CONSTRUCTION OF A NUMBER GREATER THAN ONE WHOSE POWERS ARE UNIFORMLY DISTRIBUTED MODULO ONE

Miguel A. Lerma

February 5, 1996

Abstract

We study how to construct a number greater than one whose powers are uniformly distributed modulo 1 . Also we prove that for every $\lambda>0$ there is a dense set of computable numbers $\alpha>1$ such that the discrepancy of $\left\{\lambda \alpha^{n}\right\}_{n=1}^{N}$ is $O\left(N^{-\frac{1}{4+\varepsilon}}\right)$.

1. Introduction.

It is well known that, as a consequence of Koksma's Theorem [1], for almost every number $\alpha>1$ (in the sense of Lebesgue measure), the sequence $\left\{\alpha^{n}\right\}_{n=1}^{\infty}$ is uniformly distributed modulo 1 (u.d. mod 1), but only examples from the exceptional set, such as P.V.-numbers and Salem numbers, are known [2, pag. 71]. Another well known "metric" result is Weyl's theorem: given any $\alpha>1$, the sequence $\left\{\lambda \alpha^{n}\right\}_{n=1}^{\infty}$ is u.d. mod. 1 for almost every real number $\lambda[3]$. However, in this case explicit examples of such λ are known. When α is an integer, the problem reduces to the construction of a normal number to the base α [4, chap. 1, secc. 8]. If α is not an integer, the construction of λ is somewhat more complicated, but still possible, as proven by Kulikova [5], by using an idea of Lebesgue permitting the effective use of metrical theorems [6].

It is interesting to note that some "purely existential" results can be transformed into constructive procedures suitable to produce mathematical objects with the required property. For instance, Gray [7] has used Cantor's result to design an algorithm which generates the digits of a transcendental number η in the interval $(0,1)$. Basically, his algorithm generates (suitable decimal approximations of) all algebraic numbers by orderly generating all polynomials of integral coefficients, and approximating its roots up to some point. Then the digits of η are defined by a diagonal method. Similarly, Kulikova's result also takes advantage of a metrical result to give a procedure which generates the digits of a number with the required property [5]. A similar idea will be used here.

2. Previous results.

Given $\lambda>0$, we are going to define a procedure to construct a number $\alpha_{0}>1$ such that the discrepancy of $\left\{\lambda \alpha_{0}^{n}\right\}_{n=1}^{N}$ approaches zero as $N \rightarrow \infty$.

The idea is to start with some closed interval $I=[a, b]$, with $1<a<b$, and take open subsets J_{1}, J_{2}, \ldots of points α for which $\left\{\lambda \alpha^{n}\right\}_{n=1}^{N}$ has "high" discrepancy. Those subsets will have the following features:
(i) Each J_{k} is a union of finitely many open intervals with computable endpoints.
(ii) $G=I \backslash \cup_{k=1}^{\infty} J_{k} \neq \emptyset$, and for every $\alpha \in G$ the discrepancy of $\left\{\lambda \alpha^{n}\right\}_{n=1}^{N}$ tends to zero as $N \rightarrow \infty$.
(iii) There is a computable sequence of nested closed intervals I_{i} of length approaching zero such that $I_{i} \backslash \cup_{k=1}^{\infty} J_{k} \neq \emptyset$ for every i.

The number α_{0} will be determined as the intersection of the I_{i} 's.
In order to control the discrepancy we are going to use the following bound [8]:

$$
\begin{equation*}
\Delta\left(x_{1}, \ldots, x_{N}\right) \leq \frac{1}{H+1}+2 \sum_{h=1}^{H}\left\{\frac{1}{\pi h}+\frac{1}{H+1}\right\}\left|\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i h x_{n}}\right| \tag{1}
\end{equation*}
$$

where $\Delta\left(x_{1}, \ldots, x_{N}\right)$ is the discrepancy of x_{1}, \ldots, x_{N}. The following lemma gives bounds for the size of the subsets of I with "high" discrepancy.

Lemma. Let λ be any fix positive real number. Let $I=[a, b]$ any closed interval of real numbers such that $1<a<b$. For positive integers H and N, let $\phi_{H, N}(\alpha)$ be the function:

$$
\phi_{H, N}(\alpha)=\frac{1}{H+1}+2 \sum_{h=1}^{H}\left\{\frac{1}{\pi h}+\frac{1}{H+1}\right\}\left|\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i h \lambda \alpha^{n}}\right|
$$

Also define the set:

$$
E(H, N, \tau)=\left\{\alpha \in I: \frac{1+\log H}{N^{\tau}}<\phi_{H, N}(\alpha),\right\}
$$

and let N_{0} be a fix integer such that $N_{0} \geq \frac{a}{\lambda(a-1)^{2}(b-a)}$. Then:
(i) For $N \geq N_{0}$ the following inequality holds:

$$
\mu(E(H, N, \tau))<(b-a) \frac{N^{\tau}}{1+\log H}\left\{\frac{1}{H+1}+\frac{4}{\sqrt{N}}\left(\frac{1+\log H}{\pi}+\frac{H}{H+1}\right)\right\}
$$

where μ represents the Lebesgue measure.
(ii) Let ν be any real number greater that 1. Let E_{M} be the set:

$$
E_{M}=E\left(\left[M^{\nu}\right],\left[M^{2 \nu}\right], \frac{1}{2 \nu}\right)
$$

where $[x]=$ integer part of x. Then, for $M \geq N_{0}^{\frac{1}{2 \nu}}$:

$$
\mu\left(E_{M}\right)<\frac{12(b-a)}{M^{\nu-1}}
$$

(iii) Given any pair of real numbers $\varepsilon>\varepsilon^{\prime}>0$, assume $\nu=2+\varepsilon^{\prime} / 2$. Let $J\left(M_{1}, M_{2}\right)$ be the (possibly empty) set

$$
J\left(M_{1}, M_{2}\right)=\bigcup_{M=M_{1}+1}^{M_{2}} E_{M}
$$

where $M_{2} \geq M_{1} \geq N_{0}^{\frac{1}{2 \nu}}\left(M_{2}\right.$ may be $\left.\infty\right)$. Then

$$
\mu\left(J\left(M_{1}, M_{2}\right)\right)<\frac{24(b-a)}{\varepsilon^{\prime} M_{1}^{\varepsilon^{\prime} / 2}}
$$

For any integer $M_{0}>\max \left\{\left(24 / \varepsilon^{\prime}\right)^{2 / \varepsilon^{\prime}}, N_{0}^{\frac{1}{2 \nu}}\right\}$, the set

$$
G_{M_{0}}=I \backslash J\left(M_{0}, \infty\right)
$$

has positive measure. If $\alpha \in G_{M_{0}}$ then the discrepancy Δ_{N} of $\left\{\lambda \alpha^{n}\right\}_{n=1}^{N}$ verifies

$$
\Delta_{N}=O\left(\frac{\log N}{N^{\frac{1}{4+\varepsilon^{\prime}}}}\right)=O\left(N^{-\frac{1}{4+\varepsilon}}\right)
$$

Proof.

(i) In the inequality defining $E(H, N, \tau)$ integrate the left hand side over $E(H, N, \tau)$ and the right hand side over the whole interval $[a, b]$:

$$
\begin{aligned}
& \frac{1+\log H}{N^{\tau}} \mu(E(H, N, \tau)) \\
& \quad<\frac{(b-a)}{H+1}+2 \sum_{h=1}^{H}\left\{\frac{1}{\pi h}+\frac{1}{H+1}\right\} \frac{1}{N} \int_{a}^{b}\left|\sum_{n=1}^{N} e^{2 \pi i h \lambda \alpha^{n}}\right| d \alpha
\end{aligned}
$$

By Jensen's inequality:

$$
\left(\frac{1}{(b-a)} \int_{a}^{b}\left|\sum_{n=1}^{N} e^{2 \pi i h \lambda \alpha^{n}}\right| d \alpha\right)^{2} \leq \frac{1}{(b-a)} \int_{a}^{b}\left|\sum_{n=1}^{N} e^{2 \pi i h \lambda \alpha^{n}}\right|^{2} d \alpha
$$

The integral on the right hand side can be bounded in the following way:

$$
\begin{aligned}
\int_{a}^{b}\left|\sum_{n=1}^{N} e^{2 \pi i h \lambda \alpha^{n}}\right|^{2} d \alpha & =\int_{a}^{b}\left(\sum_{1 \leq n, m \leq N} e^{2 \pi i h \lambda\left(\alpha^{m}-\alpha^{n}\right)}\right) d \alpha \\
& =N(b-a)+2 \sum_{1 \leq n<m \leq N}\left|\int_{a}^{b} e^{2 \pi i h \lambda\left(\alpha^{m}-\alpha^{n}\right)} d \alpha\right|
\end{aligned}
$$

We have [4, lemma 1.2.1]:

$$
\left|\int_{a}^{b} e^{2 \pi i h \lambda\left(\alpha^{m}-\alpha^{n}\right)} d \alpha\right|<\frac{1}{h \lambda\left(m a^{m-1}-n a^{n-1}\right)}
$$

From here we get:

$$
\begin{aligned}
\int_{a}^{b}\left|\sum_{n=1}^{N} e^{2 \pi i h \lambda \alpha^{n}}\right|^{2} d \alpha & <N(b-a)+2 \sum_{1 \leq n<m \leq N} \frac{1}{h \lambda\left(m a^{m-1}-n a^{n-1}\right)} \\
& \leq N(b-a)+\frac{2 a}{h \lambda(a-1)^{2}}
\end{aligned}
$$

Going back we get:

$$
\begin{aligned}
\frac{1}{(b-a)} \int_{a}^{b}\left|\sum_{n=1}^{N} e^{2 \pi i h \lambda \alpha^{n}}\right| d \alpha & <\left(N+\frac{2 a}{h \lambda(a-1)^{2}(b-a)}\right)^{1 / 2} \\
& \leq \sqrt{N}\left(1+\frac{a}{h \lambda(a-1)^{2}(b-a) N}\right)
\end{aligned}
$$

For $N \geq \frac{a}{\lambda(a-1)^{2}(b-a)}$ we get:

$$
\frac{1}{(b-a)} \int_{a}^{b}\left|\sum_{n=1}^{N} e^{2 \pi i h \lambda \alpha^{n}}\right| d \alpha<2 \sqrt{N}
$$

Hence:

$$
\begin{aligned}
\frac{1+\log H}{N^{\tau}} \mu(E(H, N, \tau)) & <\frac{(b-a)}{H+1}+2 \sum_{h=1}^{H}\left\{\frac{1}{\pi h}+\frac{1}{H+1}\right\} \frac{1}{N} 2 \sqrt{N}(b-a) \\
& <(b-a)\left\{\frac{1}{H+1}+\frac{4}{\sqrt{N}}\left(\frac{1+\log H}{\pi}+\frac{H}{H+1}\right)\right\}
\end{aligned}
$$

From here the announced result follows.
(ii) From (i) we get:

$$
\begin{aligned}
\mu\left(E_{M}\right) & <(b-a) M\left\{\frac{1}{M^{\nu}}+\frac{4}{\sqrt{\left[M^{2 \nu}\right]}}\left(\frac{1}{\pi}+1\right)\right\} \\
& \leq(b-a) \frac{1}{M^{\nu-1}}\left\{1+\frac{4 M^{\nu}}{\left[M^{\nu}\right]}\left(\frac{1}{\pi}+1\right)\right\} \\
& \leq(b-a) \frac{1}{M^{\nu-1}}\left\{1+8\left(\frac{1}{\pi}+1\right)\right\} \\
& <\frac{12(b-a)}{M^{\nu-1}}
\end{aligned}
$$

(iii) We have:

$$
\begin{aligned}
\mu\left(J\left(M_{1}, M_{2}\right)\right) & \leq \sum_{M=M_{1}+1}^{M_{2}} \mu\left(E_{M}\right) \\
& <12(b-a) \sum_{M=M_{1}+1}^{\infty} \frac{1}{M^{\nu-1}} \\
& <12(b-a) \int_{M_{1}}^{\infty} \frac{d x}{x^{\nu-1}} \\
& =\frac{24(b-a)}{\varepsilon^{\prime} M_{1}^{\varepsilon^{\prime} / 2}}
\end{aligned}
$$

Using the condition on M_{0}, we get that $J\left(M_{1}, M_{2}\right)$ has measure less than $(b-a)$, hence $G_{M_{0}}$, which is its complement respect to $I=[a, b]$, has positive measure.

Concerning the order of Δ_{N}, we start noting that $\alpha \in G_{M_{0}}$ implies

$$
\Delta_{N} \leq \phi_{H, N}(\alpha) \leq \frac{1+\log H}{N^{1 / 2 \nu}}=O\left(\frac{\log N}{N^{\frac{1}{4+\varepsilon^{\prime}}}}\right)
$$

for $H=\left[M^{\nu}\right]$ and $N=\left[M^{2 \nu}\right]$. Hence, it remains only to prove the result for other values of N.

Assume that $\left[M^{2 \nu}\right]<N<\left[(M+1)^{2 \nu}\right]$, and $H=\left[M^{\nu}\right]$. For simplicity, put $N^{\prime}=\left[M^{2 \nu}\right]$ and $N^{\prime \prime}=\left[(M+1)^{2 \nu}\right]$. Then:

$$
\Delta_{N} \leq \phi_{H, N}(\alpha)
$$

$$
\leq \phi_{H, N^{\prime}}(\alpha)+\frac{1}{H+1}+2 \sum_{h=1}^{H}\left\{\frac{1}{\pi h}+\frac{1}{H+1}\right\}\left|\frac{1}{N} \sum_{n=N^{\prime}+1}^{N} e^{2 \pi i h \lambda \alpha^{n}}\right|
$$

$$
<\phi_{H, N^{\prime}}(\alpha)+\frac{1}{H}+2\left(\frac{1+\log H}{\pi}+1\right) \frac{N^{\prime \prime}-N^{\prime}}{N}
$$

$$
=O\left(\frac{\log N}{N^{\frac{1}{4+\varepsilon^{\prime}}}}\right)+O\left(\frac{1}{N^{\frac{1}{4+\varepsilon^{\prime}}}}\right)+O(\log N) \frac{N^{\prime \prime}-N^{\prime}}{N}
$$

Finally we have:

$$
\frac{N^{\prime \prime}-N^{\prime}}{N}<\frac{\left[(M+1)^{2 \nu}\right]-\left[M^{2 \nu}\right]}{\left[M^{2 \nu}\right]}=O\left(M^{-1}\right)=O\left(N^{-\frac{1}{4+\varepsilon^{\prime}}}\right)
$$

and from here the announced result follows.

3. The procedure.

Given any closed interval of real numbers $I=[a, b]$ with $1<a<b$, any $\lambda>0$, and any $\varepsilon>0$, we are going to get a number α_{0} such that $\alpha_{0} \in I$, and the discrepancy Δ_{N} of $\left\{\lambda \alpha_{0}^{n}\right\}_{n=1}^{N}$ is $O\left(N^{-\frac{1}{4+\varepsilon}}\right)$, hence $\left\{\lambda \alpha_{0}^{n}\right\}_{n=1}^{\infty}$ is u.d. $\bmod 1$.

Take $\nu=2+\varepsilon^{\prime}$, where $\varepsilon>\varepsilon^{\prime}>0$. Let E_{M} subsets of $I=[a, b]$ as in the lemma. We define a sequence of open sets $\left\{J_{k}\right\}_{k=1}^{\infty}$, where J_{k} is of the form $J_{k}=$ $J\left(M_{k-1}, M_{k}\right)$, and a sequence of nested closed intervals $\left\{I_{k}\right\}_{k=0}^{\infty}$, where $I_{k}=\left[a_{k}, b_{k}\right]$, in a recursive way.

In step 0 , we take any $M_{0}>\max \left\{\left(24 / \varepsilon^{\prime}\right)^{2 / \varepsilon^{\prime}}, N_{0}^{\frac{1}{2 \nu}}\right\}$, as in part (iii) of the lemma, and $I_{0}=\left[a_{0}, b_{0}\right]$ equal to $I=[a, b]$. Hence we have $\mu\left(I_{0} \backslash J\left(M_{0}, \infty\right)\right)>$ $d_{0}=\left(b_{0}-a_{0}\right)-24(b-a) /\left(\varepsilon^{\prime} M_{0}^{\varepsilon^{\prime} / 2}\right)>0$

In step $k \geq 1$, assume that $I_{k-1}=\left[a_{k-1}, b_{k-1}\right]$ and J_{i} for $i=1, \ldots, k-1$ have already been found, and that $\mu\left(I_{k-1} \backslash J\left(M_{0}, \infty\right)\right)>d_{k-1}>0$. Next, we take $M_{k} \geq M_{k-1}$ such that $d_{k-1} / 2>24(b-a) /\left(\varepsilon^{\prime} M_{k}^{\varepsilon^{\prime} / 2}\right)$. Now we form the set $J_{k}=J\left(M_{k-1}, M_{k}\right)$, add it to the previously found to form the set $J\left(M_{0}, M_{k}\right)=$ $\cup_{i=1}^{k} J_{i}$, and determine the measure of $I_{k} \backslash J\left(M_{0}, M_{k}\right)$ for I_{k} equal to each one of $I_{k}^{\prime}=\left[a_{k-1}, \frac{a_{k-1}+b_{k-1}}{2}\right]$ and $I_{k}^{\prime \prime}=\left[\frac{a_{k-1}+b_{k-1}}{2}, b_{k-1}\right]$. Since

$$
\begin{aligned}
\mu\left(I_{k}^{\prime} \backslash J\left(M_{0}, M_{k}\right)\right)+\mu\left(I_{k}^{\prime \prime} \backslash J\left(M_{0}, M_{k}\right)\right) & =\mu\left(I_{k-1} \backslash J\left(M_{0}, M_{k}\right)\right) \\
& >\mu\left(I_{k-1} \backslash J\left(M_{0}, \infty\right)\right) \\
& >d_{k-1}
\end{aligned}
$$

at least one of $I_{k}^{\prime} \backslash J\left(M_{0}, M_{k}\right)$ or $I_{k}^{\prime \prime} \backslash J\left(M_{0}, M_{k}\right)$ should have measure greater than $d_{k-1} / 2$. So, we take I_{k} with the condition $\mu\left(I_{k} \backslash J\left(M_{0}, M_{k}\right)\right)>d_{k-1} / 2$. If we now subtract $24(b-a) /\left(\varepsilon^{\prime} M_{k}^{\varepsilon^{\prime} / 2}\right)$, which by part (iii) of the lemma is an upper bound for $\mu\left(J\left(M_{k}, \infty\right)\right)$, we get a positive lower bound $d_{k}=d_{k-1} / 2-24(b-a) /\left(\varepsilon^{\prime} M_{k}^{\varepsilon^{\prime} / 2}\right)>0$ for $\mu\left(I_{k} \backslash J\left(M_{0}, \infty\right)\right)$. At this point we have found I_{k} and J_{k}, and we have that $\mu\left(I_{k} \backslash J\left(M_{0}, \infty\right)\right)>d_{k}>0$, so everything is ready to proceed with step $k+1$.

Let α_{0} be the unique point in $\cup_{k=0}^{\infty} I_{k}$. If $G_{M_{0}}$ is the closed set $I \backslash J\left(M_{0}, \infty\right)$, we have $I_{k} \cap G_{M_{0}}=I_{k} \backslash J\left(M_{0}, \infty\right) \neq \emptyset$ for every k, hence $\alpha_{0} \in G_{M_{0}}$, and by part (iii) of the lemma, α_{0} verifies the requirements.

4. Computational considerations and summary.

The claim that α_{0} is a computable number rests on the the fact that the sets E_{M} are finite unions of open intervals with computable endpoints, and so are the sets J_{k}. To be more precise, the endpoints are solutions in α of equations of the form:

$$
\begin{equation*}
\frac{1}{H+1}+2 \sum_{h=1}^{H}\left\{\frac{1}{\pi h}+\frac{1}{H+1}\right\}\left|\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i h \lambda \alpha^{n}}\right|-\frac{1+\log H}{N^{\tau}}=0 \tag{2}
\end{equation*}
$$

In practice it is impossible to compute exactly such solutions, so it is necessary to deal with approximations. Than can be done in such way that the approximations verify

$$
\frac{1+\log H}{N^{\tau}} \leq \phi_{H, N}(\alpha) \leq \frac{1+\log H}{N^{\tau^{\prime}}}
$$

for some fix $\tau^{\prime} \leq \tau$ close to τ, say $\tau^{\prime}=\tau-\varepsilon_{0}$. The sets E_{M}^{\prime} computed this way will be slightly smaller than the sets E_{M} used above, so the process can still be carried
out successfully and an $\alpha_{0} \in I$ be found. However the speed of convergence of the discrepancy Δ_{N} of $\left\{\lambda \alpha_{0}^{n}\right\}_{n=1}^{N}$ will be relaxed to:

$$
\Delta_{N}=O\left(\frac{\log N}{N^{\frac{1}{4+\varepsilon^{\prime}}-\varepsilon_{0}}}\right)
$$

But the result is still of the form

$$
\Delta_{N}=O\left(N^{-\frac{1}{4+\varepsilon}}\right)
$$

if $0<\varepsilon_{0}<\frac{1}{4+\varepsilon^{\prime}}-\frac{1}{4+\varepsilon}$.
The procedure described here could be unpractical because it would require a very high computational load. However it does provide a result of at least theoretical interest: there is a dense set of computable numbers $\alpha>1$ such that $\left\{\lambda \alpha^{n}\right\}_{n=1}^{\infty}$ is u.d. mod. 1 and the discrepancy of $\left\{\lambda \alpha^{n}\right\}_{n=1}^{N}$ is $O\left(N^{-\frac{1}{4+\varepsilon}}\right)$.

References

1. J.F. Koksma, Ein mengentheoretischer Satz über die Gleichverteilung modulo Eins, Composition Mathematica 2 (1953), 250-258.
2. M.J. Bertin et al, Pisot and Salem Numbers, Birkhäuser Verlag, Berlin, 1992.
3. H. Weyl, Über die Gleichverteilung von Zahlen modulo Eins, Math. Ann. 77 (1916), 313-352.
4. L. Kuipers \& H. Niederreiter, Uniform Distribution of Sequences, John Wiley \& Sons, New York, 1974.
5. M.F. Kulikova, A construction problem concerned with the distribution of the fractional parts of an exponential function, Dokl. Akad. Nauk SSSR 143 (1962), 522-524 (Russian); English transl. in Soviet Math. Dokl. 3 (1962), 422-424.
6. M.H. Lebesgue, Sur certaines démonstrations d'existence, Bull. Soc. Math. France 45 (1917), 132-144.
7. Robert Gray, George Cantor and Transcendental Numbers, Amer. Math. Moth. 101 (1994), 819-832.
8. Jeffrey D. Vaaler, Some Extremal Functions in Fourier Analysis, Bull. Amer. Math. Soc. (New Series) 12 (1985), 183-216.
