x) dx = �D(0) = log 2, (2.32)

which implies D(1
2
+ l) = 0 for every l ∈ Z. This implies that F (x) must

interpolate log |x| and its derivative at the integers plus a half, so its expansion

must be:

F (z) =
�cos πz

π

�2
� ∞�

n=−∞

log |n+ 1
2
|

(z − (n+ 1
2
))2

+
∞�

n=−∞

1
n+ 1

2

z − (n+ 1
2
)

�
. (2.33)
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Figure 2.6: Function F (x) majorizing log |x|

It turns out that this function is in fact an extremal majorant for log |x|:

Theorem 2.4 (Main Theorem). The function defined by 2.33 has the following

properties:

1. It is real entire of exponential type 2π.

2. It majorizes log |x| along the real axis:

log |x| ≤ F (x) for every x ∈ R.
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3. It verifies: � ∞

−∞
{F (x)− log |x| } dx = log 2. (2.34)

4. It is extremal, in the sense that among all functions satisfying 1 and 2,

it is the one that minimizes integral (2.34) in 3.

In the next chapter we prove some general results that apply to a certain

class of even functions. Then the fact that F (x) is a majorant of log |x| is

obtained as a consequence.



Chapter 3

Extremal Minorants for a Class of Even

Functions

In this section we generalize some results first obtained by Graham and Vaaler

in [4]. Then we use them to prove that the function F defined by (2.33) is an

extremal majorant for log |x|.

3.1 The Extremal Minorant for e−λ|x|

Let K and L be the following entire functions:

K(z) =

�
sin πz

πz

�2

and L(z) = z K(z). (3.1)

Then, for 0 < λ define an entire function Mλ(z) by

Mλ(z) =
∞�

m=−∞
e−λ|m+ 1

2
| K(z −m− 1

2
)

− λ
∞�

n=−∞
sgn(n+ 1

2
) e−λ|n+ 1

2
| L(z − n− 1

2
).

(3.2)

Graham and Vaaler have shown in [4] that

(i) Mλ(z) is a real entire function of exponential type 2π,

(ii) Mλ(x) ≤ e−λ|x| for all real x, and

18
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(iii) among all real entire functions which satisfy (i) and (ii) the function

Mλ(x) minimizes the value of

� ∞

−∞

�
e−λ|x| − Mλ(x)

�
dx. (3.3)

Also we find that

� ∞

−∞

�
e−λ|x| − Mλ(x)

�
dx =

2

λ
− csch

�
λ

2

�
. (3.4)

For λ > 0 the entire function Mλ(z) defined above has exponential type

2π and is integrable on R, hence

�Mλ(t) =

� ∞

−∞
Mλ(x) e

−2πitx dx (3.5)

is supported on [−1, 1], and then

Mλ(z) =

� 1

−1

�Mλ(t) e
2πitz dt. (3.6)

for all complex z.

The following theorem gives the value of �Mλ(z).

Theorem 3.1. The Fourier transform of Mλ(z) is

�Mλ(t) = �
�
1− |t|− λ

2πi
sgn(t)

sinh
�
λ
2
+ πit

�
�

=
(1− |t|) sinh λ

2
cos πt+ λ

2π
cosh λ

2
| sin πt|

sinh2 λ
2
+ sin2 πt

(3.7)

for |t| ≤ 1. Also, �Mλ(t) ≥ 0 for all real t.

Proof. For 0 < λ we define (as in [4])

Aλ(z) =

�
sin πz

π

�2 ∞�

n=0

e−λn

�
1

(z − n)2
− λ

z − n

�
. (3.8)
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Then Aλ(z) has exponential type 2π and its restriction to R is in L2(R). By

[10, theorem 9], we have

Aλ(z) =

� 1

−1

�Aλ(t) e
2πitz dt. (3.9)

for all complex z, where

�Aλ(t) = (1− |t|)uλ(t) +
sgn(t)

2πi
vλ(t), (3.10)

uλ(t) =
∞�

m=0

e−λm−2πimt =
1

1− e−λ−2πit
, (3.11)

vλ(t) = −λ
∞�

m=0

e−λm−2πimt = −λ uλ(t). (3.12)

Thus

�Aλ(t) =
1− |t|− λ

2πi
sgn(t)

1− e−λ−2πit
(3.13)

for |t| ≤ 1. Next we observe that

Mλ(z) = e−
λ
2

�
Aλ(z − 1

2
) + Aλ(−z − 1

2
)
�

= e−
λ
2

�� 1

−1

�Aλ(t) e
−πit+2πizt dt +

� 1

−1

�Aλ(−t) eπit+2πizt dt

�
,
(3.14)

and therefore

�Mλ(t) = e−
λ
2

�
�Aλ(t) e

−πit + �Aλ(−t) eπit
�

(3.15)

and from here we obtain (3.7).

In the proof that �Mλ(t) ≥ 0, by symmetry we can assume that 0 ≤

t ≤ 1. The denominator of the last expression of (3.7) is positive, and the

numerator is obviously nonnegative for 0 ≤ t ≤ 1
2
. On the other hand, for

1
2
≤ t < 1 it is enough to take into account that

tanh λ
2

λ
2

≤ tan π(1− t)

π(1− t)
, (3.16)
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which is true since the left hand side is not greater than 1, and the right hand

side is not less than 1.

Next we derive some identities for the entire function z �→ e−λz−Mλ(z),

where λ > 0. In doing so we write

C(ω) =
ω

2 sinh ω
2

(3.17)

for all real ω, with C(0) = 1.

Theorem 3.2. In the half plane −1
2
< �(z) we have

e−λz −Mλ(z) =
�cos πz

π

� � ∞

0

{C(λ− ω)− C(λ+ ω)} e−zω dω. (3.18)

Proof. This occurs already in the proof of theorem 8 of [4] for real z. The

argument when z is complex is essentially the same.

Theorem 3.3. For −1
2
< α < 1

2
we have

C(λ− ω)− C(λ+ ω) =

� α+i∞

α−i∞

� π

cos πs

�2

(2 sinh sω) e−sλ ds. (3.19)

Proof. In the infinite strip −1
2
< �(z) < 1

2
we have the Laplace identity

� ∞

−∞
C(ω) esω dω =

� π

cos πs

�2

(3.20)

and its inverse

C(ω) =
1

2πi

� α+i∞

α−i∞

� π

cos πs

�2

e−sω ds, (3.21)

where −1
2
< α < 1

2
. Then from (3.21) we get (3.19).
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Theorem 3.4. If |α| < min {1
2
,�(z)} then

e−λz −Mλ(z) =
�cos πz

π

�2
�

1

2πi

� α+i∞

α−i∞

� π

cos πs

�2
�

2s

z2 − s2

�
e−sλ ds

�
.

(3.22)

Proof. Combining (3.17) and (3.19) we find that

e−λz −Mλ(z) =
�cos πz

π

�2
� ∞

0

�
1

2πi

� α+i∞

α−i∞

� π

cos πs

�2

(2 sinh sω) e−sλ ds

�
e−zω dω

=
�cos πz

π

�2
�

1

2πi

� α+i∞

α−i∞

� π

cos πs

�2
�

2s

z2 − s2

�
e−sλ ds

�
.

(3.23)

3.2 Minorants for a Class of Even Functions

In this section we generalize the previous results to a wider class of functions.

Theorem 3.5. Let ν be a (not identically zero) measure on the Borel subsets

of (0,∞) and define f : R → [0,∞) by

f(x) =

� ∞

0

e−λ|x| dν(λ) (3.24)

(then f(x) > 0 for all real x), and assume that f(x) < ∞ for all x > 0.

(i) If ν is finite then f(x) < ∞ for all real x, and f has continuous deriva-

tives of all orders in R \ {0}. In particular

f �(x) = − sgn(x)

� ∞

0

λe−λ|x| dν(λ) (3.25)

for every x �= 0.
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(ii) The function f belongs to L1(R) if and only if
� ∞

0

1

λ
dν(λ) < ∞. (3.26)

(iii) The function f belongs to L2(R) if and only if
� ∞

0

� ∞

0

1

λ1 + λ2

dν(λ1) dν(λ2) < ∞. (3.27)

(iv) The function f � belongs to L1(R) if and only if ν is a finite measure.

Proof. The function

ϕ(z) =

� ∞

0

e−λz dν(λ) (3.28)

defines an analytic function in the right half plane R = {z ∈ C : 0 < �(z)} and

the restriction of this analytic function to the positive real axis is f(x). Hence

f has continuous derivatives of all orders there. A similar remark applies to

f(x) on the negative real axis and these can be combined to establish (i). The

rest can be proven by using Tonelli’s theorem.

In the following ν will represent a finite measure on the Borel subsets

of (0,∞).

Theorem 3.6. For each z ∈ C, the function λ �→ M(λ, z) = Mλ(z) is ν-

integrable on (0,∞), and the C-valued function

F (z) =

� ∞

0

M(λ, z) dν(λ) (3.29)

is an entire function which satisfies the inequality

|F (z)| ≤ ν{(0,∞)} e2π|y| (3.30)

for all z = x + iy. Thus F is an entire function of exponential type at most

2π.
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Proof. We have (here �M(λ, t) is the function (λ, t) �→ �Mλ(t))

� ∞

0

|M(λ, z)| dν(λ) =

� ∞

0

����
� 1

−1

�M(λ, t) e2πitz dt

���� dν(λ)

≤
� ∞

0

� 1

−1

�M(λ, t) e−2πty dt dν(λ)

≤ e2π|y|
� ∞

0

M(λ, 0) dν(λ)

≤ ν{(0,∞)} e2π|y|.

(3.31)

This shows that λ �→ M(λ, z) is ν-integrable on (0,∞). That F (z) is an entire

function follows from Morera’s theorem. Its bound (3.30) follows from (3.31).

This proves the result.

Next theorems 3.7 and 3.8 show that the function F defined by (3.29)

is an extremal minorant for f .

Theorem 3.7. The function F defined by (3.29) is a minorant of f , i.e.

F (x) ≤ f(x) (3.32)

for all real x. Furthermore F interpolates f and its derivative at the integers

plus a half, i.e.

F (m+ 1
2
) = f(m+ 1

2
), (3.33)

F �(m+ 1
2
) = f �(m+ 1

2
), (3.34)

for all m ∈ Z. Also, the nonnegative function f(x) − F (x) is integrable, and

its Fourier transform is

� ∞

−∞
{f(x)− F (x)} e−2πitx dx =

� ∞

0

�
2λ

λ2 + 4π2t2
− �M(λ, t)

�
dν(λ).

(3.35)
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Proof. The fact that F is a majorizing interpolating function for f follows

from results in [4]. On the other hand:

� ∞

−∞
{f(x)− F (x)} dx =

� ∞

−∞

� ∞

0

�
e−λ|x| −M(λ, x)

�
dν(λ) dx. (3.36)

Since the integrand is nonnegative we can interchange the order of integration:
� ∞

−∞
{f(x)− F (x)} dx =

� ∞

0

� ∞

−∞

�
e−λ|x| −M(λ, x)

�
dx dν(λ)

=

� ∞

0

�
2

λ
− 1

sinh λ
2

�
dν(λ).

(3.37)

The last integral is finite because ν is a finite measure and the integrand is

bounded. In the same manner we can compute the Fourier transform.

Theorem 3.8. Let G(z) be a real entire function of exponential type at most

2π. If

G(x) ≤ f(x) for all real x, (3.38)

then � ∞

−∞
{f(x)− F (x)} dx ≤

� ∞

−∞
{f(x)−G(x)} dx. (3.39)

Moreover, there is equality in (3.39) if and only if G(z) = F (z).

Proof. Clearly it suffices to consider only those functions G(z) such that the

integral on the right of (3.39) is finite. Then the difference F (x) − G(x) is

integrable and (3.39) is equivalent to

0 ≤
� ∞

−∞
{F (x)−G(x)} dx. (3.40)

From (3.33) and (3.38) we have

G(m+ 1
2
) ≤ f(m+ 1

2
) = F (m+ 1

2
) (3.41)
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for all m ∈ Z. By lemma 4 in [4]:

0 ≤ lim
M→∞

M�

m=−M

�
1− |m|

M + 1

� �
F (m+ 1

2
)−G(m+ 1

2
)
�

=

� ∞

−∞
{F (x)−G(x)} dx,

(3.42)

and this is (3.40). It is obvious from (3.42) that the integral on the right is

zero if and only if

G(m+ 1
2
) = F (m+ 1

2
) (3.43)

for all m ∈ Z. Then (3.38), (3.41) and (3.43) imply that

G�(m+ 1
2
) = F �(m+ 1

2
) (3.44)

for all m ∈ Z. A second application of lemma 4 in [4] shows there is equality

in (3.42) if and only if G(z) = F (z).

3.3 The Extremal Majorant for the Logarithm

Here we establish some general results from which the main properties of the

function F defined in (2.33) can be derived.

Lemma 3.9. Let ν be a finite measure on the Borel subsets of (0,∞). Define

f as in (3.24), F as in (3.29), and ϕ as in (3.28). Let 0 < α < min{1
2
,�(z)}.

Then ϕ is analytic and bounded in the right half plane R = { z ∈ C : 0 <

�(z) }, and satisfies

0 ≤ ϕ(x) − F (x) for all x > 0. (3.45)

Furthermore

ϕ(z) − F (z) =
�cos πz

π

�2
�

1

2πi

� α+i∞

α−i∞

� π

cos πs

�2
�

2s

z2 − s2

�
ϕ(s) ds

�
.

(3.46)
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Proof. We already know that ϕ is analytic and bounded in R, and that 0 ≤

ϕ(x) − F (x). Also, equation (3.46) can be obtained from

ϕ(z) − F (z) =

� ∞

0

�
e−λz −Mλ(z)

�
dν(λ) (3.47)

and (3.22).

Theorem 3.10. Let Φ(s) be a function such that

(i) Φ(s) is analytic in R.

(ii) |Φ(s)| << (1 + |s|)θ1 eθ2|s| in R, where θ1 < 1 and θ2 < 2π.1

For each nonnegative integer m we define

Ψm(z) =

�
Φ(m+ 1

2
)

(z −m− 1
2
)2

+
Φ�(m+ 1

2
)

z −m− 1
2

+
Φ(m+ 1

2
)

(z +m+ 1
2
)2

− Φ�(m+ 1
2
)

z +m+ 1
2

�
.

(3.48)

Then

lim
M→∞

�cos πz
π

�2
M−1�

m=0

Ψm(z) (3.49)

converges uniformly on compact subsets of R. Moreover, if 0 < α < min{1
2
,�(z)}

then

Φ(z) − lim
M→∞

�cos πz
π

�2
M−1�

m=0

Ψm(z)

=
�cos πz

π

�2
�

1

2πi

� α+i∞

α−i∞

� π

cos πs

�2
�

2s

z2 − s2

�
ϕ(s) ds

�
. (3.50)

1The growth condition can be slightly weakened, but what we use here will easily suffice
for our purposes. In particular, we note that Φ(s) = − log s satisfies (i) and (ii).
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Proof. Suppose that K ⊆ R is compact, z ∈ K, and consider the meromorphic

function

s �→
� π

cos πs

�2
�

2s

z2 − s2

�
Φ(s). (3.51)

Also we assume that z − 1
2
is not an integer. Then (3.51) has a pole at s = z

of order 1 and residue

−
� π

cos πz

�2

Φ(z). (3.52)

For each nonnegative integer m, (3.51) has a pole at s = m+ 1
2
of order 2 and

residue Ψm(z). Plainly, (3.51) has no other poles in R. Assume 0 < α < 1
2
<

M , where M is a positive integer, and let 0 < T . Then write ΓM,T for the

simple, closed, positively oriented, piece-wise linear path connecting α − iT ,

M− iT , M+ iT , α+ iT and α− iT . We further assume that α is so small, and

M and T are so large, that K is contained in the unique bounded component

of C \ ΓM,T . Then we have

1

2πi

�

ΓM,T

� π

cos πs

�2
�

2s

z2 − s2

�
Φ(s) ds

= −
� π

cos πz

�2

Φ(z) +
M−1�

m=0

Ψm(z), (3.53)

by the residue theorem. On the left hand side of (3.53) we let T → ∞ and use

the estimate (ii) for |Φ(s)|. We find that:

1

2πi

� α+i∞

α−i∞

� π

cos πs

�2
�

2s

z2 − s2

�
Φ(s) ds

=
� π

cos πz

�2

Φ(z) −
M−1�

m=0

Ψm(z)

+
1

2πi

� M+i∞

M−i∞

� π

cos πs

�2
�

2s

z2 − s2

�
Φ(s) ds (3.54)
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Clearly the integrals in (3.54) determine functions of z which are analytic in

α < �(z) < M . Hence our assumption that z − 1
2
is not an integer can be

dropped. The singularities of

� π

cos πs

�2

Φ(s) −
M−1�

m=0

Ψm(z) (3.55)

at z = m+ 1
2
, 0 ≤ m ≤ M − 1, are removable.

Finally, we let M → ∞ on the right hand side of (3.54). We use (ii)

again to estimate |Φ(s)| and find that

lim
M→∞

����
1

2πi

� M+i∞

M−i∞

� π

cos πs

�2
�

2s

z2 − s2

�
Φ(s) ds

���� = 0 (3.56)

uniformly for z ∈ K. From here the desired result follows.

Corollary 3.11. If Φ(z) is constant in R then the integral on the right hand

side of (3.50) is identically zero.

Proof. This is immediate from the identity

� π

cos πz

�2

=
∞�

m=0

�
1

�
z −m− 1

2

�2 +
1

�
z +m+ 1

2

�2

�
. (3.57)

Theorem 3.12. The function F defined by (2.33) is a majorant of log |x|.

Proof. For each l = 1, 2, . . . let νl denote the measure defined on Borel subsets

E of (0,∞) by

νl(E) =

�

E

�� l

1
l

e−λu du

�
dλ. (3.58)
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Let

ϕl(z) =

� ∞

0

e−λz dνl(λ)

= log(l + z) − log(1
l
+ z)

(3.59)

in the right half plane R, where log denotes the principal branch which is real

on the positive real axis. Let

Fl(z) =

� ∞

0

M(λ, z) dνl(λ) (3.60)

so that Fl is a real entire function of exponential type at most 2π and (as in

(3.45))

0 ≤ ϕl(x) − Fl(x) for all x > 0. (3.61)

From (3.46) we have

ϕl(z) − Fl(z) =
�cos πz

π

�2
�

1

2πi

� α+i∞

α−i∞

� π

cos πs

�2
�

2s

z2 − s2

�
ϕl(s) ds

�
.

(3.62)

provided 0 < α < min{1
2
,�(z)}. And the corollary 3.11 allows us to write this

as

ϕl(z) − Fl(z)

=
�cos πz

π

�2
�

1

2πi

� α+i∞

α−i∞

� π

cos πs

�2
�

2s

z2 − s2

�
(ϕl(s)− log l) ds

�
.

(3.63)

As

|ϕl(α + it)− log l| <<α log (2 + |t|) (3.64)

and

lim
l→∞

{ϕl(s)− log l} = − log s, (3.65)
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we find that

lim
l→∞

{ϕl(z)− Fl(z)}

=
�cos πz

π

�2
�

1

2πi

� α+i∞

α−i∞

� π

cos πs

�2
�

2s

z2 − s2

�
(− log l) ds

�
(3.66)

whenever 0 < α < min{1
2
,�(z)}. By theorem 3.10 we have

lim
l→∞

{ϕl(z)− Fl(z)} = − log z −
�cos πz

π

�2
∞�

m=0

Ψm(z) (3.67)

where 0 < �(z) and Ψm is defined by (3.48) with Φ(z) = − log z. In view of

(3.61) we also get the inequality

0 ≤ − log x −
�cos πx

π

�2
∞�

m=0

Ψm(x) (3.68)

for all x > 0. In this case the expression on the right of (3.68) defines an even,

real entire function. Hence

0 ≤ − log |x| −
�cos πx

π

�2
∞�

m=0

Ψm(x) (3.69)

for all real x �= 0. Finally we note that the function F defined by (2.33) is

F (z) = −
�cos πz

π

�2
∞�

m=0

Ψm(z). (3.70)

From here the desired result follows.



Chapter 4

Properties of the Majorant for the Logarithm

Here we present an alternative way to get the main properties of F and obtain

some additional results involving also the functions D and S defined below, as

well as a number of properties and special values of �D.

4.1 Properties of F

Let F be the function defined in (2.33). In the following we denote for every

real x �= 0:

D(x) = F (x) − log |x|, (4.1)

and

S(x) =
� π x

cos πx

�2

D(x). (4.2)

Proposition 4.1. For every x > 0, S �(x) > 0. Furthermore,

S �(x) = O(x−3)

for x → ∞.

In order to prove this proposition we write

S(x) =
∞�

n=0

h
�

n+ 1
2

x

�
, (4.3)

32



33

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5

x

Figure 4.1: The function S(x)

where

h(t) =

�
1

(1− t)2
+

1

(1 + t)2

�
log t +

2

(1− t2)
, (4.4)

and

S �(x) = −1

x

∞�

n=0

j
�

n+ 1
2

x

�
, (4.5)

where

j(t) = t h�(t). (4.6)

The proof requires the following lemma:
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Lemma 4.2. Let N be any positive integer. Then, for every x > 0

−xS �(x) =
N−1�

n=0

j(tn) + x

� ∞

N
x

j(t) dt +
1

24 x
j�
�
N
x

�
+ RN(x), (4.7)

where tn =
n+ 1

2

x
, and

|RN(x)| ≤ 21

640 x2

∞�

n=N

1

n2
. (4.8)

In particular, for N = 1:

−xS �(x) = j
�

1
2x

�
+ x

� ∞

1
x

j(t) dt +
1

24 x
j�
�
1
x

�
+ R1(x), (4.9)

where

|R1(x)| ≤ 7 π2

1280 x2
<

7

128 x2
. (4.10)

Proof. By writing

−xS �(x) =
N−1�

n=0

j(tn) +
�

N− 1
2
<n<∞

j(tn), (4.11)

and using the Euler-MacLaurin summation formula in the second sum (see

lemma 8.1) we get (4.7) with

RN(x) =
7

5760 x4

∞�

n=N

j(4)(θn), (4.12)

where n
x
< θn < n+1

x
. Next we use lemma 8.3 in order to get the bound for

|RN(x)|.

Proof of proposition 4.1. Consider the function

f(x) = j
�

1
2x

�
+ x

� ∞

1
x

j(t) dt +
1

24 x
j�
�
1
x

�
. (4.13)
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According to equation (4.9):

−xS �(x) = f(x) + R1(x). (4.14)

The function f(x) can be explicitly computed (see lemma 8.4), and checked

that f(x) = O(x−2) for x → ∞. Since also R1(x) = O(x−2), we get that

S �(x) = O(x−3).

It remains to prove that S �(x) > 0 for x > 0. To do so, we consider

the function g(x) = −x2 f(x) − 7
128

, which is positive in the interval (δ,∞)

for some 0 < δ < 1
2
(see lemma 8.5). From here we get S �(x) > 0 for x > δ.

Concerning the interval 0 < x < 1
2
, we write:

S �(x)

x
= −

∞�

n=0

t3n h
�(tn)

(n+ 1
2
)2

(4.15)

and check that t3 h�(t) is decreasing for t > 1 (see lemma 8.6), which implies

S�(x)
x

is decreasing for 0 < x < 1
2
. Since we already know that it is positive for

x > δ, the same will happen for 0 < x < 1
2
.

Proposition 4.3. For every x > 0, S(x) is positive and increasing, and its

limit L = limx→∞ S(x) exists. Furthermore

L− S(x) = O(x−2) (4.16)

for x → ∞.

Proof. Since S(0) = 0, and according to proposition 4.1 S �(x) > 0 for x > 0,

then S(x) is positive and increasing for x > 0. Since S �(x) = O(x−3), then

S(x) is bounded, hence it has a limit L for x → ∞. Finally

|L− S(x)| =

����
� ∞

x

S �(y) dy

���� ≤
����
� ∞

x

Ay−3 dy

���� =
A

2
x−2 (4.17)

for some A > 0, hence S(x) = O(x−2).
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Corollary 4.4. The function F defined by (2.33) is a majorizing function for

log |x|, i.e.,

F (x) ≥ log |x| for every x ∈ R \ {0}. (4.18)

Proof. We have

D(x) =
�cos πx

πx

�2

S(x). (4.19)

From proposition 4.3, we get that D(x) ≥ 0 for every x �= 0.

Next we give a result useful to compute numerical approximations of

S(x).

Proposition 4.5. Let N be any positive integer. Then, for every x > 0,

S(x) =
N−1�

n=0

h(tn) − 2N x2 log(N
x
)

x2 −N2
+

1

24 x
h� �N

x

�
+ RN(x), (4.20)

where tn =
n+ 1

2

x
, and

|RN(x)| ≤ 49

2880

∞�

n=N

1

n4
<

49

1080

1

(2N − 1)3
. (4.21)

Proof. By writing

S(x) =
N−1�

n=0

h(tn) +
�

N− 1
2
<n<∞

h(tn) (4.22)

and using the Euler-MacLaurin summation formula in the second sum we get

S(x) =
N−1�

n=0

h(tn) + x

� ∞

N
x

h(t) dt +
1

24 x
h� �N

x

�
+ RN(x)

=
N−1�

n=0

h(tn) − 2N x2 log(N
x
)

x2 −N2
+

1

24 x
h� �N

x

�
+ RN(x),

(4.23)
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where

RN(x) =
7

5760 x4

∞�

n=N

h(4)(θn), (4.24)

and n
x
< θn < n+1

x
. Next we use lemma 8.7 in order to get the bound for

|RN(x)|.

Example 4.6. The following values have been computed by using formula

(4.20) with N = 200, so that the error is less than 10−9:

S(1
2
) = 0.46165805 . . .

S(3
2
) = 0.64277314 . . .

S(5
2
) = 0.67287718 . . .

S(7
2
) = 0.68242204 . . .

S(9
2
) = 0.68655437 . . .

S(11
2
) = 0.68869668 . . .

S(13
2
) = 0.68994504 . . .

S(15
2
) = 0.69073451 . . .

S(17
2
) = 0.69126486 . . .

S(19
2
) = 0.69163805 . . .

S(21
2
) = 0.69191048 . . .

(4.25)

Proposition 4.7. The derivative of D verifies D�(x) = O(x−2) for x → ∞.

As a consequence, F � ∈ Lp(R) for every p > 1.

Proof. We have:

D�(x) =

− 1

x3

�cos πx
π

�2

S(x) − 1

x2

sin 2πx

π
S(x) +

1

x2

�cos πx
π

�2

S �(x). (4.26)
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Recall that S(x) is bounded, hence the first two terms of the right hand side

are O(x−2). Proposition 4.1 allows us to conclude the same for the third term,

hence D�(x) = O(x−2). From here we get that F �(x) = 1
x
+ O(x−2), hence

F �(x) ∈ Lp(R) for p > 1.

4.2 Properties of �D

Proposition 4.8. The Fourier transform �D of D is the following:

�D(t) =





log 2 if t = 0
1
2

− 1
4π2|t| vF �(t) if 0 < |t| < 1

1
2|t| if |t| ≥ 1,

(4.27)

where

vF �(t) = 2
∞�

n=0

F ��(n+ 1
2
) cos{2π (n+ 1

2
) t}. (4.28)

Proof. Integration by parts (for t �= 0) shows that

� ∞

−∞
D(x) e−2πitx dx

=
1

2πi t
lim
T→∞

�� −1/T

−T

D�(x) e−2πitx dx+

� T

1/T

D�(x) e−2πitx dx

�

=
1

2πi t

� ∞

−∞
F �(x) e−2πitx dx

− lim
T→∞

�
1

2πi t

� −1/T

−T

1

x
e−2πitx dx+

1

2πi t

� T

1/T

1

x
e−2πitx dx

�
.

(4.29)

The second term is well known:

lim
T→∞

�
− 1

2πi t

� −1/T

−T

1

x
e−2πitx dx+

1

2πi t

� T

1/T

1

x
e−2πitx dx

�
=

1

2 |t| . (4.30)
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Figure 4.2: The function �D(t)

The first term requires to compute F �(x) first. To do that, we use

Vaaler’s method [9].

Let K and L be

K(z) =

�
sin πz

πz

�2

, (4.31)

L(z) = z K(z). (4.32)
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Figure 4.3: The function �vF �(t)

If

F (z) =
∞�

n=−∞
F (n)K(z − n) +

∞�

n=−∞
F �(n)L(z − n) (4.33)

and the sum converges uniformly in compact subsets, then:

F �(z) =
∞�

n=−∞
F �(n)K(z − n) +

∞�

n=−∞
F ��(n)L(z − n), (4.34)
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where F ��(n) can be computed like this:

F ��(n) = −2π2

3
F (n) + 2

�

j �=0

1

j2
F (n− j) + 2

�

j �=0

1

j
F �(n− j)

= 2
�

j �=0

1

j2
{F (n− j)− F (n)} + 2

�

j �=0

1

j
F �(n− j).

(4.35)

Since we are interpolating at the integers plus a half, we apply the

results to the function z �→ F (z + 1
2
), where F is our function (2.33). So, we

get:

F �(x) =
�cos πx

π

�2
� ∞�

n=−∞

1
n+ 1

2

(x− (n+ 1
2
))2

+
∞�

n=−∞

F ��(n+ 1
2
)

x− (n+ 1
2
)

�
, (4.36)

where

F ��(n+ 1
2
) = 2

�

j �=0

1

j

1

n+ 1
2
− j

+ 2
�

j �=0

1

j2
log

����1−
j

n+ 1
2

����

= − 2

(n+ 1
2
)2

+ 2
∞�

j=1

1

j2
log

����1−
j2

(n+ 1
2
)2

���� .
(4.37)

Another convenient expression for F ��(n+ 1
2
) can be obtained by differ-

entiating directly in

F (x) = log |x| + D(x) = log |x| +
�cos πx

πx

�2

S(x) (4.38)

and substituting x with n+ 1
2
:

F ��(n+ 1
2
) =

2S(n+ 1
2
)− 1

(n+ 1
2
)2

. (4.39)

Finally we compute the Fourier transform of F � by using formula (3.6)

from [10] (adjusted for interpolation at the integers plus a half):

�F �(t) = χ[−1,1](t)

�
(1− |t|)uF �(t) +

1

2πi
sgn(t) vF �(t)

�
, (4.40)
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where

χ[a,b](t) =





1 if a < t < b,
1
2

if t = a or t = b,

0 otherwise.

(4.41)

sgn(t) = signum of t, and:

uF �(t) = lim
T→∞

T�

n=−T

F �(n+
1

2
) e−2πi (n+ 1

2
) t

= lim
T→∞

T�

n=−T

1

n+ 1
2

e−2πi (n+ 1
2
) t

= −πi sgn(t),

(4.42)

vF �(t) =
∞�

n=−∞
F ��(n+ 1

2
) e−2πi (n+ 1

2
) t

= 2
∞�

n=0

F ��(n+ 1
2
) cos{(2n+ 1) πt}.

(4.43)

Hence:

�D(t) =
1

2|t| + χ[−1,1](t)
1

2πi t

�
(1− |t|) (−πi sgn(t))

+
1

2πi
sgn(t) vF �(t)

�

= χ[−1,1](t)

�
1

2
− 1

4π2|t| vF �(t)

�
+ (1− χ[−1,1](t))

1

2|t|

(4.44)

for t �= 0.

We have that for every t

| �D(t)| ≤ | �D(0)| =

� ∞

−∞
D(x) dx < ∞, (4.45)

hence

vF �(0) =
∞�

n=−∞
F ��(n+ 1

2
) = 0, (4.46)
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otherwise D(t) would be unbounded for t → 0. Also:

vF �(k) = (−1)k
∞�

n=−∞
F ��(n+ 1

2
) = 0 (4.47)

for k integer, so

�D(t) =

�
1
2

− 1
4π2|t| vF �(t) if 0 < |t| < 1,

1
2|t| if |t| ≥ 1,

(4.48)

In particular, �D(k) = 1
2|k| for integer k �= 0.

Finally we compute �D(0) by using the Poisson summation formula (see

lemma 8.2) in the following series, whose terms are all zero:

0 =
∞�

n=−∞
D

�
n+ 1

2

�
=

lim
T→∞

T�

k=−T

eπik �D(k) = lim
T→∞

T�

k=−T

(−1)k �D(k) =

�D(0) + 2
∞�

k=1

(−1)k
1

2k
= �D(0) − log 2. (4.49)

Hence �D(0) = log 2.

Corollary 4.9. The limit of S(x) as x → ∞ is:

lim
x→∞

S(x) = log 2. (4.50)

Furthermore

log 2− S(x) = O(x−2). (4.51)

Proof. By rearranging the series (4.43) that defines vF �(t) and using proposi-

tion 4.3 we get:

vF �(t) = −4π2
�
L− 1

2

� �
|t|− 1

2

�

− 4
∞�

n=0

L− S(n+ 1
2
)

(n+ 1
2
)2

cos{(2n+ 1) πt}, (4.52)
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where L = limx→∞ S(x). Its derivative can be computed by differentiating

termwise:

v�F �(t) = −4π2
�
L− 1

2

�
sgn(t)

+ 8π
∞�

n=0

L− S(n+ 1
2
)

n+ 1
2

sin{(2n+ 1) πt} (4.53)

for t �= 0. Since D is integrable, its Fourier transform �D is continuous, hence:

�D(0) = lim
t→0+

�D(t) =
1

2
− 1

4π2
v�F �(0+)

=
1

2
− 1

4π2

�
−4π2

�
L− 1

2

��
= L.

(4.54)

Since we already know that �D(0) = log 2, we get that L = log 2.

Finally (4.51) is just equation (4.16).

Proposition 4.10. The integral of D(x) = F (x)− log |x| is
� ∞

−∞
{F (x)− log |x|} dx = log 2. (4.55)

The function F is extremal, in the sense that if G(z) is another entire function

of exponential type 2π such that

G(x) ≥ log |x| (4.56)

for every x �= 0, then

� ∞

−∞
{G(x)− log |x|} dx ≥ log 2. (4.57)

Furthermore, if there is equality in (4.57) then G = F .

Proof. The first claim (4.55) is just �D(0) = log 2, already proven in proposition

4.8.
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To prove (4.56) we proceed as in theorem 8 of [10]. Let DG be

DG(x) = G(x)− log |x| (4.58)

and assume � ∞

−∞
DG(x) dx < +∞. (4.59)

Since D(x) and DG(x) are integrable, then G(x) − F (x) = DG(x) − D(x) is

also integrable. Also F �(x) is integrable, hence G�(x) is integrable. Next, we

have:

�DG(t) =
1

2πit
�D�
G(t) =

1

2πit

�
�G�(t) + πi sgn(t)

�
. (4.60)

Since G� is of exponential type 2π, its Fourier transform is supported in [−1, 1],

hence

�DG(t) =
1

2|t| (4.61)

for |t| ≥ 1. Next, by applying the Poisson summation formula, and using that

G is a majorizing function of log |x|:

0 ≤
∞�

n=−∞
DG(x+ n) = �DG(0) +

∞�

m=1

1

m
cos 2πx

= �DG(0) − log |2 sin πx|.
(4.62)

Since max
x

log |2 sin πx| = log 2, we get that

� ∞

−∞
{G(x)− log |x|} dx = �DG(0) ≥ log 2. (4.63)

Finally, assume �DG(0) = log 2. Then (4.62) implies

∞�

n=−∞
DG

�
1
2
+ n

�
= 0, (4.64)
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hence DG

�
1
2
+ n

�
= 0 for every integer l. This implies that G(n + 1

2
) =

log |n + 1
2
| and G�(n + 1

2
) = 1

n+ 1
2

for every integer n. By applying theorem 10

from [10], we get

G(z) = F (z) +
�cos πz

π

�2

C, (4.65)

where C is a constant equal to 1
2

�
G��(n+ 1

2
)− F ��(n+ 1

2
)
�
for any integer n.

Since DG(x) is assumed to be integrable, we get that C = 0, hence

G(z) = F (z). (4.66)

Next we record some useful formulas.

Proposition 4.11. The function vF �(t) is continuous in [−1, 1] and twice

continuously differentiable in (−1, 1)\{0}. Furthermore, for every t ∈ [−1, 1],

vF �(t) = 4
∞�

n=0

S(n+ 1
2
)− 1

2

(n+ 1
2
)2

cos{(2n+ 1) πt} (4.67)

and

vF �(t) = − 4π2

�
log 2− 1

2

� �
|t|− 1

2

�

− 4
∞�

n=0

log 2− S(n+ 1
2
)

(n+ 1
2
)2

cos{(2n+ 1) πt},
(4.68)

and for every t ∈ (−1, 1) \ {0}

v�F �(t) = − 4π2

�
log 2− 1

2

�
sgn(t)

+ 8π
∞�

n=0

log 2− S(n+ 1
2
)

n+ 1
2

sin{(2n+ 1) πt}
(4.69)

and

v��F �(t) = 16π2

∞�

n=0

�
log 2− S(n+ 1

2
)
�
cos{(2n+ 1) πt}. (4.70)
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Also,

vF �(1− t) = −vF �(t) (4.71)

for 0 ≤ t ≤ 1.

Proof. Equation (4.67) is just the definition of vF � . Equation (4.68) is the

result of a rearrangement of the series and of using corollary 4.9 and

∞�

n=0

cos{(2n+ 1) πt}
(n+ 1

2
)2

= −π2

�
|t|− 1

2

�
(4.72)

for −1 ≤ t ≤ 1.

Equations (4.69) and (4.70) are the result of differentiating termwise

in (4.68). Note that since log 2 − S(n + 1
2
) = O(x−2), and cos{(2n + 1) πt}

is continuous and uniformly bounded, the series in (4.70) converges uniformly

to a continuous function. This justifies the first claim that vF �(t) is twice

continuously differentiable.

Finally (4.71) can be deduced from (4.67) and

cos{(2n+ 1) π (1− t)} = − cos{(2n+ 1) πt}. (4.73)

Next we record a few particular values of some expressions and func-

tions.

Proposition 4.12.

∞�

n=0

�
log 2− S(n+ 1

2
)
�

=
1

2
log 2 = 0.34657359 . . . (4.74)
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∞�

n=0

(−1)n
log 2− S(n+ 1

2
)

n+ 1
2

=

π

2

�
log 2− 1

2

�
+

π

32

�
ψ�(−1

4
)− ψ�(1

4
)
�

= 0.43539581 . . . , (4.75)

where ψ(x) = Γ�(x)/Γ(x) is the digamma function.

∞�

n=0

log 2− S(n+ 1
2
)

(n+ 1
2
)2

=
π2

2

�
log 2− 1

2

�
= 0.95314313 . . . (4.76)

∞�

n=0

S(n+ 1
2
)

(n+ 1
2
)2

=
π2

4
= 2.46740110 . . . (4.77)

vF �(0) = vF �(1
2
) = vF �(1) = 0. (4.78)

v�F �(0+) = v�F �(1−) = −4π2

�
log 2− 1

2

�
= −7.62514505 . . . (4.79)

v�F �(12) =
π2

4

�
ψ�(−1

4
)− ψ�(1

4
)
�

= 3.31754536 . . . (4.80)

v��F �(0+) = −v��F �(1−) = 8π2 log 2 = 54.72870771 . . . (4.81)

v��F �(12) = 0. (4.82)

�D(0) = log 2 = 0.69314718 . . . (4.83)

�D(1
2
) = �D(1) =

1

2
. (4.84)
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�D�(0+) = − log 2 = −0.69314718 . . . (4.85)

�D�(1−) = log 2− 1

2
= 0.19314718 . . . (4.86)

�D�(1
2
) =

1

2

∞�

n=1

(−1)n

(n+ 1
2
)2

= −1

2
ζ(2, 3

2
) +

1

4
ζ(2, 5

4
)

= −1

8

�
ψ�(−1

4
)− ψ�(1

4
)
�

= −0.16806881 . . .

(4.87)

where ζ(s, q) is the Hurwitz zeta function.

�D��(0+) = −2
∞�

n=1

(−1)n

n3
=

3

2
ζ(3) = 1.80308535 . . . (4.88)

�D��(1
2
) =

1

2

�
ψ�(−1

4
)− ψ�(1

4
)
�

= 0.67227524 . . . (4.89)

�D��(1−) = 1. (4.90)

Proof. First note that for t ∈ (−1, 1) \ {0}:

�D(t) =
1

2
− vF �(t)

4π2|t| , (4.91)

�D�(t) =
1

4π2

�
−v�F �(t)

|t| +
vF �(t)

t2
sgn(t)

�
, (4.92)

�D��(t) =
1

4π2

�
−v��F �(t)

|t| +
2 v�F �(t)

t2
sgn(t) − 2 vF �(t)

|t|3
�
, (4.93)

and

vF �(t) = 4π2|t|
�

1

2
− �D(t)

�
, (4.94)

v�F �(t) = 4π2

��
1

2
− �D(t)

�
sgn(t) − |t| �D�(t)

�
, (4.95)

v��F �(t) = −4π2
�
2 sgn(t) �D�(t) + |t| �D��(t)

�
. (4.96)
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We already know that �D(0) = log 2, which is (4.83). From (4.94) and

�D(t) bounded we get vF �(0) = 0. By (4.71) we get that also vF �(1) = 0. The

value of vF �(1
2
) can be obtained by evaluating (4.67) at t = 1

2
. This proves

(4.78), and by plugging in (4.91) we get (4.84). Similarly, by using (4.69) we

easily obtain (4.79) and from (4.70) we get (4.82).

By plugging vF �(1) and v�F �(1−) in (4.92) we get (4.86).

By the Poisson summation formula we have:

lim
T→∞

T�

n=−T

(−1)n �D(n+ t) =
∞�

n=−∞
e−2πi(n+ 1

2
)t D(n+ 1

2
) = 0. (4.97)

Hence the derivatives �D(k) of �D verify:

lim
T→∞

T�

n=−T

(−1)n �D(k)(n+ t) = 0 (4.98)

From here we easily get for k odd:

�D(k)(1
2
) =

k!

2

∞�

n=1

(−1)n

(n+ 1
2
)k+1

(4.99)

and

�D(k)(0+) + �D(k)(1−) = �D(k)(1+) = −k!

2
, (4.100)

and for k even:

�D(k)(0+) −D(k)(1−) = −k!

�
1

2
+

∞�

n=1

(−1)n

nk+1

�

= k!

�
−1

2
+

�
1− 1

2k

�
ζ(k + 1)

�
.

(4.101)

From (4.99) for k = 1 we get (4.87), and plugging in (4.95) we get (4.80).

From (4.100) and (4.86) we get (4.85). From (4.101) we see that �D��(0+) is

finite, hence from (4.96) and (4.85) we get (4.81).
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By using (4.93) we compute (4.89) and (4.90). Finally from (4.101)

and (4.90) we get (4.88).

The relations (4.74), (4.75), (4.76) and (4.77) can be obtained by using

proposition 4.11 and the values already computed for vF � and its derivatives.

Next we give a new convenient representation of vF �(t), useful to com-

pute numerical approximations.

Proposition 4.13. The function vF � can be written like this:

vF �(t) = −4π2

�
log 2− 1

2

� �
|t|− 1

2
+

1

2
cos πt

�
+ 16 b(t) cos πt, (4.102)

where

b(t) =
∞�

l=0

(−1)l
∞�

k=1

log 2− S(l + k + 1
2
)

(l + k + 1
2
)2

sin2 kπt. (4.103)

Proof. Using the relation:

cos{(2n+ 1)πt}
cos πt

= 1 − 4 (−1)n
n�

k=1

(−1)k sin2 kπt, (4.104)

and rearranging the series (4.68) we get (4.102) with

b(t) =
�

n≥1

1≤k≤n

(−1)n+k log 2− S(n+ 1
2
)

(n+ 1
2
)2

sin2 kπt. (4.105)

We get the announced result by changing n = l + k.

Proposition 4.14. Let bL be

bL(t) =
L−1�

l=0

(−1)l
∞�

k=1

log 2− S(l + k + 1
2
)

(l + k + 1
2
)2

sin2 kπt (4.106)
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and

vL(t) = −4π2

�
log 2− 1

2

� �
|t|− 1

2
+

1

2
cos πt

�
+ 16 bL(t) cos πt. (4.107)

Then for L ≥ 0

b2L(t) ≤ b(t) ≤ b2L+1(t) for every t, (4.108)

and

v2L(t) ≤ v(t) ≤ v2L+1(t) if 0 ≤ |t| ≤ 1

2
,

v2L(t) ≥ v(t) ≥ v2L+1(t) if
1

2
≤ |t| ≤ 1.

(4.109)

Proof. Inequalities (4.109) are a simple consequence of (4.108). On the other

hand, (4.108) can be proven by writing bL(t) like this

bL(t) =
∞�

k=1

cL,k sin2 kπt (4.110)

and

b(t) =
∞�

k=1

ck sin2 kπt, (4.111)

where

cL,k(t) =
L−1�

l=0

(−1)l
log 2− S(l + k + 1

2
)

(l + k + 1
2
)2

(4.112)

and

ck = lim
L→∞

cL,k =
∞�

l=0

(−1)l
log 2− S(l + k + 1

2
)

(l + k + 1
2
)2

. (4.113)

Since (4.113) is an alternating series of decreasing terms, we have c2L,k ≤ ck ≤

c2L+1,k, and from here (4.108) follows.

Remark. Since the functions vL(t) can be easily approximated by numerical

methods, proposition 4.14 provides a way to compute numerical approxima-

tions for vF �(t).
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Proposition 4.15. The second derivative of the function vF �(t) verifies

v��F �(t)

cos πt
≥ 8π2 log 2 for |t| ∈ (0, 1

2
) ∪ (1

2
, 1). (4.114)

Hence vF �(t) is convex in (0, 1
2
) and concave in (1

2
, 1). As a consequence:

vF �(t) < 0 for 0 < |t| < 1
2
,

vF �(t) > 0 for 1
2
< |t| < 1.

(4.115)

Proof. By using expression (4.70), and relations (4.104) and (4.74), we get:

v��F �(t)

cos πt
=

16 π2

∞�

n=0

�
log 2− S(n+ 1

2
)
�
�
1 − 4 (−1)n

n�

k=0

(−1)k sin2 kπt

�
=

16 π2

�
1

2
log 2 + 4

�

l,k≥1

(−1)l+1
�
log 2− S(l + k + 1

2
)
�
sin2 kπt

�
.

(4.116)

For any fixed k, the last sum is an alternating series of decreasing terms, so it

has the sign of its first term, which is positive. Hence:

v��F �(t)

cos πt
≥ 16 π2 1

2
log 2 = 8 π2 log 2. (4.117)

Since vF �(0) = vF �(1
2
) = vF �(1) = 0, and since vF �(0) is even, (4.115) follows.

Corollary 4.16. The function �D(t) verifies

1

2
≤ �D(t) ≤ log 2 for |t| ∈ [−1

2
, 1
2
], (4.118)

1− log 2 ≤ �D(t) ≤ 1

2
for |t| ∈ [−1, 1] \ (−1

2
, 1
2
). (4.119)

Hence, in particular 0 < �D(t) ≤ 1
2|t| for every t.
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Proof. For t ∈ [−1, 1] we have:

�D(t) =
1

2
− vF �(t)

4π2|t| . (4.120)

We get the first inequality from vF �(t) ≤ 0 for t ∈ [−1
2
, 1
2
], as proven in

proposition 4.15.

The second inequality can be obtained from (4.109) with L = 0:

vF �(t) ≤ v0(t) = −4π2

�
log 2− 1

2

� �
|t|− 1

2
+

1

2
cos πt

�

≤ 4π2

�
log 2− 1

2

�
(1− |t|)

(4.121)

for 1
2
≤ |t| ≤ 1. Hence:

�D(t) ≥ 1

2
−

�
log 2− 1

2

� �
1

|t| − 1

�

≥ 1

2
−

�
log 2− 1

2

�
= 1− log 2

(4.122)

for 1
2
≤ |t| ≤ 1.

4.3 Other Results

We record here another result of interest.

Proposition 4.17. The value of F at zero is:

F (0) = − ζ �(2)

ζ(2)
− 4

3
log 2 − 1

=
∞�

n=1

Λ(n)

n2
− 4

3
log 2 − 1,

(4.123)

where

Λ(n) =

�
log p if n = pα, p prime,

0 otherwise.
(4.124)
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Proof. We have:

F (0) =
1

π2

∞�

n=−∞

log |n+ 1
2
|− 1

(n+ 1
2
)2

=
8

π2

∞�

n=0

log(2n+ 1)− log 2− 1

(2n+ 1)2

=
8

π2

� ∞�

n=0

log(2n+ 1)

(2n+ 1)2
− (log 2 + 1)

∞�

n=0

1

(2n+ 1)2

�
.

(4.125)

On the other hand

∞�

n=0

1

(2n+ 1)2
= (1− 2−2) ζ(2) =

π2

8
, (4.126)

and for s > 1,

∞�

n=0

log(2n+ 1)

(2n+ 1)s
= − ∂

∂s

∞�

n=0

(2n+ 1)−s

= − ∂

∂s
(1− 2−s) ζ(s)

= −ζ(s)

�
2−s log 2 + (1− 2−s)

ζ �(s)

ζ(s)

�
,

(4.127)

hence, for s = 2,

∞�

n=0

log(2n+ 1)

(2n+ 1)2
= −1

8

π2

3

�
log 2 + 3

ζ �(2)

ζ(2)

�
. (4.128)

Substituting above:

F (0) = − ζ �(2)

ζ(2)
− 4

3
log 2 − 1

=
∞�

n=1

Λ(n)

n2
− 4

3
log 2 − 1

= −1.3542352476 . . .

(4.129)



Chapter 5

Applications

5.1 A Majorizing Trigonometric Polynomial for ϕ(x)

Lemma 5.1. For every real x and every δ > 0
∞�

m=−∞
D

�
x+m
δ

�
= δ log 2 +

�

0<k< 1
δ

�
2δ �D(δk)− 1

k

�
cos 2πxk

− log |2 sin πx|.
(5.1)

Proof. We apply the Poisson summation formula:

∞�

m=−∞
D

�
x+m
δ

�
= δ lim

T→∞

T�

k=−T

e2πixk �D(δk)

= δ �D(0) + 2δ
�

0<δk<1

�D(δk) cos 2πxk

+ 2δ
�

δk≥1

1

2δk
cos 2πxk

= δ log 2 +
�

0<k< 1
δ

�
2δ �D(δk)− 1

k

�
cos 2πxk

− log |2 sin πx|.

(5.2)

Corollary 5.2. Let ϕ be the function defined by (2.23), let H be a positive

integer, and let TH be the following trigonometric polynomial:

TH(x) =
log 2

π (H + 1)
+

1

π

H�

k=1

�
2 �D

�
k

H+1

�

H + 1
− 1

k

�
cos 2πxk. (5.3)

56
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Then

ϕ(x) ≤ TH(x) (5.4)

for every x ∈ R.

Proof. Substitute 1
H+1

for δ in lemma 5.1, and use that D(x) ≥ 0 for every

real x.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1

x

Figure 5.1: The trigonometric polynomial T5(x) majorizing ϕ(x)
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5.2 An Erdős-Turán-Type Inequality

Theorem 5.3. Let P (z) be a polynomial whose roots lie all on the unit circle:

P (z) =
M�

m=1

(z − e2πixm), (5.5)

where x1, . . . , xM are real numbers. Let H be a positive integer. Then:

sup {log |P (z)| : |z| ≤ 1} ≤
M log 2

H + 1
+

H�

k=1

�
1

k
− 2

H + 1
�D
�

k
H+1

��
sup
x∈R

M�

m=1

− cos{2π(xm − x)k}

≤ M log 2

H + 1
+

H�

k=1

�
1

k
− 2

H + 1
�D
�

k
H+1

��
�����

M�

m=1

e2πixmk

�����

≤ M log 2

H + 1
+

H�

k=1

�
1

k
− 2 (1− log 2)

H + 1

� �����
M�

m=1

e2πixmk

�����

≤ M log 2

H + 1
+

H�

k=1

1

k

�����
M�

m=1

e2πixmk

����� , (5.6)

where D(x) = F (x)− log x, F is the function defined by (2.33), and �D is the

Fourier transform of D.

Proof. By the maximum modulus principle the maximum of |P (z)| in |z| ≤ 1

is attained at some point of |z| = 1, hence it is enough to find a bound for
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log |P (e2πix)|. We have:

log |P (e2πix)| = log

�����
M�

m=1

(e2πix − e2πixm)

�����

=
M�

m=1

log |e2πix − e2πixm |

=
M�

m=1

log |1− e2πi(xm−x)|

=
M�

m=1

log |2 sin π(xm − x)|.

(5.7)

From lemma 5.1 and taking into account that D(x) ≥ 0 we get:

log |2 sin πx| ≤ δ log 2 +
�

0<k< 1
δ

�
2δ �D(δk)− 1

k

�
cos 2πxk (5.8)

for any δ > 0, hence:

log |P (e2πix)| ≤
M�

m=1



δ log 2 +

�

0<k< 1
δ

�
2δ �D(δk)− 1

k

�
cos{2π (xm − x) k}



 =

δM log 2 +
�

0<k< 1
δ

�
1

k
− 2δ �D(δk)

� M�

m=1

− cos{2π (xm − x) k}. (5.9)

Note that since �D(t) ≤ 1
2 |t| , we have that 1

k
− 2δ �D(δk) ≥ 0. Next,

letting δ = 1
H+1

we get the desired result. Finally we use

M�

m=1

− cos{2π(xm − x)k} ≤
�����

M�

m=1

e2πi(xm−x)k

����� =

�����
M�

m=1

e2πixmk

����� , (5.10)

and apply corollary 4.16.
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Corollary 5.4. Let x1, . . . , xM be real numbers. Let H be a positive integer.

Assume that ΓM is defined as in (2.22). Then

ΓM ≤ M log 2

π (H + 1)
+

1

π

H�

k=1

1

k

�����
M�

m=1

e2πkxm

����� . (5.11)

Proof. Use theorem 5.3 and (2.28).

Next, a couple of particular cases.

Corollary 5.5. Let α be an irrational number, xm = mα. Then for any

positive integer H

ΓM ≤ M log 2

π (H + 1)
+

1

2π

H�

k=1

1

k �kα� , (5.12)

where �x� = min {|x− n| : n ∈ Z}.

Proof. Use corollary 5.4 and:

�����
M�

m=1

e2πkxm

����� =
1

| sin πkα| =
1

sin π�kα� ≤ 1

2 �kα� , (5.13)

Corollary 5.6. Let H be any positive integer. If P (z) is a cyclotomic poly-

nomial

P (z) =

q�

a=1
(a,q)=1

(z − e2πia/q) (5.14)

then

sup {log |P (z)| : |z| ≤ 1} ≤ ϕ(q) log 2

H + 1
+

H�

k=1

1

k
(k, q), (5.15)

where ϕ(q) =
�

(a,q)=1 1 is Euler’s function.
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Remark. Note that if q is a prime, by taking H = q − 1 we get

sup {log |P (z)| : |z| ≤ 1} ≤ C + log q (5.16)

with C = 1+log 2, which has the right order, since in this case sup {log |P (z)| :

|z| ≤ 1} = log q exactly.

Proof of corollary 5.6. Use theorem 5.3 and the following result about Ra-

manujan’s sums ([1], sec. 8.4):

��������

q�

a=1
(a,q)=1

e2πika/q

��������
=

�����
ϕ(q)µ( q

(k,q)
)

ϕ( q
(k,q)

)

����� ≤ (k, q). (5.17)

5.3 Analogue of Montgomery and Vaughan’s Inequality

Theorem 5.7. Let λ1,λ2, . . . ,λN be real numbers satisfying 0 < δ ≤ |λj − λk|

for j �= k, and let a1, a2, . . . , aN be arbitrary complex numbers. Then

−2 log 2

δ

N�

n=1

|an|2 ≤
N�

j=1

N�

k=1

j �=k

aj ak
|λj − λk|

. (5.18)

The constant 2 log 2 is sharp.

Proof. We use the function D(x), that we know is nonnegative and integrable,
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�D(0) = log 2 and �D(t) = 1
2 |t| for |t| ≥ 1. First assume δ = 1:

0 ≤
� ∞

−∞
D(x)

�����
N�

n=1

an e
−2πiλn x

�����

2

dx

=

� ∞

−∞

N�

j=1

N�

k=1

aj ak e
−2πi (λj−λk)x D(x) dx

=
N�

n=1

|an|2 �D(0) +
N�

j=1

N�

k=1

j �=k

aj ak �D(λj − λk)

=
N�

n=1

|an|2 log 2 +
N�

j=1

N�

k=1

j �=k

aj ak
1

2 |λj − λk|
,

(5.19)

hence:

− log 2
N�

n=1

|an|2 ≤ 1

2

N�

j=1

N�

k=1

j �=k

aj ak
|λj − λk|

. (5.20)

Finally, for δ �= 1 a change of variables allows us to complete the proof.

We see that the constant −2 log 2 is sharp by putting λn = n, an =

(−1)n, and N arbitrarily large.

Remark. Note that the expression in the right hand side of (5.18) is not

bounded above, as proven in [5], end of section 8.12, p. 214.

5.4 Generalization of the Erdős-Turán-Type Inequality

The “Erdős-Turán”-type inequality given by theorem 5.3 can be substantially

generalized. In fact, suppose α1, . . . ,αM are complex numbers, and ω1, . . . ,ωM

are non-negative numbers with

M�

m=1

ωm = 1. (5.21)
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Define f : C → [−∞,∞) by

f(z) =
M�

m=1

ωm log |z − αm|, (5.22)

and note that f is subharmonic on any open subset of C. In particular f is

subharmonic on Δ = { z ∈ C : |z| < 1 }.

We wish to estimate sup { f(z) : z ∈ Δ } in terms of the power sums

M�

m=1

ωm (αm)
n 1 ≤ n ≤ N. (5.23)

In fact such sums may be dominated by a few large α’s, so we make the

following modification. Suppose that 0 ≤ |α1| ≤ |α2| ≤ · · · ≤ |αL| ≤ 1 <

|αL+1| ≤ · · · ≤ |αM | and then set

βm =

�
αm if 1 ≤ m ≤ L,

(αm)
−1 if L+ 1 ≤ m ≤ M.

(5.24)

Then define the power sums

sn =
M�

m=1

ωm (βm)
n n = 1, 2, . . . (5.25)

Next we define g : C → [−∞,∞) and h : C → [−∞,∞) by

g(z) =
M�

m=1

ωm log+ |αm| +
M�

m=1

ωm log |z − βm| (5.26)

and

h(z) =
L�

l=1

ωl log |αl z − 1| +
M�

m=L+1

ωm log |z − αm|. (5.27)

It follows easily that f and g are subharmonic on Δ, h is harmonic on

Δ, and f(e2πiθ) = g(e2πiθ) = h(e2πiθ) for all real θ. Therefore f(z) ≤ h(z) and
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g(z) ≤ h(z) for all z ∈ Δ. So we have

sup { f(z) : z ∈ Δ } ≤ sup {h(z) : z ∈ Δ }

= sup {h(e2πiθ) : θ ∈ R/Z }

= sup { g(e2πiθ) : θ ∈ R/Z }.

(5.28)

Let ϕ : R/Z → [−∞,∞) be defined by

ϕ(θ) = π−1 log |e2πiθ − 1| = −
∞�

n=−∞
n�=0

(2π|n|)−1 e2πinθ. (5.29)

Then let TN(θ) be a trigonometric polynomial of degree at most N such that

ϕ(θ) ≤ TN(θ) (5.30)

for all θ ∈ R/Z. We also assume that θ �→ TN(θ) is even (so that n �→ �TN(n)

is real) and

�TN(0) =

� 1

0

TN(x) dx =
log 2

π (N + 1)
. (5.31)

Now let β = r e2πiξ with 0 ≤ r < 1 and ξ ∈ R/Z. Then we have

log |e2πiθ − β| = log |1− β e2πiθ|

= −�
� ∞�

n=1

n−1 (β)n e2πinθ

�

= −
∞�

n=−∞
n�=0

(2|n|)−1 r|n| e2πin{θ−ξ}.

(5.32)

Next recall that

Pr(θ) =
∞�

n=−∞
r|n| e2πinθ = (1− r2) |1− re2πiθ|−2 ≥ 0 (5.33)
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for all θ. It follows from (5.29), (5.30) and (5.32) that

log |e2πiθ − β| = π

� 1

0

Pr(θ − ξ − τ)ϕ(τ) dτ

≤ π

� 1

0

Pr(θ − ξ − τ)TN(τ) dτ

= π

N�

n=−N

r|n| �TN(n) e
2πin(θ−ξ).

(5.34)

In order to use (5.34) (which holds also if r = 1) to estimate g(e2πiθ),

write βm = rm e2πiξm , where 0 ≤ rm ≤ 1, ξm ∈ R/Z, m = 1, 2, . . . ,M . Then

we find that

g(e2πiθ) =
M�

m=1

ωm log+ |αm| +
M�

m=1

ωm log |e2πiθ − βm|

≤
M�

m=1

ωm log+ |αm| + π
M�

m=1

ωm

N�

n=−N

r|n|m
�TN(n) e

2πin(θ−ξm)

=
M�

m=1

ωm log+ |αm| + π �TN(0)

+ π
N�

n=−N
n�=0

�TN(n)

�
M�

m=1

ωm r|n|m e−2πinξm

�
e2πinθ

=
M�

m=1

ωm log+ |αm| + π �TN(0)

+ π
N�

n=−N
n�=0

�TN(n) { sn e2πinθ + sn e
−2πinθ }.

(5.35)

This leads to the following inequality:

sup { f(z) : z ∈ Δ } ≤
M�

m=1

ωm log+ |αm| +
log 2

N + 1
+ 2π

N�

n=1

��� �TN(n)
��� |sn|,

(5.36)
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where

sn =
M�

m=1

ωm (βm)
n n = 1, 2, . . . , N. (5.37)



Chapter 6

Conjectures and Future Research

6.1 Generalization of the Majorant for log |x|

A small variation of the problems studied in the previous sections would be to

substitute log |x| with 1
2
log(x2 + y2) (y > 0). Note that

log |x| = lim
y→0+

1

2
log(x2 + y2).

Then equation (2.30) becomes

∞�

l=−∞
D(x+l) = �D(0) + lim

T→∞

T�

m=−T
m�=0

e−2πy|m|

2|m| e2πimx = �D(0)−π ϕy(x), (6.1)

where

ϕy(x) = −y +
1

2π
log(2 cosh 2πy − 2 cos 2πx)

=
1

π
log

�� e2πix − e−2πy
�� .

(6.2)

That function becomes ϕ(x) as y → 0+, but has some extra properties

of interest. It is periodic of period 2π and has maxima and minima respectively

at the points of the form n+ 1
2
and n for n ∈ Z, where it takes the values:

ϕy(n+ 1
2
) =

1

π
log

�
1 + e−2πy

�
,

ϕy(n) =
1

π
log

�
1− e−2πy

�
.

(6.3)
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Figure 6.1: The function ϕy(x) for several values of y

Reasoning as in the previous chapter we have that the following is a

good candidate for an entire function of exponential type 2π that majorizes

1
2
log(x2 + y2) and is extremal in the sense of minimizing the L1 norm of

F+
y (x)− 1

2
log(x2 + y2):

F+
y (z) =

�cos πz
π

�2





∞�

n=−∞

1
2
log{(n+ 1

2
)2 + y2}

(z − (n+ 1
2
))2

+
∞�

n=−∞

n+ 1
2

(n+ 1
2
)2+y2

z − (n+ 1
2
)



 . (6.4)
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Figure 6.2: Function F+
y (x) majorizing 1

2
log(x2 + y2)

However now we also have a candidate for a minorizing extremal func-

tion, which will result from interpolating at the integers instead of the integers

plus a half:

F−
y (z) =

�
sin πz

π

�2
� ∞�

n=−∞

1
2
log{n2 + y2}
(z − n)2

+
∞�

n=−∞

n
n2+y2

z − n

�
. (6.5)

If we define D±
y (x) = F±

y (x)− 1
2
log(x2 + y2), then:

�D+
y (0) = log

�
1 + e−2πy

�

�D−
y (0) = log

�
1− e−2πy

�
.

(6.6)
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Figure 6.3: Function F−
y (x) minorizing 1

2
log(x2 + y2)

At this point we can state the following conjecture:

Conjecture 6.1. Let F+
y (x) and F−

y (x) be the functions defined in (6.4) and

(6.5) respectively. Then:

1. F+
y (z) and F−

y (z) are entire functions of exponential type 2π.

2. For every x ∈ R

F−
y (x) ≤ 1

2
log(x2 + y2) ≤ F+

y (x). (6.7)
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3. They satisfy:

� ∞

−∞
{F+

y (x)− 1

2
log(x2 + y2) } dx = log

�
1 + e−2πy

�
,

� ∞

−∞
{ 1

2
log(x2 + y2)− F−

y (x) } dx = log
�
1− e−2πy

�
.

(6.8)

4. They are extremal, in the sense that among all pairs of functions satis-

fying 1 and 2, they are the ones that minimize integrals (6.8) in 3.

The key property is, of course, the double inequality (6.7). From here

several results follow, such as:

Conjecture 6.2. Let λ1,λ2, . . . ,λN be real numbers satisfying |λm − λn| ≥

δ > 0 whenever m �= n, and let a(1), . . . , a(N) be arbitrary complex numbers.

Also let α be any positive real number. Then

− 2

δ
log

�
1 + e−2παδ

� N�

n=1

|a(n)|2

≤
N�

m=1

N�

n=1
m�=n

a(m) a(n)

|λm − λn|
e−2πα|λm−λn|

≤ −2

δ
log

�
1− e−2παδ

� N�

n=1

|a(n)|2. (6.9)

In the proof for this result we will set y = α δ, use (6.6) and

�D±
y (t) =

e−2πy|t|

2|t| for |t| ≥ 1 , (6.10)

and proceed as in the proof of theorem 5.7.

Note that this result becomes theorem 5.7 as α → 0+. Note also that

the upper bound tends to infinity.
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6.2 Generalization of Beurling’s Function

Writing z = x+yi we note that i log(−iz) = arctan x
y
+ i 1

2
log(x2+y2), hence

1
2
log(x2 + y2) is the harmonic conjugate of arctan x

y
. This function becomes

π
2
sgn(x) for y → 0+. If we substitute sgn(x) by 2

π
arctan x

y
and repeat the

work done for Beurling’s function, we get:

∞�

l=−∞
D(x+l) = �D(0) + lim

T→∞

T�

m=−T
m�=0

e−2πy|m|

πim
e2πimx = �D(0)+2ψy(x), (6.11)

where

ψy(x) = − 1

π
arctan

�
sin 2πx

e2πy − cos 2πx

�
. (6.12)

The function ψy(x) becomes ψ(x) for y → 0+, but also has some prop-

erties of interest. It is periodic of period 2π and has maxima and minima

respectively at the points of the form n− δy and n+ δy for n ∈ Z, where

δy =
1

2π
arccos

�
e−2πy

�
0 < δy <

1

2
, (6.13)

and it takes the values:

ψy(n± δy) = ∓ 1

π
arctan

�
(e4πy − 1)−

1
2

�
. (6.14)

From here we get that the following function is a candidate for an entire

extremal function of exponential type 2π that majorizes 2
π
arctan x

y
along the

real axis:

B+
y (z) =
�
sin π(z − δy)

π

�2
� ∞�

n=−∞

2
π
arctan n+δy

y

(z − (n+ δy))2
+

∞�

n=−∞

2y/π
(n+δy)2+y2

z − (n+ δy)

�
. (6.15)
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Figure 6.4: The function ψy(x) for several values of y

By substituting δy with −δy we get an analogous function, B−
y (z), in-

tended to minorize 2
π
arctan x

y
along the real axis.

Note that by letting y → 0+, then δy → 0+, and B+
y (z) and B−

y (z)

approach B(z) and −B(−z) respectively.

Also, we note that B+
y
�
(δy) → 2 as y → 0+, which confirms the value

B�(0) = 2 for the derivative of the Beurling’s function at zero.
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Figure 6.5: δy as a function of y

If D±
y = B±

y (x)− 2
π
arctan x

y
then

�D±
y (0) = ± 2

π
arctan

�
(e4πy − 1)−

1
2

�
. (6.16)

At this point we can state the following conjecture:

Conjecture 6.3. Let B+
y (x) be the function defined in (6.15), and B−

y (x) be

the analogous functions obtained by substituting δy with −δy in the definition

of B+
y (x). Then:



75

-1

-0.5

0

0.5

1

-3 -2 -1 0 1 2 3

x

Figure 6.6: Function B+
y (x) majorizing 2

π
arctan x

y

1. B+
y (z) and B−

y (z) are entire functions of exponential type 2π.

2. For every x ∈ R

B−
y (x) ≤ 2

π
arctan

x

y
≤ B+

y (x). (6.17)

3. They satisfy:
� ∞

−∞
{B+

y (x)−
2

π
arctan

x

y
} dx =

2

π
arctan

�
(e4πy − 1)−

1
2

�
,

� ∞

−∞
{ 2

π
arctan

x

y
− B−

y (x) } dx =
2

π
arctan

�
(e4πy − 1)−

1
2

�
.

(6.18)
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Figure 6.7: B+
y
�
(δy) as a function of y

4. They are extremal, in the sense that among all pairs of functions satis-

fying 1 and 2, they are the ones that minimize integrals (6.18) in 3.

Next, some results that follow from the extremal properties of B±
y (x):

Conjecture 6.4. Let λ1,λ2, . . . ,λN be real numbers satisfying |λm − λn| ≥

δ > 0 whenever m �= n, and let a(1), . . . , a(N) be arbitrary complex numbers.
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Figure 6.8: Function B−
y (x) minorizing 2

π
arctan x

y

Also let α be any positive real number. Then
��������

N�

m=1

N�

n=1
m�=n

a(m) a(n)

λm − λn

e−2πα|λm−λn|

��������

≤ 2

δ
arctan

�
(e4παδ − 1)−

1
2

� N�

n=1

|a(n)|2. (6.19)

In the proof of this result we will set y = α δ, use (6.16) and

D±
y =

e−2πy|t|

πit
, (6.20)



78

and proceed as in the proof of (2.2), (Montgomery and Vaughan’s inequality).

By letting α → 0+ this result becomes (2.2), so (6.19) can be considered

as a generalization of Montgomery and Vaughan’s inequality.

6.3 Extremal Majorants and Minorants for log+ |x|

In this section we briefly address the problem of obtaining extremal majorants

and minorants for the function

log+ |x| =

�
log |x| if |x| ≥ 1,

0 if |x| < 1.
(6.21)

Assume that G(z) is an entire function of exponential type at most 2π,

and assume that the difference DG(x) = G(x) − log+ |x| is integrable. Note

that log+ |x| = log |x| − χ[−1,1](x) log |x|, so by using the Poisson summation

formula and taking into account equation (2.30) we get

∞�

l=−∞
DG(x+ l) = �DG(0) + 2 − π ϕ(x) + log(�x�) + log(1− �x�)

= �DG(0) − ξ(x),
(6.22)

where

ξ(x) = log

� |2 sin πx|
�x�(1− �x�)

�
− 2, (6.23)

�x� = fractional part of x.

The function ξ is periodic of period 1, has a minimum ξ(n) = log 2π −

2 ≈ −0.16212293 . . . at the integers, and a maximum ξ(n+1/2) = 3 log 2−2 ≈

0.07944154 . . . at the integers plus a half. Hence, candidates to extremal

minorizing and majorizing entire functions of exponential type at most 2π for
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log+ |x| are interpolating functions at the integers and at the integers plus a

half respectively:

F−(z) =

�
sin πz

π

�2





�

|n|≥1

log |n|
(z − n)2

+
�

|n|≥2

1
n

z − n
+

2F �
−(1)

x2 − 1



 , (6.24)

F+(z) =
�cos πz

π

�2





∞�

n=−∞
n�=−1,0

log |n+ 1
2
|

(z − (n+ 1
2
))2

+
∞�

n=−∞
n�=−1,0

1
n+ 1

2

z − (n+ 1
2
)





.

(6.25)
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Figure 6.10: The functions log+ |x|, F+(x) and F−(x)

The derivative F �
−(1) of F− at 1 is a parameter to be determined. This

parameter does not affect the value of

DF−(0) =

� ∞

−∞
{F−(x)− log+(|x|)} dx, (6.26)

but it might play a role in getting F−(x) ≤ log+ |x| for every x ∈ R.



Chapter 7

Harmonic Majorants

In chapter 6 we pose the problem of generalizing the previous results to the

functions 2
π
arctan x

y
and 1

2
log(x2 + y2) (y > 0). Since they are respectively

the harmonic extensions of sgn(x) and log |x| to the upper half complex plane

H+ = {x + yi : y > 0}, the harmonic extensions of the Beurling’s function

and that of the function F defined in (2.33) will be majorants for 2
π
arctan x

y

and 1
2
log(x2+y2) (y > 0) respectively. Of course, they will not be extremal in

the sense of the previous chapters, but they do solve a different optimization

problem.

We will use the theory in [2, ch. 11], and [6, ch. 8]. In particular we

restate the following theorem from [6] (after some changes of notation):

Theorem 7.1. Let p ≥ 1 and let f a function in Lp(R). Let F be the harmonic

function defined in H+ by

F (x+ yi) = Py ∗ f(x) =
1

π

� ∞

−∞
f(u)

y

(x− u)2 + y2
du, (7.1)

where

Py(x) =
1

π

y

x2 + y2
(7.2)

is the Poisson Kernel for the upper half plane. Then:

81
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1. For each y > 0 the function Fy(x) is in Lp(R).

2. The Lp-norms �Fy�p are bounded for y > 0. In fact �Fy�p is a decreasing

function of y for y > 0.

3. The functions Fy converge to f in Lp-norm as y → 0+.

4. F (z) tends uniformly to zero as z tends to infinity in any fixed half-plane

�(z) ≥ δ > 0.

7.1 A Harmonic Majorant for the Arctangent

Theorem 7.2. Let F be an entire function of exponential type at most 2π

such that for every y > 0

�{F (x+ yi)} ≥ 2

π
arctan

x

y
. (7.3)

For y > 0 let Iy(�{F}) be the L1-norm of the difference:

Iy(�{F}) =

� ∞

−∞

�
�{F (x+ yi)}− 2

π
arctan

x

y

�
dx. (7.4)

Then Iy(�{F}) is independent of y—so we can drop the subscript y in it:

I(�{F}) = Iy(�{F}). Also:

1. I(�{F}) ≥ 1.

2. The Beurling function (2.1) verifies (7.3). Furthermore, I(�{F}) = 1

if and only if 1
2

�
F (z) + F (z)

�
= B(z).

Proof. Let D be:

D(x+ yi) = �{F (x+ yi)}− 2

π
arctan

x

y
(7.5)
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for y > 0. Its limit function for y → 0+ is D(x) = �{F (x)} − sgn(x), and

since D is harmonic, we have D(x+ yi) = Py ∗D(x). By Fubini’s theorem we

see that

Iy(�{F}) = �Py ∗ (�{F}− sgn)�1 = ��{F}− sgn �1, (7.6)

hence it is independent of y.

On the other hand

1

2

�
F (z) + F (z)

�
(7.7)

is a real entire function of exponential type at most 2π that coincides with

�{F} on the real line. Hence, by the properties of Beurling’s function we get

(1) and (2).

Remark. Analogously, the following holds for y > 0:

�{−B(−x− yi)} ≤ 2

π
arctan

x

y
, (7.8)

and � ∞

−∞

�
�{−B(−x− yi)}− 2

π
arctan

x

y

�
dx = −1. (7.9)

Next we give a generalization of Montgomery and Vaughan’s inequality

that can be obtained as a consequence of theorem 7.2. The result is similar to

conjecture 6.4—but somewhat weaker.

Theorem 7.3. Let λ1,λ2, . . . ,λN be real numbers satisfying |λm−λn| ≥ δ > 0

whenever m �= n, and let a(1), . . . , a(N) be arbitrary complex numbers. Also

let α be any positive real number. Then
��������

N�

m=1

N�

n=1
m�=n

a(m) a(n)

λm − λn

e−2πα|λm−λn|

��������
≤ π

δ

N�

n=1

|a(n)|2. (7.10)
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Proof. Let Dy(x) be equal to

Dy(x) = D(x+ yi) = �{B(x+ yi)} − 2

π
arctan

x

y
. (7.11)

D(x + yi) is a harmonic function with D(x) = B(x) − sgn(x) as limit for

y → 0+, hence Dy(x) = Py ∗ D(x), where Py is the Poisson kernel (7.2).

Then �Dy(t) = �Py(t) �D(t) = e−2πy|t| �D(t) for y > 0. Hence �Dy(0) = 1 and

�Dy(t) = −e−2πy|t|/πit for |t| ≥ 1. Next set y = α δ, and proceed as in the

proof of theorem 16 of [10] (the Montgomery and Vaughan’s inequality).

7.2 A Harmonic Majorant for the Logarithm

Theorem 7.4. Let G be an entire function of exponential type at most 2π

such that for every y > 0

�{G(x+ yi)} ≥ 1

2
log (x2 + y2). (7.12)

For y > 0 let Iy(�{G}) be the L1-norm of the difference:

Iy(�{G}) =

� ∞

−∞

�
�{G(x+ yi)}− 1

2
log (x2 + y2)

�
dx. (7.13)

Then Iy(�{G}) is independent of y—so we can drop the subscript y in it:

I(�{G}) = Iy(�{G}). Also:

1. I(�{G}) ≥ log 2.

2. The function F defined by (2.33) verifies (7.12). Furthermore, I(�{G}) =

log 2 if and only if 1
2

�
G(z) +G(z)

�
= F (z).

Proof. Let D be:

D(x+ yi) = �{G(x+ yi)}− 1

2
log (x2 + y2) (7.14)
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for y > 0. Its limit function for y → 0+ is D(x) = �{G(x)}− log |x|, and since

D is harmonic, we have D(x + yi) = Py ∗D(x). By Fubini’s theorem we see

that

Iy(�{G}) = �Py ∗ (�{G}− log | · |)�1 = ��{G}− log | · |�1, (7.15)

hence it is independent from y.

On the other hand

1

2

�
G(z) +G(z)

�
(7.16)

is a real entire function of exponential type at most 2π that coincides with

�{G} on the real line. Hence, by proposition 4.10 we get (1) and (2).

As a consequence of theorem 7.4 we give a result that generalizes the-

orem 5.7. The result is analogous to conjecture 6.2, but somewhat weaker.

Theorem 7.5. Let λ1,λ2, . . . ,λN be real numbers satisfying |λm−λn| ≥ δ > 0

whenever m �= n, and let a(1), . . . , a(N) be arbitrary complex numbers. Also

let α be any positive real number. Then

−2

δ
log 2

N�

n=1

|a(n)|2 ≤
N�

m=1

N�

n=1
m�=n

a(m) a(n)

|λm − λn|
e−2πα|λm−λn|. (7.17)

Proof. Let Dy(x) be equal to

Dy(x) = D(x+ yi) = �{F (x+ yi)} − 1

2
log (x2 + y2), (7.18)

where F is function (2.33). D(x + yi) is a harmonic function with D(x) =

F (x) − log |x| as limit for y → 0+, hence Dy(x) = Py ∗D(x), where Py is the
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Poisson kernel (7.2). Then �Dy(t) = �Py(t) �D(t) = e−2πy|t| �D(t) for y > 0. Hence

�Dy(0) = log 2 and �Dy(t) = e−2πy|t|/2|t| for |t| ≥ 1. Next set y = α δ, and

proceed as in the proof of theorem 5.7.



Chapter 8

Lemmas

Here we give some details about results used in some proofs.

We begin with a version of the Euler-MacLaurin summation formula.

Lemma 8.1. Let N ≤ M integers, and let f : [N − 1
2
,M + 1

2
] → R be 2m

times continuously differentiable, m ≥ 2, and such that

� M+ 1
2

N− 1
2

|f (2m)(x)| dx < ∞,

where f (2m) is the 2m-th derivative of f . Then

M�

n=N

f(n) =

� M+ 1
2

N− 1
2

f(x) dx

+
m−1�

k=1

B2k(
1
2
)

(2k)!

�
f (2k−1)(M + 1

2
)− f (2k−1)(N − 1

2
)
�

+
B2m(

1
2
)

(2m)!

M�

n=N

f (2m)(θn). (8.1)

where Bk(x) = k-th Bernoulli polynomial, and n− 1
2
< θn < n+ 1

2
.

Proof. Using the general Euler-MacLaurin formula and taking into account
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that B2k−1(
1
2
) = 0:

�

N− 1
2
<n<M+ 1

2

f(n) =

� M+ 1
2

N− 1
2

f(x) dx

+
m−1�

k=1

B2k(
1
2
)

(2k)!

�
f (2k−1)(M + 1

2
)− f (2k−1)(N − 1

2
)
�

+
1

(2m− 1)!

� M+ 1
2

N− 1
2

B2m−1(�x�) f (2m−1)(x) dx, (8.2)

where �x� = fractional part of x.

By integrating by parts and using the mean value theorem for integrals

(justified by the fact that B2k(
1
2
) − B2m(�x�) never changes its sign) the last

integral becomes:

� M+ 1
2

N− 1
2

B2m−1(�x�) f (2m−1)(x) dx

=
1

m

� M+ 1
2

N− 1
2

�
B2m(

1
2
)− B2m(�x�)

�
f (2m)(x) dx

=
1

m

M�

n=N

� n+ 1
2

n− 1
2

�
B2m(

1
2
)− B2m(�x�)

�
f (2m)(x) dx

=
1

m

M�

n=N

f (2m)(θn)

� n+ 1
2

n− 1
2

�
B2m(

1
2
)− B2m(�x�)

�
dx

=
B2m(

1
2
)

m

M�

n=N

f (2m)(θn). (8.3)

From here the announced result follows.

Next, we justify the use of the Poisson summation formula for the

function D(x).
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Lemma 8.2. Let D be the function defined in (4.1). Then

∞�

n=−∞
D(x+ n) = lim

T→∞

T�

k=−T

�D(k) e2πikx (8.4)

for every real x �∈ Z.

Proof. For small ε > 0, let Dε be the function

Dε(x) =

�
D(x) = F (x)− log |x| if |x| > ε

F (x)− log |ε| if |x| ≤ ε
(8.5)

Now Dε(x) is a continuous function of bounded variation and absolutely inte-

grable on R, so we can apply the Poisson summation formula to it:

∞�

n=−∞
Dε(x+ n) = lim

T→∞

T�

k=−T

�Dε(k) e
2πikx (8.6)

for every real x �∈ Z. Note that if ε < �x� = distance from x to the nearest

integer, then the left hand sides of (8.4) and (8.6) are the same. In order to

compare the right hand sides, we compute:

�D(t)− �Dε(t) =

� ε

−ε

log
ε

|y| e
−2πiyt dy

=
1

πt
Si(2πεt),

(8.7)

where

Si(x) =

� x

0

sin u

u
du (8.8)

is the sine integral. So:

T�

k=−T

�D(k) e2πikx −
T�

k=−T

�Dε(k) e
2πikx

= �D(0) − �Dε(0) +
2

π

T�

k=1

1

k
Si(2πεk) cos 2πkx (8.9)
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Obviously �D(0) − �Dε(0) → 0 as ε → 0+, hence we only need to worry about

the last sum, which is the real part of

2

π

T�

k=1

1

k
Si(2πεk) e2πikx. (8.10)

Summation by parts shows that the absolute value of (8.10) is bounded by

4/π

|1− e2πix|

�
Si(2πε) +

T�

k=1

����
Si(2πε(k + 1))

k + 1
− Si(2πεk)

k

����

�
. (8.11)

We have Si(2πε) → 0 as ε → 0+. Also we notice that by the mean value

theorem:

Si(2πε(k + 1))

k + 1
− Si(2πεk)

k

=
1

(k + θk)2
{ sin{2π(k + θk)ε}− Si(2π(k + θk)ε) } , (8.12)

where 0 < θk < 1. Hence the sum in (8.11) converges uniformly as T → ∞,

and each of its terms tends to zero as ε → 0+, so that

lim
ε→0+

∞�

k=1

����
Si(2πε(k + 1))

k + 1
− Si(2πεk)

k

���� = 0. (8.13)

It follows that

lim
ε→0+

lim
T→∞

�����
T�

k=−T

�D(k) e2πikx −
T�

k=−T

�Dε(k) e
2πikx

����� = 0, (8.14)

and the announced result follows.

Lemma 8.3. Let j be the function defined in (4.6). Then

−27

t2
≤ j(4)(t) ≤ 6

t2
for every t > 0. (8.15)

As a consequence:

|j(4)(t)| ≤ 27

t2
for every t > 0. (8.16)
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Proof. Let fa be the function:

fa(t) = j(4)(t)− a

t2
. (8.17)

After some lengthly but elementary computations we can write fa(t) like this:

fa(t) =
−480 p(t)

(t2 − 1)7

�
log t +

ga(t)

t2 p(t)

�
, (8.18)

where

p(t) = t8 + 105t4 + 35t6 + 49t2 + 2, (8.19)

and ga(t) is a certain polynomial of 13th degree whose coefficients depend on

a. The factor outside the curly brackets is negative for t > 1, and positive for

0 < t < 1 (note that fa(t) has a removable discontinuity at t = 1), and the

expression inside has the following derivative:

d

dt

�
log t +

ga(t)

t2 p(t)

�
=

(t2 − 1)6 qa(t)

120 t3 p(t)2
, (8.20)

where qa(t) is a 10th-degree polynomial. By counting the zeros of qa(t) in

(0,∞) (e.g., by the Sturm method) we find that q6(t) and q−27(t) have no zeros

in that interval. Also we have that qa(1) = 672a−3456, hence q6(1) = 576 and

q−27(1) = −21600, which implies q6(t) > 0 and q−27(t) < 0 for t > 0. Thus,

the expression inside the curly brackets is increasing for a = 6 and decreasing

for a = −27. Since it vanishes at t = 1, this allows us to determine its sign

along the intervals (0, 1) and (1,∞), which together with that of the factor

outside the curly brackets, gives us the sign of fa(t) in (0,∞) \ {1}. At t = 1

the sign of fa can be checked by directly computing fa(1) =
36
7
−a. From here

we get for every t > 0

f6(t) < 0 < f−27(t), (8.21)

and the desired result follows.
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Lemma 8.4. Let f be the function

f(x) = j
�

1
2x

�
+ x

� ∞

1
x

j(t) dt +
1

24 x
j�
�
1
x

�
, (8.22)

where j is the function defined in (4.6). Then

f(x) =
11
6

− 3 log 2

x2
+ O

�
log x

x4

�
(8.23)

for x → ∞.

Proof. The proof is just a lengthly but elementary computation. We have:

j
�

1
2x

�
=

x2

(x2 − 1
4
)3

��
−3x2 − 1

4

�
log(2x) + 2x4 + x2 − 3

8

�

= 2 − 3 log x

x2
+

5
2
− 3 log 2

x2
+ O

�
log x

x4

�
,

(8.24)

x

� ∞

1
x

j(t) dt =
2 x2 (2 log x− x2 + 1)

(x2 − 1)2

= −2 +
4 log x

x2
− 2

x2
+ O

�
log x

x4

�
,

(8.25)

1

24 x
j�
�
1
x

�
= − x2

3 (x2 − 1)4
�
(3x4 + 8x2 + 1) log x+ 4x4 − 2x2 − 2

�

= − log x

x2
+

4/3

x2
+ O

�
log x

x4

�
.

(8.26)

By adding up the three expressions we get the announced result.

Lemma 8.5. Let g be

g(x) = −x2 f(x)− 7

128
, (8.27)

where f is defined in (8.22). Then g(x) > 0 in (δ,∞) for some 0 < δ < 1
2
.

Proof. The function g(x) can be written like this:

g(x) =
x4 p(x) b(x)

3 (x2 − 1)4 (4x2 − 1)3
, (8.28)
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where

p(x) = 224x8 + 916x6 − 1095x4 + 220x2 + 59, (8.29)

b(x) = log x +
m(x)

x4 p(x)
, (8.30)

and m(x) is a certain polynomial of 14th degree.

We note that p(x) has no zeros, which can be checked by Sturm’s

method. The derivative of b(x) is the following:

b�(x) =
(x2 − 1)3 (4x2 − 1)2 q(x)

32 x5 p(x)2
, (8.31)

where

q(x) =

(−324800 + 516096 log 2) x12 + (−3692848 + 6027264 log 2) x10

+ (−885648− 18432 log 2) x8 + (1140416− 774144 log 2) x6

− 167462 x4 + 10647 x2 + 1239. (8.32)

Using Sturm’s method again we check that q(x) has exactly 2 zeros1 in the

interval (0,∞), one at some x1 ∈ (0, 1
2
) and the other one at x2 ∈ (1

2
, 1).

We easily check the sign of q(x) to be negative in (x1, x2) and positive in

(0,∞) \ (x1, x2).

Next we determine the sign of b(x) at several intervals along (x1,∞).

First we note that b�(x) has a double zero at x = 1
2
and a triple zero at x = 1,

hence b(x) has a triple zero at x = 1
2
and a quadruple zero at x = 1. Since

the derivative of b(x) vanishes only once in (1
2
, 1), then b(x) cannot have any

1By numerical methods we get: x1 = 0.47657357 . . . , x2 = 0.74127575 . . .
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zeros in that interval, so its sign remains constant there, and it can be checked

to be positive. Since the zero of b(x) at x = 1 is even, then b(x) will have

the same sign (positive) to the right of that point. Since b�(x) > 0 in (1,∞),

b(x) will remain positive along the whole interval (1,∞). Finally the sign in

(x1,
1
2
) can be determined by observing that the zero of b(x) at x = 1

2
is even,

so b(x) will be negative to the left of that point, and its derivative is positive

in (x1,
1
2
), hence b(x) must be negative in that interval. We summarize the

result as: b(x) < 0 in (x1,
1
2
) and b(x) > 0 in (1

2
, 1)∪ (1,∞). From here we get

that b(x) has no other zeros in (x1,∞) but those at x = 1
2
and x = 1.

Finally we note that the zeros of b(x) in (x1,∞) cancel out exactly the

poles of the denominator of g(x), so that g(x) is a non-vanishing continuous

function in that interval, where it can be easily checked to be positive. Finally

we end the proof by setting δ = x1.

Lemma 8.6. Let h defined as in (4.4). Then the function t �→ t3 h�(t), is

increasing for t > 1.

Proof. The derivative of t3 h�(t) is

d

dt
{t3 h�(t)} =

48 t3 (t2 + 1)

(t2 − 1)4

�
log t− t6 + 9t4 − 9t2 − 1

12 t2 (t2 + 1)

�
. (8.33)

The factor outside the curly brackets is positive for t > 1, and the expression

inside has the following derivative:

d

dt

�
log t− t6 + 9t4 − 9t2 − 1

12 t2 (t2 + 1)

�
= − (t2 − 1)4

6 t3 (t2 + 1)2
, (8.34)

which is negative for t > 1, so the expression inside the curly brackets is

decreasing. Since its value is zero at t = 1, it will be negative for t > 1.
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This proves that the derivative of t3 h�(t) is negative for t > 1, hence t3 h�(t) is

decreasing.

Lemma 8.7. Let h(t) be the function defined by (4.4). Then for every t > 0

−14

t4
≤ h(4)(t) ≤ 1

t4
, (8.35)

where h(4)(t) is the fourth derivative of h(t). As a consequence

|h(4)(t)| ≤ 14

t4
(8.36)

for every t > 0.

Proof. Let fa be the function:

fa(t) = h(4)(t)− a

t4
. (8.37)

After some computations we get

fa(t) =
240 p(t)

(t2 − 1)6

�
log t+

ga(t)

t4 p(t)

�
, (8.38)

where

p(t) = (t2 + 1) (t4 + 14t2 + 1), (8.39)

and ga is a certain polynomial of 12th degree whose coefficients depend on a.

The factor outside the curly brackets is positive for t ∈ (0,∞)\{1} (note that

fa(t) has a removable discontinuity at t = 1), and the expression inside has

the following derivative:

d

dt

�
log t +

ga(t)

t4 p(t)

�
=

(t2 − 1)5 qa(t)

120 t5 p(t)2
, (8.40)
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where

qa(t) = −a t8 + (120− 35a) t6 + (−1800− 105a) t4

+ (−600− 49a) t2 + (−24− 2a). (8.41)

By counting the zeros of qa(t) in (0,∞) (e.g., by the Sturm method) we find

that q1(t) and q−14(t) have no zeros in that interval. Also we have that qa(1) =

−192− 2304a, hence q1(1) = −2496 and q−14(1) = 384, which implies q1(t) <

0 < q−14(t) for t > 0. Thus, for a = 1 the expression inside the curly brackets

is increasing in (0, 1), vanishes at 0, and is decreasing in (1,∞), hence it is

negative in (0,∞) \ {1}. For a = −14 it is the other way around. Since the

factor outside the curly brackets is positive in (0,∞)\{1}, and fa(1) = −12−a,

we get that for every t > 0:

f1(t) < 0 < f−14(t). (8.42)

From here the announced result follows.



Bibliography

[1] Tom M. Apostol. Introduction to Analytic Number Theory. Springer-

Verlag, New York, 1976.

[2] Peter L. Duren. Theory of Hp Spaces, volume 38 of Pure and Applied

Mathematics. Academic Press, New York, 1970.
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