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This research deals with the problem of finding extremal majorants
for given functions, a subject started by Beurling and Selberg in the 1930’s.
We prove some general results useful in finding extremal majorants and mi-
norants for a wide class of even functions, extending results previously found
by Graham and Vaaler in 1985, and we apply them to the particular case of
log |z|. Next we study in some detail the properties of the extremal majo-
rant for log |z|, and use it to prove an “Erdds-Turdn”-type inequality useful
to estimate the sup norm of polynomials on the unit circle. We also prove an
analogue of Montgomery and Vaughan’s inequality. Next we state several con-
jectures and suggest some possible directions to continue the research. Also,

we prove a few theorems concerning harmonic majorants.
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Chapter 1

Introduction

One subject of interest in the theory of uniform distribution modulo one is the
estimation of the discrepancy of a sequence x1,xs,..., 2y by an expression

2TINTm

depending on trigonometric sums of the form Z%zl e . The discrepancy
gives a measure of how much a given sequence gets apart from uniform distri-

bution, and is defined as follows:

M
A*(xy,...,xpy) = A}y = sup Z Xst(Tm) — M(t—s)], (1.1)
0<t—s<1 —1
where
1 ifs<xz—n<t for somen € Z,
Xsi(2) = % ifs—xe€Z ort—ux e, (1.2)
0  otherwise.

It is interesting to note that an estimation of the discrepancy could have
practical applications, such as the estimation of the error of algorithms for
numerical integration, particularly those based on computing means of values
of the integrand at points of the interval of integration. This is accomplished by
the Koksma’s inequality: Let f be a function on the interval [0, 1] of bounded
variation V'(f), and suppose we are given M points in [0, 1] with discrepancy

A%,. Then:
M

>~ fa) =01 [ sy

n=1

< VI(f) A (1.3)




One well known upper bound for the discrepancy is given by the Erdds-

Turdn inequality [3], which has the form

M
2 627rinxm

m=1

, (14)

S|

N
M
Aj(\/[ S ClN—FCQZ

n=1

where ¢; and ¢y are positive constants and N is an integer that can be chosen

so as to minimize the right hand side of (1.4).

That result has been refined by Vaaler [11], using a slightly different

definition for the discrepancy:

M
Alxy,...,xm) = Ay = SU}E Z V(Y —zm) |, (1.5)
ye m=1
where
a5 fzdZ,
vie) = { 0 it v € Z. (1.6)

It can be verified that Ay, < A%, < 2A,,, so the two discrepancies differ
insignificantly. The refinement was made by using some extremal functions,
as discussed in [10]. A short exposition of the main results will be given in the

next chapter.

1.1 Notations, Definitions, Conventions and Basic Re-
sults
Here we give some miscellaneous definitions and notations that will be used

later.

We use the standard notations for number sets such as the integers
(Z), the real numbers (R) and the complez numbers (C). The real part of a

complex number z is represented as R(z), and its imaginary part is (z). We



Figure 1.1: The function ¢(z)

denote the right half plane R = {z € C: R(z) > 0}, and the upper half plane
Ht={z€C:3(2) > 0}.

An entire function F': C — C is said to be of exponential type if

log |F
lim sup —Og‘ (2)]

|z]—o0 |Z|

= 7(F) < o (1.7)

Then the nonnegative number 7(F) is the ezponential type of F. A function

is said the be real entire if it is entire and takes real values on R.

Following [8], the definition of Fourier transform ]?Of a function f in



L*(R) will be the following:

= /_Z f(z)e ™ dg. (1.8)

The Fourier transform can be extended to L*(R) as shown in [8, I1.2]. Also,
for certain functions that are not absolutely integrable, the Fourier transform

can be defined by

= hm/ f(z)e ™ dy. (1.9)

M—o0

The following expression converges even for a wider class of functions:

_ "I‘ —2mitx
= ]Vljlinoo / f(x ( e dx. (1.10)

An infinite sum of the form )" >° _ a,, which is unambiguous when the

—0o0
series is absolutely convergent, will be interpreted as the limit of the symmetric

partial sums limp_, Z 7 G in other cases, as long as the limit exists.

We mention here the Poisson summation formula, which is used often

in this work.

Theorem (Poisson Summation Formula). If f is absolutely integrable over R,

of bounded variation and normalized in the sense that for every x,

fe) = 3 I {f(z+h)+ fz b)),

then

> ) = lim Y Fk). (1.11)

See [12, I1.13] for a more general formulation that includes the case in
which f is not absolutely integrable. See also lemma 8.2 for a particular case

in which the function is not of bounded variation.



Chapter 2

Some Extremal Functions in Fourier Analysis

2.1 An Extremal Majorant for the Signum Function

In the late 1930’s A. Beurling observed that the entire function

By <sin7:rz)2 {i(z——ln)g _ _Zl ﬁ + %} (2.1)

n=0 n=-—o0o

has the following properties:

1. It is real entire of exponential type 27.

2. It majorizes sgn(x) (the signum of z) along the real axis:

sgn(z) < B(z) for every x € R.

3. It satisfies:

/_00 {B(x) —sgn(z) }dx = 1. (2.2)

4. It is extremal, in the sense that among all functions satisfying 1 and 2,

it is the one that minimizes integral (2.2) in 3.

In general, given a real function f : R — R, if ' : C — C is a real

entire function of exponential type at most 27 which majorizes f along the



Figure 2.1: Beurling’s function B(x) majorizing sgn(x)

real axis:

flz) < F(x) for every x € R.

we say that F' is a majorant of f. If among all functions with those properties

F" minimizes the integral

/ T {(F@) - f(a) ) dr,

then we say that F' is an extremal majorant of f. The definitions of mino-

rant and ezxtremal minorant are analogous, but with F(z) < f(x), and F



minimizing the integral
| @) - @)y e

In 1974 Selberg found an extremal majorant for the characteristic func-
tion xg of an interval E = [a, 8], where  — « is an integer (see [7]), and ob-
tained a sharp form of the large sieve inequality. Selberg’s function coincides
with

Cr(2) = 3 {B(B—2)+ Bz~ a)}, (23)
so that

1
xe(x) = 5 {sgn(p — z) +sgn(z —a)} < Cg(z). (2.4)
Beurling’s function is a particular case of a more general class of func-
tions. If F'(z) is an entire function of exponential type 27, bounded on R, and
odd, then it can be represented by the interpolation formula:

P) = (sin:z) { 3 % + lim 5%("72} (2.5)

n=—o00 n=-—T

So, by giving suitable values to the numerators of the terms of that series
it is possible to “force” F' and its derivative to take prescribed values at the

integers.

A similar result follows if F'is in EP for some finite p, where E? is the

space of entire functions of exponential type at most 27 such that

/OO |F(x)]Pdr < oo (2.6)

(see [10, theorem 9)).



Figure 2.2: Selberg’s function C'g(x) majorizing the characteristic function of
an interval

Note that B(z) can be interpreted as a function that majorizes sgn(z),
and interpolates that function and its derivative at the nonzero integers, i.e.,
B(n) = sgn(n) and B'(n) = sgn’(n) = 0 for every n € Z \ {0}. Since we
are interested in a majorizing function, B(0) must be 1. On the other hand
sgn(z) has no derivative at zero, so B’(0) can be left as a parameter to be
determined later. It turns out that the “right” value for B’(0) is precisely 2.

Modifying the definition of B(z) by giving it a value of zero at zero yields a



slightly different (and more symmetric) function (note that sgn(0) = 0):

e <sin7r7rz>2{ i % + g} (2.7)

n=—oo

Figure 2.3: Function H (x)

Now H(z) interpolates sgn(z) at the integers and its derivative at the
nonzero integers, but it is not a majorizing function of sgn(x) any more. How-
ever we recover B(z) just by adding the following function:

K(z) = (Sinm)Z, (2.8)

4




1.e.:

B(z) = H(z) + K(2) (2.9)
Figure 2.4: Function K(x)
By subtracting K(z) from H(z) we get
—B(—z)=H(z) — K(2), (2.10)
which has the property of minorizing sgn(x) along the real axis:
—B(—z) < sgn(z) for every x € R. (2.11)

10



The facts that B(z) is an extremal function in the sense of minimizing
integral (2.2), and is also an interpolating function for sgn(z) at the integers,
are connected. In fact, if F'(z) is some other function with the same proper-
ties 1 and 2 as B(z), writing D(x) = B(z) — sgn(z) and using the Poisson

summation formula we get:

o0

_ 27rzmm
12_: D(x+1) = lim Z_TD (2.12)

where
/ D(x) e *™ 4 dy (2.13)

is the Fourier transform of D(x)

It can be proven that the Fourier transform of F’(x) is supported in
[—1,1], and this implies that for || > 1, D(t) equals the Fourier transform of

B(z) — sgn(z), which is = (for || > 1), hence:
00 N T 1 N
Y D(z+1) = D(0) + lim —— ™M — D(0) +2¢(x), (2.14)

T—o0 mim
T

l=—00 m=—

m7#0
where 1(z) is the function defined in (1.6). Note that 1(07) = —%, hence:
> D(t) = D(0) — 1. (2.15)
l=—00

Since D(z) is nonnegative, we get that:
/ D(z)dx = D(0) > 1, (2.16)

so that B is in fact extremal. Furthermore, if we want F' to be extremal, then

we need 13(0) = 1; but this implies:

> DY) =, (2.17)

l=—00

11



so that D(IT) = 0, i.e.,, F(IT) = sgn(I™) for every integer [. Since F(z) >
sgn(z), also F'(l) = 0 for every nonzero integer [ (the derivative at zero can be
determined by a slightly more refined argument). Hence F' is an interpolating
function for sgn(z) at the integers. Actually, by using the expansion (2.5) we

get that F'is precisely B, i.e., B is the only function possessing properties 1-3.

A few examples of application of the properties of B are shown next.

Theorem 2.1 (The Large Sieve). Let

M+N
S(z) = Z ap €5 (2.18)
n=M+1
be a trigonometric polynomial with period 1, and let &, &, ..., Er be real num-

bers which are well spaced modulo 1 in the sense that ||, — &l > 6 > 0 for
r # s, where ||x|| = distance from x to the nearest integer. Then the large

sieve inequality

R M+N
YISENP < AWLG) Y anl (2.19)
r=1 n=M+1

holds with A(N,§) = N — 1+ %, which is sharp.

Proof. See [10, pp.185-186]. The proof actually uses Selberg’s function Cg(z) =
t{B(B—2)+ B(z —a)}. O

Theorem 2.2 (Montgomery and Vaughan). Let Ay,..., Ax be real numbers
satisfying |Am — A\p| = 0 > 0 whenever m # n, and let a(1),...,a(N) be

arbitrary complex numbers. Then

> > aman | o 25 2.20

m=1 n=1

m#n

12



Proof. See [10, theorem 16]. ]

Theorem 2.3 (Erdds-Turdn inequality). If x1,2o,..., x5 are real numbers

and if N 1is a positive integer, then

1 N 1 M
- - 2TNTm
AM ~ _2N + {1+7T} nE:1 0 mEZIG (221)

Hence the Erdés-Turdn inequality (1.4) holds with ¢; = % and co =1+ %
Proof. The result can be easily derived from [11, theorem 1]. O

2.2 An Extremal Majorant for the Logarithm

A way to study a sequence 1, x3,... modulo 1 is by looking at the sequence

e?™@m on the unit circle. An analogue of the concept of “discrepancy” of M

points 1, xs, ...,z can be obtained by considering the following expression:
1 M M

Ly = — log sup (e*™ — e*™m) | = sup Z ey —zm), (2.22)
™ yerR | 0 yeR

where

] (2.23)
—00 if x € Z.

Llog|2sinmz| ifzeR\Z,
plz) =
Note the similarity with the definition (1.5) of the discrepancy Ajy.
Also note that ¢ and ¢ are (Fourier) conjugate functions, as can be deduced
from their Fourier expansions:

~ —2  ifn#0
= 2min ’ 2.24
v(n) { 0 if n=0, ( )

1See [12] for the relation between Fourier and harmonic conjugate functions.

13



Figure 2.5: The function ¢(z)

and
— ifn#0

Gn) = { =l ! 2.25

() { 0 if n =0, ( )
so that

o) = 23 L din(amna) (2.26)

x) = 7Tn:lnm ™), )

and

(x) ——1ilcos(2 ) (2.27)

pla) = — 2.5 ™me). )

Another interesting remark is that I'j; can be interpreted as % times

14



the supremum in the unit disk of the absolute value of a polynomial whose

roots all lie on the unit circle:
1
Py = D@, 2,0, 0m) = ju sup {[ P (2)] - [2] < 1}, (2.28)

where
M
Py(z) = H (2 — e¥miom), (2.29)
m=1

Recall that ¢(x) appeared naturally in (2.14) after applying the Poisson
summation formula to > ,° _ {B(x+1)—sgn(z+1)}. This justifies to pose an
analogous problem for the the conjugate function of sgn(x), namely 2 log|x|.
If we get an entire function F'(z) of exponential type 27 that majorizes log |z|
along the real axis and proceed analogously to the Beurling function, then we

get (see lemma 8.2):

i D(z+1) = D(0) + lim L parima D(0) — 7 p(x), (2.30)

T—00 2|m|
m==—T
m7#0

now with D(z) = F(z) — log|z|. Since D(z) > 0 then

l=—00

D(0) > 7 p(x). (2.31)

The maximum of ¢(z) is < log2, attained at n + £ (n € Z). If we want F' to

be extremal in the same sense as the Beurling’s function, then:
/ D(z)dz = D(0) = log2, (2.32)

which implies D(5 4+ 1) = 0 for every I € Z. This implies that F(z) must
interpolate log |z| and its derivative at the integers plus a half, so its expansion

must be:

F) = (coiﬁz’)?{

= log|n+ 1 n—il-%
2 Gyt z—<n+l>}‘ S

n=—oo

15



Figure 2.6: Function F'(x) majorizing log |z|

It turns out that this function is in fact an extremal majorant for log |z|:

Theorem 2.4 (Main Theorem). The function defined by 2.33 has the following

properties:

1. It 1s real entire of exponential type 2.

2. It magorizes log |x| along the real axis:

log|z| < F(x) for every x € R.

16
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3. It verifies:
/ {F(z)—log|x| }dx = log2. (2.34)

4. It is extremal, in the sense that among all functions satisfying 1 and 2,

it is the one that minimizes integral (2.34) in 3.

In the next chapter we prove some general results that apply to a certain
class of even functions. Then the fact that F(z) is a majorant of log|z| is

obtained as a consequence.



Chapter 3

Extremal Minorants for a Class of Even

Functions

In this section we generalize some results first obtained by Graham and Vaaler

in [4]. Then we use them to prove that the function F' defined by (2.33) is an

extremal majorant for log |z|.

3.1 The Extremal Minorant for ¢ 2l

Let K and L be the following entire functions:

sinmz

T2

K(z) = ( )2 and  L(z) = 2K(2).

Then, for 0 < A define an entire function M,(z) by

My(z) = Z e_M”H'%lK(z—m—%)

m=—0oQ

— A Z sgn(n + 1) e N3l [z —n— 1)

n=—oo

Graham and Vaaler have shown in [4] that

(i) Mx(z) is a real entire function of exponential type 27,
(i) My (z) < e for all real x, and

18

(3.1)

(3.2)



(iii) among all real entire functions which satisfy (i) and (ii) the function

M, (x) minimizes the value of

/_ Z {e? — My(2)} da.

Also we find that
A

/: {e? — My(2)} do = ; — csch (5)

(3.3)

(3.4)

For A > 0 the entire function M, (z) defined above has exponential type

2m and is integrable on R, hence
My(t) = / Miy(z) e 2t dy;
is supported on [—1, 1], and then
1 —_ .
My(z) = / M\(t) €™ dt.
~1
for all complex z.
The following theorem gives the value of M, A(2).

Theorem 3.1. The Fourier transform of My(z) is

) - 3?{1 - 5 sgn(t)}

sinh (% + m't)

(1 — |t]) sinh § cos7t + 3= cosh 3 |sint|

sinh? % + sin? 7t

for |t| < 1. Also, ]\/4\)\(15) >0 for all real t.

Proof. For 0 < X we define (as in [4])

we = () e {2 )

n=0

(3.5)

(3.6)

(3.7)

19



Then A, (z) has exponential type 27 and its restriction to R is in L?(R). By
[10, theorem 9], we have

Ay(2) = /_ RO (3.9)

1

for all complex z, where

~ t
A = (1=l un(e) + D 0, (3.10)
271
—Am—2mim
U)\<t) = T;)@ b= m, (311)
vAlt) = =AY eI = uy(t). (3.12)
m=0
Thus
. 1— [t — & t
At = Lol 3w seuld) (3.13)

1 — ef)\fQTrit
for |t| < 1. Next we observe that
My(2) = 72 {A\(z = 1) + A (—z — 1)}
N L o L o (3.14)
— ¢ 2 {/ A)\(t) e—nzt+2mzt dt + / A}\(_t) 67rzt+27rzzt dt} ,

1 1

and therefore

My(t) = e {EA(t) et 4 Ay (—t) em‘t} (3.15)

and from here we obtain (3.7).

In the proof that M, A(t) > 0, by symmetry we can assume that 0 <

t < 1. The denominator of the last expression of (3.7) is positive, and the

numerator is obviously nonnegative for 0 < ¢ < % On the other hand, for
% <t < 1 it is enough to take into account that

tanh 2 tanm(1 —t)

BN =~ T N
2 (1 —1)

(3.16)

20
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which is true since the left hand side is not greater than 1, and the right hand
O

side is not less than 1.
Next we derive some identities for the entire function z — e~ — My (2),

(3.17)

where A > 0. In doing so we write
w

€W = o mne

for all real w, with C'(0) =1

Theorem 3.2. In the half plane —3 < R(z) we have
) / (CO—w) = COFw)} e do.  (3.18)
0

e — My(z) =
]

<cos Tz
Proof. This occurs already in the proof of theorem 8 of [4] for real z. The

(e

argument when z is complex is essentially the same.

Theorem 3.3. For —% <a< % we have
T 2
) (2sinh sw) e ds. (3.19)

/a+ioo (
o COS TS

—100

CA—w)—CA+w)

Proof. In the infinite strip —1 < R(z) < 1 we have the Laplace identity
(3.20)

/ C(w)e*™ dw = < )
oo COS TS
and its inverse
1 a+100 T 2
_ —sw q 21
Clw) 270 J ioo (COS 7rs> c % (321)

where —1 < o < 1. Then from (3.21) we get (3.19).



22

Theorem 3.4. If | < min {3, R(2)} then

s cosmz\2 [ 1 /O‘”oo T \? 2s —ax
M6 = () (g e (anrs) -
‘ A(2) T {27rz' N cos s 2-_g2) " °

o (3.22)

Proof. Combining (3.17) and (3.19) we find that

e _ My(2) = <C°”Z>2/°° L/QHOO< m )2
m 0 2 J, COS TS

—100

(2sinh sw) e~ ds} e " dw

cosTz\2 [ 1 /O‘HOO T \2 2s o
) ([ ) (52 )
T 2ri J,, COS TS 22— §2

o (3.23)

]

3.2 Minorants for a Class of Even Functions

In this section we generalize the previous results to a wider class of functions.

Theorem 3.5. Let v be a (not identically zero) measure on the Borel subsets

of (0,00) and define f : R — [0,00) by
f(z) = /Oo e Ml dy(N) (3.24)
0

(then f(z) > 0 for all real x), and assume that f(x) < oo for all z > 0.

(i)  If v is finite then f(x) < oo for all real x, and f has continuous deriva-

ties of all orders in R\ {0}. In particular

f'(x) = —sgn(x) /000 e Nl du(N) (3.25)

for every x # 0.



(i)  The function f belongs to L*(R) if and only if
<1
/ —dv(\) < oo. (3.26)
0 A
(iii) The function f belongs to L*(R) if and only if

/000/000 Ali& dv(A\) dv(Xs) < oo (3.27)

(w)  The function f" belongs to L'(R) if and only if v is a finite measure.

Proof. The function

o) = /0 T e () (3.28)
defines an analytic function in the right half plane R = {z € C: 0 < R(z)} and
the restriction of this analytic function to the positive real axis is f(z). Hence
f has continuous derivatives of all orders there. A similar remark applies to

f(z) on the negative real axis and these can be combined to establish (i). The

rest can be proven by using Tonelli’s theorem. [

In the following v will represent a finite measure on the Borel subsets

of (0,00).

Theorem 3.6. For each z € C, the function X — M(\, z) = My(z) is v-

integrable on (0,00), and the C-valued function
Fz) = /0 T MO 2) dv() (3.29)
is an entire function which satisfies the inequality
|F(2)] < v{(0,00)} el (3.30)

for all z = x +1iy. Thus F is an entire function of exponential type at most

2.
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Proof. We have (here ]\//7()\, t) is the function (A, ) — ]\//TA(t))
oo oo 1
/ IM(X, 2)|dv(X) = / ‘ M(X,t) e*™=dt | dv(\)
0 0 -1

ol
< /0 /_ MO e dran(y) )
< el / h M(X,0)dr())
< V{(O,og)}e%ly'.
This shows that A\ — M (], z) is v-integrable on (0, 00). That F'(z) is an entire

function follows from Morera’s theorem. Its bound (3.30) follows from (3.31).

This proves the result. [

Next theorems 3.7 and 3.8 show that the function F' defined by (3.29)

is an extremal minorant for f.

Theorem 3.7. The function F' defined by (3.29) is a minorant of f, i.e.
F(z) < f() (3.32)

for all real x. Furthermore F interpolates f and its derivative at the integers

plus a half, i.e.
Fm+3) = f(m+3), (3.33)

F'im+13) = f'(m+13), (3.34)

for allm € Z. Also, the nonnegative function f(x) — F(x) is integrable, and

its Fourier transform is

/Z {f(x) = F(x)} e dx = /OOo {%ﬁﬂ?t? — ]\/Z(A,t)} dv(\).
(3.35)
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Proof. The fact that F' is a majorizing interpolating function for f follows

from results in [4]. On the other hand:

/ {f(z) — F(x)}de = / / {e_)‘lx| — M\ )} dv(N)dz.  (3.36)
—00 —oo JO
Since the integrand is nonnegative we can interchange the order of integration:

[:mmdwmm=ﬁ ESKW‘WMMMWW
2

] (3.37)
N /0 {X - sinh%} dv(2).

The last integral is finite because v is a finite measure and the integrand is

[e.o]
[e.e]

bounded. In the same manner we can compute the Fourier transform. O

Theorem 3.8. Let G(z) be a real entire function of exponential type at most
2. 1If
G(z) < f(x) for all real x, (3.38)

then
/_OO {f(z) = F(z)}dz < /_OO {f(z) — G(z)} dx. (3.39)

Moreover, there is equality in (3.39) if and only if G(z) = F(z).

Proof. Clearly it suffices to consider only those functions G(z) such that the
integral on the right of (3.39) is finite. Then the difference F(x) — G(z) is

integrable and (3.39) is equivalent to
0 < / {F(z) — G(z)} dx. (3.40)
From (3.33) and (3.38) we have

G(m+1) < fm+1) = Fim+}) (3.41)
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for all m € Z. By lemma 4 in [4]:
M

0 < lim Z (1 M|”jr|1> {F(m+3)—Gim+1)}

M—o0

(3.42)
= / [F(x) - G(x)} da,
and this is (3.40). It is obvious from (3.42) that the integral on the right is
zero if and only if
Gim+3) = F(m+3) (3.43)
for all m € Z. Then (3.38), (3.41) and (3.43) imply that

G'(m+3) = F(m+1) (3.44)

for all m € Z. A second application of lemma 4 in [4] shows there is equality

n (3.42) if and only if G(z) = F(2). O

3.3 The Extremal Majorant for the Logarithm

Here we establish some general results from which the main properties of the

function F' defined in (2.33) can be derived.

Lemma 3.9. Let v be a finite measure on the Borel subsets of (0,00). Define
frasin (3.24), F as in (3.29), and ¢ as in (3.28). Let 0 < o < min{3, R(2)}.
Then ¢ is analytic and bounded in the right half plane R = {z € C : 0 <
R(2) }, and satisfies

0 < p(z) — F(x) for all x > 0. (3.45)
Furthermore

o(z) — Flz) = (Coim)g {% /foo <co§ﬂ's)2 (222—832> es) ds}'

N (3.46)
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Proof. We already know that ¢ is analytic and bounded in R, and that 0 <

o(x) — F(x). Also, equation (3.46) can be obtained from

o(z) — F(z) = /000 {e™ — My(2)} dv(\) (3.47)
and (3.22). O

Theorem 3.10. Let ®(s) be a function such that

(1) ®(s) is analytic in R.

(ii) |®(s)] << (1 + |s])f 25l in R, where 0, < 1 and 6, < 271

For each nonnegative integer m we define

(z—m—3)? z-m—3 (z+m+3)? z+m+3

(3.48)

Then

M—

lim (COS m)Q U, (2) (3.49)

M—o0 T

[y

m=0

27

converges uniformly on compact subsets of R. Moreover, if 0 < a < min{%, R(2)}

then

B(z) — lim (COSWZ)Qle\IJm(z)

M—o0 e

- [ () (5E5) o) e

—100

IThe growth condition can be slightly weakened, but what we use here will easily suffice
for our purposes. In particular, we note that ®(s) = —log s satisfies (i) and (ii).



Proof. Suppose that K C R is compact, z € K, and consider the meromorphic

o () () v osn

Also we assume that z — % is not an integer. Then (3.51) has a pole at s = 2

function

of order 1 and residue

(T >2q>(z), (3.52)

COsSTZ2

For each nonnegative integer m, (3.51) has a pole at s = m + 3 of order 2 and
residue ¥,,(z). Plainly, (3.51) has no other poles in R. Assume 0 < a < 1 <
M, where M is a positive integer, and let 0 < 7. Then write I'y; 1 for the
simple, closed, positively oriented, piece-wise linear path connecting o — T,
M —iT, M+1T, a+iT and a—2T. We further assume that « is so small, and
M and T are so large, that K is contained in the unique bounded component
of C\ I'psr. Then we have

1 T \2 2s
2mi (cosws) (22—32> P(s)ds

ISV

M—

- (T )2q>(z) + N Wa(2), (3.53)

COSTZ2

—_

m=0
by the residue theorem. On the left hand side of (3.53) we let " — oo and use

the estimate (ii) for |®(s)|. We find that:

1 a+ico

T \2 2s
2mi <cos7rs) <z2—32> P(s)ds

- () e -

COSTZ

L L MM:O< T >2< 25 )cp(s)ds (3.54)

2714 COS TS 22 — g2

—_

3 ()

=0
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Clearly the integrals in (3.54) determine functions of z which are analytic in

a < R(z) < M. Hence our assumption that z — % is not an integer can be

dropped. The singularities of

M—

( T >2®(s) ~ N () (3.55)

COS TS

—

m=0
at z=m+ %, 0<m < M — 1, are removable.

Finally, we let M — oo on the right hand side of (3.54). We use (ii)

again to estimate |®(s)| and find that

1 M+ico T 9 9

lim | o— ( ) O(s)ds| = |
Moo | 2 /M_ioo oS TS <Z2 - 32) (s)ds 0 (3.56)
uniformly for z € K. From here the desired result follows. ]

Corollary 3.11. If ®(z) is constant in R then the integral on the right hand
side of (3.50) is identically zero.

Proof. This is immediate from the identity

(CO:W)Q =D {(Z—WlL—l)Q + (H;Jr%)z}. (3.57)

m=0 2

Theorem 3.12. The function F' defined by (2.33) is a majorant of log |x|.

Proof. Foreachl=1,2,... let v, denote the measure defined on Borel subsets

y(E) = /E ( / | e_’\“du> d\. (3.58)

[}

E of (0,00) by
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Let ~
oi(z) = / e M dvy ()
0

= log(l +2) — log(7 + 2)

(3.59)

in the right half plane R, where log denotes the principal branch which is real

on the positive real axis. Let

E@):(Awﬂﬂmddmﬂ) (3.60)

so that Fj is a real entire function of exponential type at most 27 and (as in
(3.45))
0 < yi(x) — Fx) for all x > 0. (3.61)

From (3.46) we have

o0~ B = () (oL [ () (5) o)

o (3.62)

provided 0 < a < min{%, R(z)}. And the corollary 3.11 allows us to write this

as

wi(z) — Fi(2)

- (7 e [ @) (5 e i

o (3.63)

loi(a+it) —logl] <<, log(2+ |t]) (3.64)

and

llim {@i(s) —logl} = —logs, (3.65)
—00
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we find that

T {i(2) — Fi(2)}

- [T ) () o

—100

whenever 0 < a < min{i, R(z)}. By theorem 3.10 we have

lm ()~ A} = —logz — () S was) (367

™

where 0 < R(z) and VU, is defined by (3.48) with ®(z) = —logz. In view of

(3.61) we also get the inequality

2 oo
0 < —logz — (COS?W> Z U, (x) (3.68)
m=0

™

for all # > 0. In this case the expression on the right of (3.68) defines an even,

real entire function. Hence

0 < —loglz| — (Cosmf i U, (2) (3.69)
m=0

™

for all real x # 0. Finally we note that the function F' defined by (2.33) is

F(z) = — (COSM)Q i U, (). (3.70)

™

From here the desired result follows. O
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Chapter 4

Properties of the Majorant for the Logarithm

Here we present an alternative way to get the main properties of F' and obtain

some additional results involving also the functions D and S defined below, as

well as a number of properties and special values of D.

4.1 Properties of F

Let F be the function defined in (2.33). In the following we denote for every

real x # 0:
D(z) = F(x) — log|x|,

and

S(x) = ( el )2 D(x).

COSTTX

Proposition 4.1. For every x > 0, S'(z) > 0. Furthermore,
S'(x) = O(z7?)
for x — oo.

In order to prove this proposition we write

S = 3" 1 ("),

32

(4.1)

(4.2)



where
ht) = L 1 logt +
Q-2 (Qro2f BT a—ey
and
(@) = an:OJ<I>7
where

jt) = th'(t).

The proof requires the following lemma:

(4.4)

(4.5)

(4.6)
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Lemma 4.2. Let N be any positive integer. Then, for every x > 0

N-1

o0 1
—x 5 = j(t i(t)dt + — ' (¥ 4.
rS@) = 3t 4w [0 G () ¢ R, ()
where t, = nié, and
21 = 1
< et 4.

In particular, for N = 1:

—aS@) = (&) + o [ d0d G () ¢ R, (49
where
72 7
< ) 4.1
B0l = 193022 < Ta842 (4.10)
Proof. By writing
N-1
—Q}S/(ZC) = ](tn) + Z j(tn)a (4'11)
n=0 N—1<n<oco

and using the FEuler-MacLaurin summation formula in the second sum (see
lemma 8.1) we get (4.7) with
Ra(e) = —— 3" 190, (412
5760 z4 o
where 2 < 6, < ”7“ Next we use lemma 8.3 in order to get the bound for

[Rn ()] O
Proof of proposition 4.1. Consider the function

flz) = j(5) + x[o G(t)dt + ﬁj’ (1). (4.13)
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According to equation (4.9):
—xS'(z) = f(z) + Ri(x). (4.14)

The function f(x) can be explicitly computed (see lemma 8.4), and checked
that f(z) = O(x™?) for # — oo. Since also Ry(z) = O(z7?), we get that
S'(z) = O(z™3).

It remains to prove that S’(x) > 0 for > 0. To do so, we consider
the function g(z) = —a? f(x) — 14, which is positive in the interval (4, c0)
for some 0 < § < 3 (see lemma 8.5). From here we get S'(z) > 0 for z > 4.

Concerning the interval 0 < x < %, we write:

R o

n=0
and check that ¢3h/(t) is decreasing for t > 1 (see lemma 8.6), which implies
S'()

T

is decreasing for 0 < = < % Since we already know that it is positive for

x > 0, the same will happen for 0 < x < % ]

Proposition 4.3. For every x > 0, S(x) is positive and increasing, and its

limit L = lim,_,o, S(x) exists. Furthermore

L—S(x) = O(x?) (4.16)
for x — oo.
Proof. Since S(0) = 0, and according to proposition 4.1 S’'(z) > 0 for x > 0,

then S(x) is positive and increasing for z > 0. Since S'(x) = O(z™?), then

S(z) is bounded, hence it has a limit L for z — oo. Finally

/ S’(y)dy’ <|/ Ay?’dy‘—éﬂ (4.17)

for some A > 0, hence S(z) = O(z™?). O

L= S(x)] =
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Corollary 4.4. The function F defined by (2.33) is a magjorizing function for
log |z|, i.e.,

F(z) > log|z| for every x € R\ {0}. (4.18)

Proof. We have

COSTTX\ 2
D) = (=25) S(@). 4.19
@) = (™) 5 (4.19)
From proposition 4.3, we get that D(z) > 0 for every = # 0. O

Next we give a result useful to compute numerical approximations of

S(z).

Proposition 4.5. Let N be any positive integer. Then, for every x > 0,

B i, 2N 22 log(¥) 1

prt ltn) PNz g

W(Y) + Ry(z), (4.20)

T

n+i
where t, = —=, and

o0

49 1 1
— . 4.21
Bn(@)] < nz;v n 1080 (2N —1)3 (4:21)
Proof. By writing
N—-1
S(z) = hit,) + Y hl(ta) (4.22)
n=0 N—%<n<oo

and using the Euler-MacLaurin summation formula in the second sum we get

N-1 .

Sty = S nt) + x /V h(t)dt + ﬁh’ () + Ry(x)
o N’ 1 (4.23)
2N 22 log(X
— h(t,) — _ﬁiw) + Zix W(X) + Rn(x),

i
o
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where

R(z) = 576701:4 S h(,), (4.24)

n=

and 2 < 0, < "TH Next we use lemma 8.7 in order to get the bound for

| R ()] B

Example 4.6. The following values have been computed by using formula

(4.20) with N = 200, so that the error is less than 1072:
S(L) = 0.46165805. ..

S(3) = 0.64277314. ..
S(3) = 0.67287718...
S(1) = 0.68242204. ..
S(2) = 0.68655437...

S(L) = 0.68869668. .. (4.25)
S(L3) = 0.68994504 . ..
S(L2) = 0.69073451. ..
S(ET) = 0.69126486. ..
S(Y2) = 0.69163805. ..

S(Z) = 0.69191048. ..
Proposition 4.7. The derivative of D wverifies D'(x) = O(z™?) for z — oo.

As a consequence, F' € LP(R) for every p > 1.

Proof. We have:

D'(z) =
1

COSTTT
T3

i ™
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Recall that S(x) is bounded, hence the first two terms of the right hand side
are O(z~?). Proposition 4.1 allows us to conclude the same for the third term,
hence D'(z) = O(z~2). From here we get that F'(z) = 1 + O(z™?), hence
F'(z) € LP(R) for p > 1. O

4.2 Properties of D

Proposition 4.8. The Fourier transform D of D is the following:

log 2 ift=0
D(t) = ¢ 3 — gmoe() FOo<|i<1 (4.27)
o if [t > 1,
where
vp(t) = 2 i F"(n+ 3) cos{2m (n+ 3)t}. (4.28)
n=0

Proof. Integration by parts (for ¢ # 0) shows that
/ D(Hﬁ) 6—27rit;1: dx

1 —1T ‘ T '
= lim / D' (z) e 2™ dy + D'(z) e *™* dx

27T7/ t T—o0 -T 1/T
1 e .
_ F/ —2mitx d i
oy /_Oo (x)e x (4.29)

1 —UT . 1 1 .
- hm : / - 6727”751 d.CE 4 : / - 6727”751 d.CE )
T—oo | 2mit J_ ¢ = 2mit Jyrx

The second term is well known:

Y /A R MM, 1
lim ¢ —— / R — / —e Py b = —— (4.30)
T—00 2wit | o x 2mit Jyr 2|t



0.3
0.2
0.1
-1.5 —;1 -0.5 07 0’5 1 1.5
Figure 4.2: The function ﬁ(t)

The first term requires to

Vaaler’s method [9].

Let K and L be

compute F’(z) first. To do that, we use

- (Siijz)g , (4.31)
= 2K(2). (4.32)
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Figure 4.3: The function v (t)

o0 [e.e]

F(z) = Y FmK(z-n) + > F(n)L(z—n)

n=—oo n=—oo

and the sum converges uniformly in compact subsets, then:

[e.o]

Fl(z) = Y F(n)K(z—n) + Y F'(n)L(z—n),

n=—oo n=—oo

(4.33)

(4.34)
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where F”(n) can be computed like this:

F"(n) = —QLF -+ 22 F(n—j) + 2Z§F’(n—j)
70 7 #0 (4.35)
ZZZ—{FTL—] F(n) —1—22 F'in—j
1750 J#O

Since we are interpolating at the integers plus a half, we apply the

results to the function z — F(z + 3), where F is our function (2.33). So, we

get:
COS T\ 2 > Jlrl = F"(n
s :< ) T3 , (4.36
0= (VN E wmrpr * Sy 6
where
11 j
F'in+l)y = 25 - ——— + 23 = log|l -
(nt3) —~ jn+i-—j Z] & n+i
J#0 j#0
) ~ - (4.37)
J
= — — + 2 — lo — .
eI PR

Another convenient expression for F”(n + %) can be obtained by differ-

entiating directly in

F(z) = logle| + D(x) = log|z| + (COS”>2 S(x) (4.38)

T
and substituting x with n + %:

F'(n+3) = QSEZ 1 i; g (4.39)

Finally we compute the Fourier transform of F’ by using formula (3.6)

from [10] (adjusted for interpolation at the integers plus a half):

Flt) = xon(® {0~ url) + o @@, (140
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where
1 ifa<t<b,
Xiap) () = % ift=aort=0,
0 otherwise.

sgn(t) = signum of t, and:

T—o00

T
1 .
UF/(t) = lim Z F/(n+§)e—27m(n+%)t
n=—T

T

— lim 1 . 672771'(11+%)t
T—o0 — n + 5
= —mi sgn(t),

(o]

vp(t) = 3 F(ntg)ena)

n=—oo

= 2 i F"(n+ %) cos{(2n + 1) nt}.

for t # 0.

We have that for every ¢
Dl < Do) = [ Dayds < o,

hence
oo

vp(0) = Y F'(n+3) =0,

n=—oo

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)
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otherwise D(t) would be unbounded for ¢ — 0. Also:

vp(k) = (18 Y F'(n+1) =0 (4.47)
for k integer, so
Bty = 3 — g ue(t) HO<|tf <L, (4.48)
o if [t > 1,

In particular, D(k) = ﬁ for integer k # 0.

Finally we compute lA)(O) by using the Poisson summation formula (see

lemma 8.2) in the following series, whose terms are all zero:

S D) =

T T
lim ™ D(k) = lim (—1)* D(k) =
T—o00 T—o00
k=-T k=-T
o] 1 .
2 —1)*— = D(0) — log2. (4.4
0) + ;< ) 5p = D(0) — log2. (4.49)
Hence D(0) = log 2. O

Corollary 4.9. The limit of S(x) as x — oo is:

lim S(z) = log2. (4.50)
Furthermore
log2 — S(z) = O(z?). (4.51)

Proof. By rearranging the series (4.43) that defines vp (t) and using proposi-
tion 4.3 we get:
vp(t) = —4x* (L—1) (Jt| - 3)

—4ZL Sn—i— ) (4.52)

cos{(2n + 1) wt},
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where L = lim, ,,, S(z). Its derivative can be computed by differentiating

termwise:
vp(t) = —4n* (L — 1) sgn(t)
> L-Sn+1 (4.53)
+ 87 22 gin{(2n + 1) 7t
> Sy s+ )

P LR T
D(0) = lim D(t) = 5 — 5 vj(0)
) ) (4.54)
=5 " Iz —4m* (L—-3)} = L.

Since we already know that ZA)(O) = log 2, we get that L = log 2.

Finally (4.51) is just equation (4.16). O
Proposition 4.10. The integral of D(z) = F(x) — log || is
/ {F(z) —log|z|} dx = log2. (4.55)

The function F' is extremal, in the sense that if G(z) is another entire function

of exponential type 21 such that
G(z) > log || (4.56)
for every x # 0, then
/OO {G(x) —log|z|} dz > log?2. (4.57)
Furthermore, if there is equality in (4.57) then G = F.

Proof. The first claim (4.55) is just ﬁ(O) = log 2, already proven in proposition
4.8.
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To prove (4.56) we proceed as in theorem 8 of [10]. Let D¢ be
Dg(z) = G(z) —log |x| (4.58)

and assume

/ " Delr)d < +oo. (4.59)

Since D(x) and Dg(x) are integrable, then G(z) — F(z) = Dg(z) — D(x) is
also integrable. Also F'(z) is integrable, hence G'(x) is integrable. Next, we
have:

1 —_

Dolt) = 5= Dilt) = ﬁ (G0 +rismn}. (460)

Since G’ is of exponential type 27, its Fourier transform is supported in [—1, 1]
hence
1

Ba(t) = 3 (4.61)

for |t| > 1. Next, by applying the Poisson summation formula, and using that

G is a majorizing function of log |z|:

o0 /\ o0 1
0 < Y Dalw+n) = Da(0) + Y — cos2mz
m=1

= (462)
= Dg(0) — log|2 sinal.
Since max log |2 sin mz| = log 2, we get that
/ {G(z) —log|z|}dz = Dg(0) > log2. (4.63)
Finally, assume I/D\G(O) =log2. Then (4.62) implies
Y Deg(3+n) =0, (4.64)

n=—oo
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hence D¢ (3 4+n) = 0 for every integer I. This implies that G(n + §) =
log|n + 3| and G'(n + 3) =

from [10], we get

Glz) = F(z) + (Cosm>2 C, (4.65)

™

where C'is a constant equal to 3 {G"(n+ 1) — F”(n+ 1)} for any integer n.

Since D¢g(z) is assumed to be integrable, we get that C' = 0, hence
G(z) = F(2). (4.66)

]

Next we record some useful formulas.

Proposition 4.11. The function vp(t) is continuous in [—1,1] and twice

continuously differentiable in (—1, 1)\ {0} Furthermore, for every t € [—1,1],

1

ve(t) = 4 Z 2 cos{(2n + 1) 7t} (4.67)

vp(t) = — 4dn? <log2 %) (|t|__>
S(n

* log2 — S(n 1 1 (4.68)
_ 4 Z o
n=0

and for every t € (—1,1) \ {0}

and

*3) cos{(2n + 1) nt},

)?

Vi (t) = — 47 (log2 — %) sgn(t)
4.69)
log2 — S (
+ 8w HZ; o8 n+(n—|— 2) sin{(2n + 1) 7t}
and
V() = 1677 Z {log2 — S(n+3)} cos{(2n + 1) mt}. (4.70)

n=0
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Also,
v (1 —t) = —vp(t) (4.71)

for0<t<1.

Proof. Equation (4.67) is just the definition of vp. Equation (4.68) is the

result of a rearrangement of the series and of using corollary 4.9 and

Z cos{(2n + 1) wt} _ 2 (|t| _ 1) (4.72)

i (n+3)? 2

for -1 <t <1.

Equations (4.69) and (4.70) are the result of differentiating termwise
in (4.68). Note that since log2 — S(n + 3) = O(z7?), and cos{(2n + 1) 7t}
is continuous and uniformly bounded, the series in (4.70) converges uniformly
to a continuous function. This justifies the first claim that ve (t) is twice

continuously differentiable.

Finally (4.71) can be deduced from (4.67) and
cos{2n+1)m (1 —t)} = —cos{(2n+ 1)t} (4.73)
[

Next we record a few particular values of some expressions and func-

tions.

Proposition 4.12.

= 1
> {log2-Sn+1)} = 5 log2 = 034657359 .. (4.74)

n=0
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) g (WD U (D)) = 043530581, (4.75)

where Y(x) = I'(x)/T(x) is the digamma function.

> log2— S 1 2 1
P (1n+2> = T (log2— =) = 095314313...  (4.76)
=0 (n+§)2 2 2
o0 S l 2
S ("+122 = ™ 946740110 .. (4.77)
0 <7L—|—§) 4
UF/(O) = UF/(%) = UF/(l) = 0. (478)
1
Vi (0F) = v (17) = —dr? (10g2—§> = —7.62514505...  (4.79)
2
m
v(3) = 5 {¥'(=D) —v/(H)} = 331754536 .. (4.80)
v (07) = =l (17) = 872 log2 = 54.72870771. .. (4.81)
vin(3) = 0. (4.82)
D(0) = log2 = 0.69314718... (4.83)
DY) = D) = % (4.84)



D'(0%) = —log2 = —0.69314718. ..

Proof. First note that for t € (—1,1) \ {0}:

and

D(t) =

1
2

1
D'(17) = log2—5 = 0.19314718 ..

S8 + 1029

-3 {v'(=3)—¢'(3)} = —0.16806881...
= (=) 3
— _2; (n3) = 5¢(3) = 1.80308535..
D"(3) = 3 {¥'(=1) —¢'(3)} = 0.67227524 ...
= 1.
UF/(t)
4m2|t|’
Ve () e ()
{ - |t| + t2 Sgn(t) } ’
v (1) 207 (t) 2vp(t)
- R e - B

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)
(4.92)

(4.93)

(4.94)

(4.95)

(4.96)

49



We already know that D(0) = log 2, which is (4.83). From (4.94) and
lA)(t) bounded we get v (0) = 0. By (4.71) we get that also v (1) = 0. The

value of vp/(3) can be obtained by evaluating (4.67) at ¢ = 1. This proves

(4.78), and by plugging in (4.91) we get (4.84). Similarly, by using (4.69) we
easily obtain (4.79) and from (4.70) we get (4.82).

By plugging vg (1) and v}, (17) in (4.92) we get (4.86).

By the Poisson summation formula we have:

T 00
lim (-)"Dn+t) = Y e Dm+L) = 0. (4.97)

T—o0
n=-T n=—oo

Hence the derivatives D® of D verify:

T

; _1yn D) _
Jim. _ZT( )" D®(n+1t) = 0 (4.98)

From here we easily get for k odd:

~ B~ (=)
®(1y — ¥ AT
DOG) = 5 >, G (4.99)
n=1 2
and
~ ~ ~ k!
D® ") + DW(1~) = DWAT) = —5 (4.100)

and for k even:

D®(0") —
(4.101)

)
=
—
-
Il
|
™~
—
NN NCN
+
3
1[]e
2|
Tz
s
——

= k!{— + (1—2—1,€) C(k:+1)}-

From (4.99) for k = 1 we get (4.87), and plugging in (4.95) we get (4.80).
From (4.100) and (4.86) we get (4.85). From (4.101) we see that D”(0F) is
finite, hence from (4.96) and (4.85) we get (4.81).
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By using (4.93) we compute (4.89) and (4.90). Finally from (4.101)
and (4.90) we get (4.88).

The relations (4.74), (4.75), (4.76) and (4.77) can be obtained by using
proposition 4.11 and the values already computed for vp and its derivatives.

]

Next we give a new convenient representation of vg (), useful to com-

pute numerical approximations.

Proposition 4.13. The function vg: can be written like this:

1 1 1
vp(t) = —4n? (10g2 — —) { |t| — 515 cosmf} + 16b(t) cosmt, (4.102)

2 2
where
> = log2 — S +k+1)
b(t) = (—1)! 22 sin® krrt. (4.103)
; ; (I+k+1)2

Proof. Using the relation:

=1 — 4(=D" Y (=1)* sin® knt, (4.104)
k=1

cos{(2n + 1)mt}
cos i

and rearranging the series (4.68) we get (4.102) with

log2 — S(n+ 1)
b(t) = (—1)"tk 22 sin? krt. (4.105)
; (n+3)?
1<k<n
We get the announced result by changing n =1+ k. [

Proposition 4.14. Let by, be

L-1 o0 1
log2 - S(I+k+3) .
br(t) = E (-1 g (ks 1y 22 sin? knt (4.106)
1=0 k=1
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and

1 1 1
vp(t) = —4r? (logZ — 5) { t| — 5t5 Cosmf} + 16 by, (t) cosmt. (4.107)

Then for L > 0

bar(t) <O(t) < borya(t)  for everyt, (4.108)
and .
var(t) <w(t) < vapya(t) if 0< |t < 3

X (4.109)
var(t) > v(t) > vapya(t) if 3 <t <1

Proof. Inequalities (4.109) are a simple consequence of (4.108). On the other
hand, (4.108) can be proven by writing by, (¢) like this

bi(t) = > cpy sin’kt (4.110)
k=1
and
b(t) = Y ¢ sin®knt, (4.111)
k=1
where
0 S( 1)llog2—S(l+k:+%) (4112)
CL.k = — .
kT 5y
and
> log2 — S(I+k+1)
= i = —1) 2/ 4.113
Cp Ll—I>1;>lo CL,k: ;( ) (l + kf _|_ %)2 ( )

Since (4.113) is an alternating series of decreasing terms, we have ¢y < ¢ <

Cor+1.k, and from here (4.108) follows. O

Remark. Since the functions vy (t) can be easily approximated by numerical
methods, proposition 4.14 provides a way to compute numerical approxima-

tions for v ().
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Proposition 4.15. The second derivative of the function ve (t) verifies

v (1)
cos Tt

> 8n*log2  for|t| € (0,3)U(3,1). (4.114)

Hence vp:(t) is convez in (0,%) and concave in (3,1). As a consequence:

ver(t) < 0 for 0 < |t < 3,
(4.115)
v (t) > 0 for 3 <|t| < 1.

Proof. By using expression (4.70), and relations (4.104) and (4.74), we get:

vp(t) _
cosmt
1672 > {log2 - S(n+1)} {1 — 4(=1)" Y (~1)* sin® /m} =
n=0 k=0

1
16 72 {510g2 + 4 Z (1) {log2 - S(I+k+1)} singlmrt}.

Lk>1

(4.116)
For any fixed k, the last sum is an alternating series of decreasing terms, so it

has the sign of its first term, which is positive. Hence:

w(t 1
Vi (1) > 1672 =log2 = 877 log2. (4.117)
cost 2

Since vp(0) = vp(3) = ve (1) = 0, and since vp(0) is even, (4.115) follows.

[
Corollary 4.16. The function D(t) verifies
1 ~
3 < D(t) < log2  forlt| € [-3, 3], (4.118)
~ 1
1—-1log2 < D(t) < 3 for |t| € [-1,1]\ (-3, 3). (4.119)

Hence, in particular 0 < ﬁ(t) < ﬁ for every t.



Proof. For t € [—1,1] we have:

(4.120)

We get the first inequality from vg (t) < 0 for t € [—%, %], as proven in

proposition 4.15.

The second inequality can be obtained from (4.109) with L = 0:
, 1 11
ver(t) < w(t) = —4n® (log2 — 5 t| — 3 + 3 cos mt

(4.121)
< 4r? (1og2 - %) (1—1t])

for 2 <|t| < 1. Hence:
~ 1 1 1
) ) (4.122)
> 3 ~ <log2—§) = 1—log2
for 5 <|t] < 1. O

4.3 Other Results

We record here another result of interest.

Proposition 4.17. The value of F' at zero is:

¢'(2) 4
FO) = — — —log2 — 1
00 A(n) 4 (4.123)
= Z - — o log2 — 1,
n 3
n=1
where
1 e a .
A(n) = ogp ifn p,ppmme, (4.124)
0 otherwise.
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Proof. We have:

1 & logln+3|—1
FO) =5 2 iy
8 ilog(?n—kl)—logQ—l
(2n +1)2

8 [=log(2n+1) = 1
- ;{ZW - o240 ) 5y

n=

On the other hand

0o B L B 7T_
and for s > 1,
= log(2n + 1) 0 i _
Z—S = —— (2n+1)"°
—~ (2n+1) Os
d -5
= -2
C(S)}
= —((s *log2 4 (1 —2 ,
o) {2 gz -2 £
hence, for s = 2,
—log(2n+1)  17° ¢'(2)
;_0 2n+12 83 {10g2+3g(2) ’
Substituting above:
_ d@ 4 B
F(0) = e 3 log 2 1
= ZAn — é10g2 -1
n=1
= —1.3542352476 .

} |

(4.125)

(4.126)

(4.127)

(4.128)

(4.129)



Chapter 5

Applications

5.1 A Majorizing Trigonometric Polynomial for ¢(x)

Lemma 5.1. For every real x and every 6 > 0

Z D(zgm) 0log2 + Z {25D (0k) —%} cos 2nxk

e (5.1)

— log |2 sinmz|.

Proof. We apply the Poisson summation formula:

00 T

m=—o00 k=-T

= 6D(0) + 26 Z D(8k) cos 2rak

0<dk<1

1
+ 26 Z % cos 2mxk (5.2)

1
= 0log2 + Z {25D (0k) _E} cos 2mxk

O<k<l
— log |2 sinmx|.
O
Corollary 5.2. Let ¢ be the function defined by (2.23), let H be a positive

integer, and let Ty be the following trigonometm'c polynomial:

log 2 1 &L (2D 1



Then

for every x € R.

Proof. Substitute H+L1 for ¢ in lemma 5.1, and use that D(x) > 0 for every

real z. O]

Figure 5.1: The trigonometric polynomial T5(x) majorizing ¢(x)
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5.2 An Erdos-Turan-Type Inequality

Theorem 5.3. Let P(z) be a polynomial whose roots lie all on the unit circle:

P(z) = [](z =€), (5.5)

1

where x1,...,xp are real numbers. Let H be a positive integer. Then:

M log?2 + i{l_if)(L)}sup%—cos{%r(x —x)k}
H+1 &~ =k H+1 ‘|5 "
< s S P} [ e
o M2, é{%—ﬂ?ﬁgm} iemmk
<M ligf . g ! iezmmk  (56)

where D(z) = F(z) —logz, F is the function defined by (2.33), and D is the

Fourier transform of D.

Proof. By the maximum modulus principle the maximum of |P(z)| in |z| <1

is attained at some point of |z| = 1, hence it is enough to find a bound for
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log | P(e*™®)|. We have:

M
H (627rz'x . e2m’zm)

log | P(e*™*)| = log

m=1

M
_ Z 1Og‘€2m'z _ 627ri:vm|

m=1

iy (5.7)
— Z lOg‘l 627rz(:tm :):)‘

m=1

M
= Z log [2sin7(z,, — )|

m=1

From lemma 5.1 and taking into account that D(x) > 0 we get:

~ 1
log |2 sinmz| < 6 log2 + Z {25D(5k) - E} cos 2k (5.8)

0<k<3
for any 6 > 0, hence:
log |P(€27rm)| <
I 1
Z dlog2 + Z {2§D 5]6)—E} cos{2m (x,, — ) k} p =
=1 0<k<3
M
dM log2 + Z {— — 26 D( (5k)} Z —cos{27 (z,, — x) k}. (5.9)
0<k<% m=1

Note that since ﬁ(t) < ﬁ, we have that § — 26 ﬁ(&k) > 0. Next,

letting § = H 7 we get the desired result. Finally we use

1

M M M
Z — cos{2m(z Z e2rilem=—olk | — Z e?miemk | (5.10)
m=1 m=1 m=1

and apply corollary 4.16. O]
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Corollary 5.4. Let xy,...,x5 be real numbers. Let H be a positive integer.

Assume that Ty is defined as in (2.22). Then

M log 2 1 e 1 ok
'y < ——— — — T 5.11
M= m(H+1) T 21 k mz; (5:11)
Proof. Use theorem 5.3 and (2.28). O

Next, a couple of particular cases.

Corollary 5.5. Let a be an irrational number, x,, = ma. Then for any

positive integer H

H
M log2 1 1
'y < ——— — 5.12
MOS ) 27rkz:;ka:aH’ (5.12)
where ||z|| = min {|z —n| : n € Z}.

Proof. Use corollary 5.4 and:

2 27rka;m

m=

1 1 1
~ [sintka|  singlkal] = 2|kal|’

(5.13)

O

Corollary 5.6. Let H be any positive integer. If P(z) is a cyclotomic poly-

nomial
q
P(z) = [[ (z—e™9) (5.14)
a=1
(a,q)=1
then
plg) log2 | <~ 1
sup {log |[P(2)] : || < 1} < THE1 + ZE (k. q), (5.15)

where ©(q) = 3, =1 1 is Buler’s function.
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Remark. Note that if ¢ is a prime, by taking H = ¢ — 1 we get
sup{log |P(z)| : |2| <1} < C + loggq (5.16)

with C' = 1+log 2, which has the right order, since in this case sup {log |P(2)| :

|z| <1} = log q exactly.

Proof of corollary 5.6. Use theorem 5.3 and the following result about Ra-

manujan’s sums ([1], sec. 8.4):

q

E eQm’ka/q

a

=1
(a,9)=1

< (k,q). (5.17)

5.3 Analogue of Montgomery and Vaughan’s Inequality

Theorem 5.7. Let A, Ag, ..., Ay be real numbers satisfying 0 < § < |\; — A

for 7 #k, and let ay,asq, . ..,an be arbitrary complex numbers. Then
2 log 2 al 9 GG
S Z ] ZZ X — Al (5.18)
n=1 j=1 k=1 d
J#k

The constant 2 log 2 is sharp.

Proof. We use the function D(z), that we know is nonnegative and integrable,
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D(0) = log2 and D(t) = =L for |t| > 1. First assume ¢ = 1:

2\t|

2T Ap T

dz

0 j=1 k=1
yXN ~ (5.19)
= Z lan> D) + > ) a;a DN — M)
n=1 j=1 k=1
j;ﬁk
_ 2
— Z|an| log2 + Za]ak%)\ swi
7j=1 k=1
Jj#k
hence:
N X a; Qg
—log?2 W< = = 5.20
YEDSUTEEED 9) iecis 20
7j=1 k=1
itk
Finally, for § # 1 a change of variables allows us to complete the proof.
We see that the constant —2 log 2 is sharp by putting A\, = n, a, =
(=1)™, and N arbitrarily large. O

Remark. Note that the expression in the right hand side of (5.18) is not

bounded above, as proven in [5], end of section 8.12, p. 214.

5.4 Generalization of the Erdos-Turan-Type Inequality

The “Erdés-Turan”-type inequality given by theorem 5.3 can be substantially
generalized. In fact, suppose aq, ..., apr are complex numbers, and wq, ..., wy

are non-negative numbers with

Z wm = 1. (5.21)
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Define f : C — [—o0,00) by

f(z) = ) wnloglz — apl, (5.22)

and note that f is subharmonic on any open subset of C. In particular f is

subharmonicon A = {ze€C:|z|<1}.

We wish to estimate sup { f(z) : z € A} in terms of the power sums

NE

Wiy ()" 1<n<N. (5.23)

m=1
In fact such sums may be dominated by a few large a’s, so we make the
following modification. Suppose that 0 < |ay| < |ag| < - < |ag] <1 <

lapi1| < -+ < ay| and then set

. if 1<m<1L,
B = T (5.24)
(@p)™t if L+1<m<M.
Then define the power sums
M
Sno= Y wn(Bu)"  n=12.. (5.25)
m=1
Next we define g : C — [—00,00) and h : C — [—00,00) by
M M
g(z) = Z W logt |a| + Z Wi log |z — Bl (5.26)
m=1 m=1
and
L M
h(z) = Z w loglag z — 1] + Z wm log |z — . (5.27)
=1 m=L+1

It follows easily that f and ¢ are subharmonic on A, A is harmonic on

A, and f(e*™) = g(e*™?) = h(e?>") for all real §. Therefore f(z) < h(z) and
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g(2) < h(z) for all z € A. So we have
sup{ f(2):z€ A} < sup{h(z):z€ A}

= sup{h(e*™): 0 c R/Z}

= sup {g(c"™) : 0 € R/Z}.

Let ¢ : R/Z — [—00,00) be defined by

o0

o(0) = 7t logle™® — 1) = — Z (27|n|) "L e2mine.

n=—oo

n#0

(5.28)

(5.29)

Then let Ty (6) be a trigonometric polynomial of degree at most N such that

() < Tn(0)

(5.30)

for all # € R/Z. We also assume that 6 — Ty(6) is even (so that n s Ty(n)

is real) and
~ log 2

Now let 8 =re* with 0 <r < 1 and £ € R/Z. Then we have

log |67 — B = log|1 — e
- —R { Z n1 (B)n o2mind }
n=1

_ Z (2|n|)—1 T|n| 62Win{9_£}.

n#0

Next recall that

P.(0) = Z plnl g2mind (1_7«2”1_7&62#1’9‘722 0

n=—0oo

(5.31)

(5.32)

(5.33)
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for all 0. It follows from (5.29), (5.30) and (5.32) that
1
log e — B = = / PO — €~ 1) p(r) dr
0
1
< 7 / P.(0—&—1)Tn(T)dT (5.34)
0
N ~
=7 Z rin Tn(n) 2mim(0—¢),
n=—N
In order to use (5.34) (which holds also if 7 = 1) to estimate 9(62”9),

write B, = rp e?ém where 0 < 1, < 1, &, € R/Z, m = 1,2,..., M. Then

we find that

M M
g(e¥™) = Z W log™ |am| + Z Wi log |20 — .|
m=1 m=1

IA

A} o N
Z Wm 10g+ ‘am’ + T Z W Z r|mn| TN(TL) e?ﬂ'in(@—gm)
1 m=1 n=—N

m

W log™ |am| + WfN(O)

N M
+ o7 E TN(n) § Wi T|TZ| 6727rm§m 627rm9
n=—N m=1

-

3
I

n#0
M
= Z wm logt |a| + 7Tx(0)
m=1
N
+ 7 Z TN(n) {gn 627rin9 + s, 6727rin9 }
n=—N
n#0
(5.35)
This leads to the following inequality:
M log 2 al
sup{f(:):2€ A} < Y wnlog" faw| + o + 20 D | Tv(m) | Isal
m=1 n=1

(5.36)
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where

(5.37)
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Chapter 6

Conjectures and Future Research

6.1 Generalization of the Majorant for log |z|

A small variation of the problems studied in the previous sections would be to

substitute log |z| with § log(z? + ¢?) (y > 0). Note that
log |x] = lim 1 log (2% + 32).
y—0t 2

Then equation (2.30) becomes

> T —2my|m|
_ A : € 2wimae N _
Z_Z D(a+D) = DO) + Jim 3 5 — D(0)—m ¢, (x), (6.1)
m#0
where 1
o, () = —y + b log(2 cosh 2wy — 2 cos 27x) 62
1 . '
— log ‘ 627r2x o e—27ry ’ )
s

That function becomes ¢(x) as y — 07, but has some extra properties
of interest. It is periodic of period 27 and has maxima and minima respectively
at the points of the form n + % and n for n € Z, where it takes the values:

1
py(n+1) = =log(14+e7?™),
(6.3)

py(n) =

N|=3

log ( 1— 672’”/) .
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Figure 6.1: The function ¢, (z) for several values of y

Reasoning as in the previous chapter we have that the following is a
good candidate for an entire function of exponential type 27 that majorizes

: log(2® + y?) and is extremal in the sense of minimizing the L' norm of

Ef(z) — 3 log(2? + ?):

Y

+ —
Ff(z) =
2 > 10 { n _|_ ) +y?} b —n1+2% 2
COSTZz Z Z n+s
ﬂ— n=-—o00 ))2 n=-—o00 < (TL 5)
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Figure 6.2: Function F,"(z) majorizing % log(z? + y?)

However now we also have a candidate for a minorizing extremal func-
tion, which will result from interpolating at the integers instead of the integers
plus a half:

F,(2) = (sz) { > 510(gz{7_1 n;y} + D ffy;}- (6.5)

™
n=-—o00 n=-—00

If we define D (x) = F7(x) — 5 log(x* 4 ), then:

D} (0) = log(14e72™)
~ (6.6)
D, (0) = log(1—e ™).



Figure 6.3: Function F, (x) minorizing 3 log(z* 4 y?)

At this point we can state the following conjecture:

Conjecture 6.1. Let F,f (x) and F, (x) be the functions defined in (6.4) and
(6.5) respectively. Then:

1. Ff(2) and F; (2) are entire functions of exponential type 27.

2. For every x € R

F (z) < %log(x2—|—y2) < Ff(z). (6.7)
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3. They satisfy:

/OO{FW )~ 5 log(e? +47) Yo = log (1+¢7),
(6.8)
/ { log(2? + 3?) — F(z)}dr = log (1 —e™).

4. They are extremal, in the sense that among all pairs of functions satis-

fying 1 and 2, they are the ones that minimize integrals (6.8) in 3.

The key property is, of course, the double inequality (6.7). From here

several results follow, such as:

Conjecture 6.2. Let A, Ao, ..., Ay be real numbers satisfying |y — An| >
d > 0 whenever m # n, and let a(1),...,a(N) be arbitrary complex numbers.

Also let e be any positive real number. Then

9 N
_ S 10g(1 +€—27ra6) Z |CL(7’L)|2

N
< —Zlog(1—e?m) Z . (6.9)

In the proof for this result we will set y = aJ, use (6.6) and

—2mylt|

2]¢]

e

Nt
DE(t) = for [t| > 1, (6.10)

and proceed as in the proof of theorem 5.7.

Note that this result becomes theorem 5.7 as o« — 0*. Note also that

the upper bound tends to infinity.
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6.2 Generalization of Beurling’s Function

Writing z = = + yi we note that 7 log(—iz) = arctan St % log(z% +y?), hence

% log(x? + 4?) is the harmonic conjugate of arctan g This function becomes

7 sgn(z) for y — 0%. If we substitute sgn(z) by % arctan ¢ and repeat the
work done for Beurling’s function, we get:

[e's) T

) : 6727ry\m\ 2mimx N
l; D(x+1) = D(0) + lim Z_j e = D(0)+2,(z), (6.11)
m#0
where
w( ) 1 ; sin 27x (6 12)
r) = —— arctan ) .
Y T e2my — cos 2mx

The function v, (x) becomes ¢ (z) for y — 07, but also has some prop-
erties of interest. It is periodic of period 27 and has maxima and minima

respectively at the points of the form n — ¢, and n + ¢, for n € Z, where

1 Y 1
5, = 7 arccos { e 2™ } 0<d, < 3 (6.13)
and it takes the values:
1 ) n
Yy(n£d,) = F— arctan {(e ™—1) 2} . (6.14)
s

From here we get that the following function is a candidate for an entire
extremal function of exponential type 27 that majorizes % arctan§ along the

real axis:

By(z) =

. o] n+(sy 2y/7’l’
sinm(z — 6,)\” 7 arctan _ (40242
( 7r ) Z (z—(n+5 * ; z—( n+5 - (6.15)

n=—oo
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Figure 6.4: The function 1, (z) for several values of y

By substituting J, with —d, we get an analogous function, B, (2), in-
tended to minorize % arctang along the real axis.

Note that by letting y — 0%, then §, — 0%, and B,f(2) and B (z)
approach B(z) and —B(—z) respectively.

Also, we note that B, '(6,) — 2 as y — 0%, which confirms the value

B'(0) = 2 for the derivative of the Beurling’s function at zero.



Figure 6.5: 9, as a function of y

— 2 z
It D = B (v) — 7 arctan ¢ then

DEO) = +2 arctan{(e“y - 1)—%}. (6.16)

T
At this point we can state the following conjecture:

Conjecture 6.3. Let B (x) be the function defined in (6.15), and B, (x) be
the analogous functions obtained by substituting 6, with —d, in the definition

of B (z). Then:
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Figure 6.6: Function B;f () majorizing 2 arctan ¥

+ — . . .
1. B/ (2) and B, () are entire functions of exponential type 27.

2. For every x € R

3. They satisfy:
> 2
/ { B, (x) — = arctan E }dx
—c0 ™ Y

<2
/oo{; arctang—By_(:z:)}dx

B (z) < zarctan— < Bf(z). (6.17)

)

2
— arctan {(647”’ - 1)_%
T

(6.18)

2
— arctan {(647”’ - 1)_%
7r
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Figure 6.7: B;/(éy) as a function of y

4. They are extremal, in the sense that among all pairs of functions satis-

fying 1 and 2, they are the ones that minimize integrals (6.18) in 3.

Next, some results that follow from the extremal properties of Bj(x):

Conjecture 6.4. Let A, Ao, ..., Ay be real numbers satisfying |y — An| >

0 > 0 whenever m # n, and let a(1),...,a(N) be arbitrary complex numbers.
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Figure 6.8: Function B, (z) minorizing 2 arctan

Also let v be any positive real number. Then

N N
Z Z a(m) a’(n) 6727ra\)\m7/\n\
Am — An

m=1 n=1
m

#n

< % aurctaun{(64m‘S - 1)_%} ; la(n)*. (6.19)

In the proof of this result we will set y = a9, use (6.16) and

DF = : (6.20)

4 it
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and proceed as in the proof of (2.2), (Montgomery and Vaughan’s inequality).

By letting e — 07 this result becomes (2.2), so (6.19) can be considered

as a generalization of Montgomery and Vaughan’s inequality.

6.3 Extremal Majorants and Minorants for log" ||

In this section we briefly address the problem of obtaining extremal majorants
and minorants for the function

logt o = 4 ‘glel izl =1, (6.21)
0 if |z] < 1.

Assume that G(z) is an entire function of exponential type at most 2,
and assume that the difference Dg(z) = G(z) — log™ |x| is integrable. Note
that log™ |z| = log|z| — x=11)(%) log|z|, so by using the Poisson summation
formula and taking into account equation (2.30) we get

3" Dol +1) = Da(0) + 2 — wp(x) + log((x)) + log(1— (z))

l=—00

= EG(O) _f(x)> (6 22)

where

2 — 1o |2 sin x| B
o = o T f 2 (629

(x) = fractional part of .

The function ¢ is periodic of period 1, has a minimum &(n) = log 2w —
2~ —0.16212293. .. at the integers, and a maximum &(n+1/2) = 3 log2—2 ~
0.07944154 ... at the integers plus a half. Hence, candidates to extremal

minorizing and majorizing entire functions of exponential type at most 27 for
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Figure 6.9: The function &(z)

log™ |z| are interpolating functions at the integers and at the integers plus a

half respectively:

. 2 1 1
sin 7z log |n| = 2F" (1)
F = = 6.24
(=) ( m ) Z(z—n)2+ z—n 2—-1 (" (6.24)
In|>1 [n]>2
1
COS 2\ 2 = log|n+ %] > e
o= (| S
+(2) T = (2= (n+ 1))? * = z—(n+ 3)
n#—1,0
(6.25)

n#—1,0



Figure 6.10: The functions log™ |z|, F\ (z) and F_(z)

The derivative F’ (1) of F_ at 1 is a parameter to be determined. This

parameter does not affect the value of

Dr(0) = [ {F-(a) - log"(u])} do. (6.26)

but it might play a role in getting F__(z) < log™ |z| for every z € R.
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Chapter 7

Harmonic Majorants

In chapter 6 we pose the problem of generalizing the previous results to the
functions 2 arctan § and 1 log(2® + y?) (y > 0). Since they are respectively
the harmonic extensions of sgn(z) and log |z| to the upper half complex plane
HT ={x+yi : y > 0}, the harmonic extensions of the Beurling’s function
and that of the function F' defined in (2.33) will be majorants for 2 arctan ¥
and % log(z%+%?) (y > 0) respectively. Of course, they will not be extremal in

the sense of the previous chapters, but they do solve a different optimization

problem.
We will use the theory in [2, ch. 11], and [6, ch. 8]. In particular we

restate the following theorem from [6] (after some changes of notation):

Theorem 7.1. Letp > 1 and let f a function in LP(R). Let F' be the harmonic
function defined in H* by

Faty) = R fla) = o 1) e . (1D
where
R = ;o (7.2)

is the Poisson Kernel for the upper half plane. Then:
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1. For each y > 0 the function F,(x) is in LP(R).

2. The LP-norms || F,||, are bounded fory > 0. In fact ||F,||, is a decreasing

function of y fory > 0.
3. The functions F, converge to f in LP-norm asy — 07.

4. F(2) tends uniformly to zero as z tends to infinity in any fized half-plane

I(z) > 6> 0.

7.1 A Harmonic Majorant for the Arctangent

Theorem 7.2. Let F' be an entire function of exponential type at most 27
such that for every y > 0

R{F(x+yi)} > 2 arctan g (7.3)
7T

Fory > 0 let I,(R{F}) be the L'-norm of the difference:

o0

Loy = [

—0o0

{%{F(m i)} — % arctan 5} do.  (74)

Then I,(R{F}) is independent of y—so we can drop the subscript y in it:
I(R{F}) =1,(R{F}). Also:

1 IR{FY) > 1.

2. The Beurling function (2.1) verifies (7.3). Furthermore, I(R{F}) =1
if and only if 5 {F(z) + F(?)} = B(z).

Proof. Let D be:

D(x+yi) = R{F(x +yi)} — % arctang (7.5)
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for y > 0. Its limit function for y — 07 is D(z) = R{F(x)} — sgn(x), and
since D is harmonic, we have D(x + yi) = P, * D(x). By Fubini’s theorem we

see that
I,(R{F}) = (| Py + (R{F} —sgn)|ly = [[R{F} —sgn |1, (7.6)
hence it is independent of y.

On the other hand

% {F(z) n WE)} (7.7)

is a real entire function of exponential type at most 27 that coincides with
R{F} on the real line. Hence, by the properties of Beurling’s function we get
(1) and (2). O

Remark. Analogously, the following holds for y > 0:

R{—B(—z—yi)} < 2 arctan g, (7.8)
m

and

/_OO {%{—B(—x - % arctang} dr — —1. (7.9)

o0

Next we give a generalization of Montgomery and Vaughan’s inequality
that can be obtained as a consequence of theorem 7.2. The result is similar to

conjecture 6.4—but somewhat weaker.

Theorem 7.3. Let Aj, Ay, ..., Ay be real numbers satisfying | Ny, — \p| > 6 >0
whenever m # n, and let a(l),...,a(N) be arbitrary complex numbers. Also

let a be any positive real number. Then

Ty W e2maln—al | < % ; la(n)[?. (7.10)

m=1 n=1
m

#n
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Proof. Let D,(z) be equal to
2
Dy(x) = D(x+yi) = {B(x+yi)} — — arctang. (7.11)
m

D(x + yi) is a harmonic function with D(z) = B(x) — sgn(z) as limit for
y — 07, hence Dy(x) = P, * D(x), where P, is the Poisson kernel (7.2).
Then D,(t) = ﬁy(t)f)(t) = =2 D(t) for y > 0. Hence ﬁy(O) = 1 and
By(t) = —e 2™l /7t for |t| > 1. Next set y = a6, and proceed as in the

proof of theorem 16 of [10] (the Montgomery and Vaughan’s inequality). [

7.2 A Harmonic Majorant for the Logarithm

Theorem 7.4. Let G be an entire function of exponential type at most 2w

such that for every y > 0
1
R{G(z +yi)} > 5 log (z° + 9°). (7.12)

Fory > 0 let I,(R{G}) be the L'-norm of the difference:

o0

Lee) = [

—0o0

{%{G(m +uyi)} — % log (22 + y2)} dx. (7.13)

Then I,(R{G}) is independent of y—so we can drop the subscript y in it:
I(R{G}) = I,(R{G}). Also:

1. I(R{G}) > log2.

2. The function F defined by (2.33) verifies (7.12). Furthermore, [(R{G}) =
log 2 if and only if 1 {G(z) + G(E)} = F(2).

Proof. Let D be:

Dla+yi) = R{C( +yi)} — 3 log (+* +7) (7.14)
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for y > 0. Tts limit function for y — 07 is D(z) = R{G(x)} —log|z|, and since
D is harmonic, we have D(x + yi) = P, * D(x). By Fubini’s theorem we see

that
L,(R{G}) = ||Py = (R{G} —log |- )|ls = [[R{G} —log]| - |[|1, (7.15)

hence it is independent from y.

On the other hand

% lo()+ @) (7.16)

is a real entire function of exponential type at most 27 that coincides with

R{G} on the real line. Hence, by proposition 4.10 we get (1) and (2). O

As a consequence of theorem 7.4 we give a result that generalizes the-

orem 5.7. The result is analogous to conjecture 6.2, but somewhat weaker.

Theorem 7.5. Let Ay, Ay, ..., Ax be real numbers satisfying | Ay —A\p| > 6 >0
whenever m # n, and let a(1),...,a(N) be arbitrary complex numbers. Also

let a be any positive real number. Then

2 al A a(m) a(n)
_ 2 < N 7 N 7 _27ra|>\m_)\n|‘ .
5 log 2 nEZI la(n)|® < E g p— e (7.17)

m=1 n=1
m#n
Proof. Let D,(z) be equal to
1
Dy(z) = D(x+yi) = RH{F(z+yi)} — 5 log (z* + ), (7.18)

where F' is function (2.33). D(x + yi) is a harmonic function with D(z) =
F(x) —log |z| as limit for y — 0", hence D,(x) = P, * D(z), where P, is the
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Poisson kernel (7.2). Then ﬁy(t) = ﬁy(t) D(t) = e=2ml D(t) for y > 0. Hence
lA)y(O) = log2 and lA)y(t) = e 2t /2|t| for |t| > 1. Next set y = ad, and

proceed as in the proof of theorem 5.7. ]
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Chapter 8

Lemmas

Here we give some details about results used in some proofs.
We begin with a version of the Euler-MacLaurin summation formula.

LM+ 3] = R be2m

29

Lemma 8.1. Let N < M integers, and let f : [N —

times continuously differentiable, m > 2, and such that

M+3
[ e <,

1
N—3

where @™ is the 2m-th derivative of f. Then

n=N N_%
© TG UE — e— y)
B2m z - 2
- (2,> > FEm0,). (8.1)
(2m)! —

where By (x) = k-th Bernoulli polynomial, andn — 1 <0, <n+ 3.

Proof. Using the general Euler-MacLaurin formula and taking into account
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that ngfl(%) =0:

1 1
N—gz<n<M+3 2

m—1 BQk(%

T2 Tap)

) {f(2k'—1)(M + %) o f(2k—1)(N o l)}

2
k=1

b [, Bl (O e d, (52)

1
N-3

where (x) = fractional part of .

By integrating by parts and using the mean value theorem for integrals

(justified by the fact that Boy(1) — Bam({z)) never changes its sign) the last

integral becomes:

M+3
/ Ban1((2)) F& () du

- 1 M+
= — { Bam(3) = Bam((x)) } fO™ () da

m N*%

-2 7 {Banld) - Banl(a) ) 1O () dr

Ly ey [0

n=N n—s

n+1

’ { Bom(3) — Bam((2)) } dx

_ Baly)

m

> fEM(0). (8:3)

n=N

From here the announced result follows. O]

Next, we justify the use of the Poisson summation formula for the

function D(x).
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Lemma 8.2. Let D be the function defined in (4.1). Then
) T N
> D(z+n) = lim D(k) e*mike (8.4)

T—o0
n=—00 k=-T

for every real x & 7.

Proof. For small € > 0, let D, be the function

| D(z) = F(x) —log|z| if |2] > ¢
Dela) = {F(x) ~log ¢] if 2] < e (8:5)

Now D.(z) is a continuous function of bounded variation and absolutely inte-

grable on R, so we can apply the Poisson summation formula to it:

00 T

o : A 2mikx
Z De(v+n) = lim k_z D.(k)e (8.6)
for every real © € Z. Note that if ¢ < ||z|| = distance from z to the nearest

integer, then the left hand sides of (8.4) and (8.6) are the same. In order to

compare the right hand sides, we compute:

lA)(t) — Bg(t) = / log ’8?‘ e 2t dy
o (8.7)
= — Si(27et),
mt

where

Si(z) = /0 " (8.8)

u

is the sine integral. So:

T
Z B(k’) e2mike Z Ba(k’) e2rikz
k=-T

— k=-T

I
)
=

|
-
m
=
_|_
RN
]~
| =

Si(2mek) cos2mkx  (8.9)
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Obviously D(0) — D.(0) — 0 as € — 0T, hence we only need to worry about

the last sum, which is the real part of

> s

k=1

i(2mek) e*mihe (8.10)

wl»—t

SHES

Summation by parts shows that the absolute value of (8.10) is bounded by

4/7 T Si(2me(k + 1 Si 2mek
-1

We have Si(27e) — 0 as ¢ — 07. Also we notice that by the mean value

theorem:

Si(2me(k +1))  Si(2mek)
kE+1 k
1

— m {sin{27(k + 0y)e} — Si(2n(k + Oy)e) }, (8.12)

where 0 < 6, < 1. Hence the sum in (8.11) converges uniformly as T" — oo,

and each of its terms tends to zero as € — 07, so that

_ Si(2me(k +1))  Si(2mek)
| = 0. 1
Jimy Z ! P ; 0 (8.13)
It follows that
T T
. . A 2mikx A 2mikx _
lim lim > D(k)e — Y D.(k)e = 0, (8.14)
k=—T k=—T
and the announced result follows. O]

Lemma 8.3. Let j be the function defined in (4.6). Then

27 .
) < W) < 2 for every ¢t > 0. (8.15)

As a consequence:

27
W) < = for every t > 0. (8.16)
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Proof. Let f, be the function:

a

fat) = W) et (8.17)

After some lengthly but elementary computations we can write f,(¢) like this:

—480 p(t) ga(t)
(1) = ———2 { logt , 8.18
Jalt) (t*—1)7 { et T 2 p(t) (818)
where
p(t) = t®+ 105t + 35t° + 49¢* + 2, (8.19)

and g,(t) is a certain polynomial of 13th degree whose coefficients depend on
a. The factor outside the curly brackets is negative for ¢ > 1, and positive for
0 <t < 1 (note that f,(¢) has a removable discontinuity at ¢ = 1), and the

expression inside has the following derivative:

d 9a(t) | _ (#-1)°¢()
pr {logt + t2p(t)} = 1208 p0) (8.20)

where ¢,(t) is a 10th-degree polynomial. By counting the zeros of ¢,(t) in

(0,00) (e.g., by the Sturm method) we find that g¢(t) and g_27(¢) have no zeros
in that interval. Also we have that ¢,(1) = 672a — 3456, hence ¢5(1) = 576 and
q-27(1) = —21600, which implies gs(t) > 0 and g_o7(¢) < 0 for £ > 0. Thus,
the expression inside the curly brackets is increasing for a = 6 and decreasing
for a = —27. Since it vanishes at ¢t = 1, this allows us to determine its sign
along the intervals (0,1) and (1,00), which together with that of the factor
outside the curly brackets, gives us the sign of f,(¢) in (0,00) \ {1}. Att =1
_ 36

the sign of f, can be checked by directly computing f,(1) = = —a. From here

we get for every t > 0
fo(t) < 0 < far(D), (8.21)

and the desired result follows. O
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Lemma 8.4. Let f be the function

: > T
f) =3 (&) + o [ 0d+ g3, (5.22)
where j is the function defined in (4.6). Then
a 3 log 2 log x
fla) = S——— + O( = ) (8.23)

for x — oo.

Proof. The proof is just a lengthly but elementary computation. We have:

i) = ("Tfl)g { <—3x2 - %) log(2z) + 2% + 22 — g }

2
4 . (8.24)
_ 3 102gx L2 3210g2 Lo <1og4m> |
x x x
ol 22% (2 logx — 2% + 1)
x[ Jjt)dt = 1)
Al 5 | (8.25)
og og
Lj’ (1) = B {(3z* + 82” + 1) logx + 42" — 22* — 2}
24 M 3(x2—1)4 (8.26)
log x 4/3 log x '
T2 +?+O(x4)'
By adding up the three expressions we get the announced result. O
Lemma 8.5. Let g be
o) = —a® (@) ~ (8.27)
128’

where f is defined in (8.22). Then g(x) > 0 in (6,00) for some 0 <6 < 3.

Proof. The function g(z) can be written like this:

4

" p(z) b(x)
3 (22 — 1)t (422 — 1)’

9(x) = (8.28)
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where
p(z) = 2242° +9162° — 10952* + 2202 + 59, (8.29)
m(z)
b(z) = 1 8.30
(z) = logz + 5 (8.30)

and m(z) is a certain polynomial of 14th degree.

We note that p(z) has no zeros, which can be checked by Sturm’s

method. The derivative of b(z) is the following:

(22 = 1)° (42” — 1)? q(2)
32 2° p(x)? ’

V(z) = (8.31)

(—324800 + 516096 log2) z'? + (—3692848 + 6027264 log 2) x'°
+ (—885648 — 18432 log2) 2® + (1140416 — 774144 log 2) 2°

— 1674622% + 106472 + 1239. (8.32)

Using Sturm’s method again we check that ¢(z) has exactly 2 zeros' in the

1

,3) and the other one at x5 € (3,1).

interval (0,00), one at some x; € (0 5

We easily check the sign of g(z) to be negative in (x1,z3) and positive in
(0,00) \ (21, x2).
Next we determine the sign of b(x) at several intervals along (1, 00).

First we note that &' (z) has a double zero at x = % and a triple zero at x = 1,

1

5 and a quadruple zero at x = 1. Since

hence b(z) has a triple zero at x =

1

the derivative of b(z) vanishes only once in (5, 1), then b(z) cannot have any

1By numerical methods we get: x1 = 0.47657357 ..., xo = 0.74127575. ..



zeros in that interval, so its sign remains constant there, and it can be checked
to be positive. Since the zero of b(z) at x = 1 is even, then b(z) will have
the same sign (positive) to the right of that point. Since b'(z) > 0 in (1, 00),

b(x) will remain positive along the whole interval (1,00). Finally the sign in

(21, %) can be determined by observing that the zero of b(z) at x = % is even,
so b(z) will be negative to the left of that point, and its derivative is positive
in (z1,3), hence b(z) must be negative in that interval. We summarize the
result as: b(z) < 0in (z1,3) and b(x) > 0 in (3,1)U(1,00). From here we get

that b(z) has no other zeros in (z1,00) but those at = § and z = 1.

Finally we note that the zeros of b(x) in (21, 00) cancel out exactly the
poles of the denominator of g(x), so that g(z) is a non-vanishing continuous
function in that interval, where it can be easily checked to be positive. Finally

we end the proof by setting § = ;. O

Lemma 8.6. Let h defined as in (4.4). Then the function t — 31 (t), is

increasing fort > 1.

Proof. The derivative of 3 I/(t) is

4813 (12 + 1 15+ 9t — 92 — 1
(" + ){1 f- } (8.33)

d 3 1./ o
a o = (12 — 1) 1262 (12 4+ 1)

The factor outside the curly brackets is positive for ¢ > 1, and the expression

inside has the following derivative:

d 6 +9¢t — 92 — 1 2 —1)4
L _ -0 (8.34)
dt 122 (12 + 1) 613 (12 +1)2

which is negative for ¢ > 1, so the expression inside the curly brackets is

decreasing. Since its value is zero at t = 1, it will be negative for ¢ > 1.
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This proves that the derivative of 3 1/(t) is negative for ¢ > 1, hence 3 h'(t) is

decreasing. [

Lemma 8.7. Let h(t) be the function defined by (4.4). Then for everyt >0

14 1
—% < h(4)(t) < vt (8.35)

where h(t) is the fourth derivative of h(t). As a consequence

14
RO < (8.36)
for every t > 0.
Proof. Let f, be the function:
a
falt) = KD () — e (8.37)
After some computations we get
240p(t) 9a(t)
() = ———= < logt , 8.38
ult) = oot Lioge 220 (8.38)
where
p(t) = (24 1) (t" + 142 + 1), (8.39)

and g, is a certain polynomial of 12th degree whose coefficients depend on a.
The factor outside the curly brackets is positive for t € (0,00)\ {1} (note that
fa(t) has a removable discontinuity at ¢ = 1), and the expression inside has

the following derivative:

d ga(t> (t2 — 1)5 Qa(t)
dt {logt " t4p(t)} T 12065p(1)? (840
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where

Go(t) = —at® + (120 — 35a)t° + (—1800 — 105a) t*

+ (=600 — 49a)t* + (—24 —2a). (8.41)

By counting the zeros of ¢,(t) in (0,00) (e.g., by the Sturm method) we find
that ¢;(t) and g_14(t) have no zeros in that interval. Also we have that ¢,(1) =
—192 — 2304a, hence ¢;(1) = —2496 and g_14(1) = 384, which implies ¢ (t) <
0 < q_14(t) for t > 0. Thus, for @ = 1 the expression inside the curly brackets
is increasing in (0, 1), vanishes at 0, and is decreasing in (1,00), hence it is
negative in (0,00) \ {1}. For a = —14 it is the other way around. Since the
factor outside the curly brackets is positive in (0, 00)\{1}, and f,(1) = —12—a,

we get that for every ¢ > 0:
i) < 0 < fou(D). (8.42)

From here the announced result follows. ]
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