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MIGUEL A. LERMA

Abstract. We study slightly modified versions of the Bernoulli
periodic functions with nicer structural properties, and use them to
give a very simple proof of the Euler-McLaurin summation formula.

1. Definitions

The Bernoulli polynomials B∗
n(x) can be defined in various ways.1

The following are two of them ([4, ch. 1], [1]):

(1) By a generating function:

(1.1)
t ext

et − 1
=

∞∑
n=0

B∗
n(x)

tn

n!

(2) By the following recursive formulas (n ≥ 1):

B∗
0(x) = 1 ,(1.2)

B∗′
n (x) = n B∗

n−1(x) ,(1.3) ∫ 1

0

B∗
n(x) dx = 0 .(1.4)

The first Bernoulli polynomials are:

B∗
0(x) = 1

B∗
1(x) = x− 1

2

B∗
2(x) = x2 − x + 1

6

B∗
3(x) = x3 − 3

2
x2 + 1

2
x

Date: June 19, 2002.
1Here we use the notation B∗

n for the Bernoulli polynomials, and reserve the
notation Bn for the Bernoulli periodic functions.

1



THE BERNOULLI PERIODIC FUNCTIONS 2

The Bernoulli numbers are Bn = B∗
n(0), and the Bernoulli periodic

functions are usually defined Bn(x) = B∗
n(〈x〉). However here we nor-

malize B1 defining B1(k) = 0 instead of −1/2 for k integer, so that B1

coincides with the normalized sawtooth function:

(1.5) B1(x) =

{
〈x〉 − 1

2
if x 6∈ Z

0 if x ∈ Z,

where 〈x〉 = x − bxc = fractional part of x, bxc = integer part of x.
Also we will leave B0(k) undefined for k integer—in fact B0 should
be defined as the distribution B0(x) = 1 − δper(x), where δper(x) =∑∞

k=−∞ δ(x− k) is the periodic Dirac’s delta.

1.0.1. Properties of the Bernoulli Periodic Functions. (n ≥ 1):

1. B1(x) = sawtooth function (eq. 1.5).

2. B′
n(x) = n Bn−1(x) for n > 2 or x 6∈ Z.

3.

∫ 1

0

Bn(x) dx = 0.

1.0.2. Fourier expansions. The Fourier expansion for the Bernoulli pe-
riodic functions is (n ≥ 1):

(1.6) Bn(x) = − n!

(2πi)n

∞∑
k=−∞

k 6=0

e2πikx

kn
,

so:

(1.7) B̂n(k) =

 0 if k = 0,

− n!

(2πik)n
otherwise.

This result also holds in the distributional sense for n = 0.

1.1. Polylogarithms. The Bernoulli periodic functions appear nat-
urally in expressions involving polylogarithms, together with the so
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called Clausen functions (see [3]):

Cl2n−1(θ) =
∞∑

k=1

cos(kθ)

k2n−1
,(1.8)

Cl2n(θ) =
∞∑

k=1

sin(kθ)

k2n
,(1.9)

for n ≥ 1.

To be more precise, the polylogarithms can be defined by the series:

(1.10) Lin(z) =
∞∑

k=1

zk

kn

for n ≥ 0, |z| < 1, or by the following recursive relations:

Li0(z) =
z

1− z
,(1.11)

Lin(z) =

∫ z

0

Lin−1(ξ)

ξ
dξ (n ≥ 1),(1.12)

in C \ [1,∞). Note that Li1(z) = − log(1 − z) is the usual logarithm.
Li2(z) is the dilogarithm.2

A generating function is

(1.13)

∫ ∞

0

z e(t+1)u

(eu − z)2
du =

∞∑
n=0

Lin(z) tn.

The Bernoulli periodic functions and the Clausen functions are re-
lated to the polylogarithms in the following way:

(1.14) − 2in!

(2πi)n
Lin(e2πix) = An(x) + i Bn(x),

for x 6∈ Z, where

(1.15) An(x) = (−1)b
n+1

2
c 2n!

(2π)n
Cln(2πx).

We will call the An(x) conjugate Bernoulli periodic functions. The first
ones are A0(x) = cot πx, A1(x) = 2

π
log (2 | sin πx|), . . .

The series (1.10) converges for |z| = 1 if n ≥ 2.

2For some authors the dilogarithm is Li2(1− z).
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For n = 1 both Li1(e
2πix) and Cl1(2πx) diverge at x = 0, but

(1.16) −πi B1(x) = Li1(e
2πix)− Cl1(2πx) = i

∞∑
k=1

sin 2πkx

k
,

and the series becomes zero for x = 0, so our definition B1(0) = 0
allows (1.16) to hold also for x = 0.

For n = 0, x 6∈ Z, we easily compute

(1.17) Cl0(x) = −i Li0(e
2πix)− i

2
=

1

2
cot(πx).

Also by definition Cl0(k) = 0 for k ∈ Z. Hence,

(1.18) ={Li0(e
2πix)} = Cl0(x)

for every x ∈ R.

Finally we observe that for y > 0

(1.19) <

{∫ x

− 1
2

Li0(e
2πi(u+yi)) du

}
= − 1

2π
arg

{
e2πy − e2πix

}
,

which tends to −1
2

B1(x) as y → 0+ for every x ∈ R, hence

(1.20) lim
y→0+

<
{
Li0(e

2πi(x+yi))
}

= −1

2
B0(x) = −1

2
+

1

2
δper(x)

(where δper is the periodic Dirac’s delta) in the distributional sense.

We also note that the Bernoulli periodic functions and their conju-
gates have harmonic extensions to the upper half plane, given by the
formula:

(1.21) − 2in!

(2πi)n
Lin(e2πiz) = An(z) + i Bn(z),

for =(z) > 0.
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2. The Euler-Maclaurin Summation Formula

Theorem 2.1. Let f : [a, b] → C be q times differentiable,
∫ b

a
|f (q)(x)| dx <

∞. Then for 1 ≤ m ≤ q:

(2.1)

∑
a≤n≤b

′
f(n) =

∫ b

a

f(x) dx

+
m∑

k=1

(−1)k

k!

(
Bk(b) f (k−1)(b)− Bk(a) f (k−1)(a)

)
+

(−1)m+1

m!

∫ b

a

Bm(x) f (m)(x) dx,

where
∑

a≤k≤b

′
f(k) for a < b represents a summation modified by taking

only half of f(k) when k = a or k = b.

Proof. (See [2]) We have

(2.2)

∑
a≤k≤b

′
f(n) =

∫ b

a

f(x) d(x− B1(x))

=

∫ b

a

f(x) dx−
∫ b

a

f(x) d B1(x)

Next, integrate by parts successively the last integral on the right hand
side of (2.2). �

2.0.1. Sum of Powers. As an example of application of the Euler-
Maclaurin summation formula, we give the sum of the first m rth
powers:

S(m, r) =
m∑

n=1

nr = 1r + 2r + 3r + · · ·+ mr .
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Here f(x) = xr, so f (k)(x) = r!x(r−k)/(r − k)! for k = 0, 1, . . . , r,
f (k)(x) = 0 for k > r, and∑

0≤n≤m

′
nr =

∫ m

0

xr dx

+
r+1∑
k=1

(−1)k

k!

(
Bk(m) f (k−1)(m)− Bk(0) f (k−1)(0)

)
=

mr+1

r + 1
+

r+1∑
k=1

(−1)k

k!
Bk(0)

r!

(r − k + 1)!
mr−k+1 − Br+1(0)

r + 1

=
mr+1

r + 1
+

1

r + 1

r+1∑
k=1

(−1)k
(

r+1
k

)
Bk(0) mr−k+1 − Br+1(0)

r + 1

Hence

S(m, r) =
∑

0≤n≤m

′
nr +

mr

2

=
1

r + 1

{( r+1∑
k=0

(−1)k
(

r+1
k

)
Bk mr−k+1

)
−Br+1

}
where Bk are the Bernoulli numbers B0 = 1, B1 = −1/2, Bk = Bk(0)
for k > 1.
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