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Abstract. We study how to construct a number greater than one whose powers
are uniformly distributed modulo 1. Also we prove that for every λ > 0 there is a

dense set of computable numbers α > 1 such that the discrepancy of {λαn}Nn=1 is

O(N
− 1

4+ε ).

1. Introduction.

It is well known that, as a consequence of Koksma’s Theorem [1], for almost
every number α > 1 (in the sense of Lebesgue measure), the sequence {αn}∞n=1

is uniformly distributed modulo 1 (u.d. mod 1), but only examples from the ex-
ceptional set, such as P.V.-numbers and Salem numbers, are known [2, pag. 71].
Another well known “metric” result is Weyl’s theorem: given any α > 1, the se-
quence {λαn}∞n=1 is u.d. mod. 1 for almost every real number λ [3]. However, in
this case explicit examples of such λ are known. When α is an integer, the problem
reduces to the construction of a normal number to the base α [4, chap. 1, secc. 8].
If α is not an integer, the construction of λ is somewhat more complicated, but still
possible, as proven by Kulikova [5], by using an idea of Lebesgue permitting the
effective use of metrical theorems [6].

It is interesting to note that some “purely existential” results can be transformed
into constructive procedures suitable to produce mathematical objects with the
required property. For instance, Gray [7] has used Cantor’s result to design an
algorithm which generates the digits of a transcendental number η in the interval
(0, 1). Basically, his algorithm generates (suitable decimal approximations of) all
algebraic numbers by orderly generating all polynomials of integral coefficients, and
approximating its roots up to some point. Then the digits of η are defined by a
diagonal method. Similarly, Kulikova’s result also takes advantage of a metrical
result to give a procedure which generates the digits of a number with the required
property [5]. A similar idea will be used here.
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2. Previous results.

Given λ > 0, we are going to define a procedure to construct a number α0 > 1
such that the discrepancy of {λαn0}Nn=1 approaches zero as N →∞.

The idea is to start with some closed interval I = [a, b], with 1 < a < b, and
take open subsets J1, J2, ... of points α for which {λαn}Nn=1 has “high” discrepancy.
Those subsets will have the following features:

(i) Each Jk is a union of finitely many open intervals with computable endpoints.

(ii) G = I \ ∪∞k=1Jk 6= ∅, and for every α ∈ G the discrepancy of {λαn}Nn=1 tends to
zero as N →∞.

(iii) There is a computable sequence of nested closed intervals Ii of length approaching
zero such that Ii \ ∪∞k=1Jk 6= ∅ for every i.

The number α0 will be determined as the intersection of the Ii’s.

In order to control the discrepancy we are going to use the following bound [8]:

(1) ∆(x1, . . . , xN ) ≤ 1
H + 1

+ 2
H∑
h=1

{
1
πh

+
1

H + 1

} ∣∣∣ 1
N

N∑
n=1

e2πihxn
∣∣∣

where ∆(x1, . . . , xN ) is the discrepancy of x1, . . . , xN . The following lemma gives
bounds for the size of the subsets of I with “high” discrepancy.

Lemma. Let λ be any fix positive real number. Let I = [a, b] any closed interval
of real numbers such that 1 < a < b. For positive integers H and N , let φH,N (α)
be the function:

φH,N (α) =
1

H + 1
+ 2

H∑
h=1

{
1
πh

+
1

H + 1

} ∣∣∣ 1
N

N∑
n=1

e2πihλαn
∣∣∣

Also define the set:

E(H,N, τ) =
{
α ∈ I :

1 + logH
Nτ

< φH,N (α),
}

and let N0 be a fix integer such that N0 ≥
a

λ(a− 1)2(b− a)
. Then:

(i) For N ≥ N0 the following inequality holds:

µ(E(H,N, τ)) < (b− a)
Nτ

1 + logH

{
1

H + 1
+

4√
N

(
1 + logH

π
+

H

H + 1

)}
where µ represents the Lebesgue measure.

(ii) Let ν be any real number greater that 1. Let EM be the set:

EM = E([Mν ], [M2ν ],
1

2ν
)
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where [x] = integer part of x. Then, for M ≥ N
1
2ν

0 :

µ(EM ) <
12(b− a)
Mν−1

(iii) Given any pair of real numbers ε > ε′ > 0, assume ν = 2 + ε′/2. Let J(M1,M2)
be the (possibly empty) set

J(M1,M2) =
M2⋃

M=M1+1

EM

where M2 ≥M1 ≥ N
1
2ν

0 (M2 may be ∞). Then

µ(J(M1,M2)) <
24 (b− a)

ε′M
ε′/2
1

For any integer M0 > max {(24/ε′)2/ε′ , N
1
2ν

0 }, the set

GM0 = I \ J(M0,∞)

has positive measure. If α ∈ GM0 then the discrepancy ∆N of {λαn}Nn=1 verifies

∆N = O
( logN

N
1

4+ε′

)
= O(N−

1
4+ε )

Proof.

(i) In the inequality defining E(H,N, τ) integrate the left hand side over E(H,N, τ)
and the right hand side over the whole interval [a, b]:

1 + logH
Nτ

µ(E(H,N, τ))

<
(b− a)
H + 1

+ 2
H∑
h=1

{
1
πh

+
1

H + 1

}
1
N

∫ b

a

∣∣∣ N∑
n=1

e2πihλαn
∣∣∣ dα

By Jensen’s inequality:(
1

(b− a)

∫ b

a

∣∣∣ N∑
n=1

e2πihλαn
∣∣∣ dα)2

≤ 1
(b− a)

∫ b

a

∣∣∣ N∑
n=1

e2πihλαn
∣∣∣2 dα

The integral on the right hand side can be bounded in the following way:∫ b

a

∣∣∣ N∑
n=1

e2πihλαn
∣∣∣2 dα =

∫ b

a

( ∑
1≤n,m≤N

e2πihλ(αm−αn)
)
dα

= N (b− a) + 2
∑

1≤n<m≤N

∣∣∣∫ b

a

e2πihλ(αm−αn) dα
∣∣∣
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We have [4, lemma 1.2.1]:∣∣∣∫ b

a

e2πihλ(αm−αn) dα
∣∣∣ < 1

hλ(mam−1 − nan−1)

From here we get:∫ b

a

∣∣∣ N∑
n=1

e2πihλαn
∣∣∣2 dα < N (b− a) + 2

∑
1≤n<m≤N

1
hλ(mam−1 − nan−1)

≤ N (b− a) +
2a

hλ(a− 1)2

Going back we get:

1
(b− a)

∫ b

a

∣∣∣ N∑
n=1

e2πihλαn
∣∣∣ dα <

(
N +

2a
hλ(a− 1)2(b− a)

)1/2

≤
√
N

(
1 +

a

hλ(a− 1)2(b− a)N

)

For N ≥ a

λ(a− 1)2(b− a)
we get:

1
(b− a)

∫ b

a

∣∣∣ N∑
n=1

e2πihλαn
∣∣∣ dα < 2

√
N

Hence:

1 + logH
Nτ

µ(E(H,N, τ)) <
(b− a)
H + 1

+ 2
H∑
h=1

{
1
πh

+
1

H + 1

}
1
N

2
√
N (b− a)

< (b− a)
{

1
H + 1

+
4√
N

(
1 + logH

π
+

H

H + 1

)}

From here the announced result follows.

(ii) From (i) we get:

µ(EM ) < (b− a)M

{
1
Mν

+
4√

[M2ν ]

(
1
π

+ 1
)}

≤ (b− a)
1

Mν−1

{
1 +

4Mν

[Mν ]

(
1
π

+ 1
)}

≤ (b− a)
1

Mν−1

{
1 + 8

(
1
π

+ 1
)}

<
12(b− a)
Mν−1



CONSTRUCTION OF A NUMBER GREATER THAN ONE... 5

(iii) We have:

µ(J(M1,M2)) ≤
M2∑

M=M1+1

µ(EM )

< 12 (b− a)
∞∑

M=M1+1

1
Mν−1

< 12 (b− a)
∫ ∞
M1

dx

xν−1

=
24 (b− a)

ε′M
ε′/2
1

Using the condition on M0, we get that J(M1,M2) has measure less than (b−a),
hence GM0 , which is its complement respect to I = [a, b], has positive measure.

Concerning the order of ∆N , we start noting that α ∈ GM0 implies

∆N ≤ φH,N (α) ≤ 1 + logH
N1/2ν

= O
( logN

N
1

4+ε′

)
for H = [Mν ] and N = [M2ν ]. Hence, it remains only to prove the result for other
values of N .

Assume that [M2ν ] < N < [(M + 1)2ν ], and H = [Mν ]. For simplicity, put
N ′ = [M2ν ] and N ′′ = [(M + 1)2ν ]. Then:

∆N ≤ φH,N (α)

≤ φH,N ′(α) +
1

H + 1
+ 2

H∑
h=1

{
1
πh

+
1

H + 1

} ∣∣∣ 1
N

N∑
n=N ′+1

e2πihλαn
∣∣∣

< φH,N ′(α) +
1
H

+ 2
(

1 + logH
π

+ 1
)
N ′′ −N ′

N

= O
( logN

N
1

4+ε′

)
+ O

( 1

N
1

4+ε′

)
+ O(logN)

N ′′ −N ′

N

Finally we have:

N ′′ −N ′

N
<

[(M + 1)2ν ]− [M2ν ]
[M2ν ]

= O(M−1) = O(N−
1

4+ε′ )

and from here the announced result follows.

�

3. The procedure.

Given any closed interval of real numbers I = [a, b] with 1 < a < b, any λ > 0,
and any ε > 0, we are going to get a number α0 such that α0 ∈ I, and the
discrepancy ∆N of {λαn0}Nn=1 is O(N−

1
4+ε ), hence {λαn0}∞n=1 is u.d. mod 1.
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Take ν = 2 + ε′, where ε > ε′ > 0. Let EM subsets of I = [a, b] as in the
lemma. We define a sequence of open sets {Jk}∞k=1, where Jk is of the form Jk =
J(Mk−1,Mk), and a sequence of nested closed intervals {Ik}∞k=0, where Ik = [ak, bk],
in a recursive way.

In step 0, we take any M0 > max {(24/ε′)2/ε′ , N
1
2ν

0 }, as in part (iii) of the
lemma, and I0 = [a0, b0] equal to I = [a, b]. Hence we have µ(I0 \ J(M0,∞)) >
d0 = (b0 − a0)− 24(b− a)/(ε′Mε′/2

0 ) > 0

In step k ≥ 1, assume that Ik−1 = [ak−1, bk−1] and Ji for i = 1, . . . , k − 1
have already been found, and that µ(Ik−1 \ J(M0,∞)) > dk−1 > 0. Next, we
take Mk ≥ Mk−1 such that dk−1/2 > 24(b − a)/(ε′Mε′/2

k ). Now we form the set
Jk = J(Mk−1,Mk), add it to the previously found to form the set J(M0,Mk) =
∪ki=1Ji, and determine the measure of Ik \ J(M0,Mk) for Ik equal to each one of
I ′k = [ak−1,

ak−1+bk−1
2 ] and I ′′k = [ak−1+bk−1

2 , bk−1]. Since

µ(I ′k \ J(M0,Mk)) + µ(I ′′k \ J(M0,Mk)) = µ(Ik−1 \ J(M0,Mk))

> µ(Ik−1 \ J(M0,∞))
> dk−1

at least one of I ′k \J(M0,Mk) or I ′′k \J(M0,Mk) should have measure greater than
dk−1/2. So, we take Ik with the condition µ(Ik \ J(M0,Mk)) > dk−1/2. If we now
subtract 24(b−a)/(ε′Mε′/2

k ), which by part (iii) of the lemma is an upper bound for
µ(J(Mk,∞)), we get a positive lower bound dk = dk−1/2−24(b−a)/(ε′Mε′/2

k ) > 0
for µ(Ik \ J(M0,∞)). At this point we have found Ik and Jk, and we have that
µ(Ik \ J(M0,∞)) > dk > 0, so everything is ready to proceed with step k + 1.

Let α0 be the unique point in ∪∞k=0Ik. If GM0 is the closed set I \ J(M0,∞), we
have Ik ∩GM0 = Ik \ J(M0,∞) 6= ∅ for every k, hence α0 ∈ GM0 , and by part (iii)
of the lemma, α0 verifies the requirements.

4. Computational considerations and summary.

The claim that α0 is a computable number rests on the the fact that the sets
EM are finite unions of open intervals with computable endpoints, and so are the
sets Jk. To be more precise, the endpoints are solutions in α of equations of the
form:

(2)
1

H + 1
+ 2

H∑
h=1

{
1
πh

+
1

H + 1

} ∣∣∣ 1
N

N∑
n=1

e2πihλαn
∣∣∣− 1 + logH

Nτ
= 0

In practice it is impossible to compute exactly such solutions, so it is necessary to
deal with approximations. Than can be done in such way that the approximations
verify

1 + logH
Nτ

≤ φH,N (α) ≤ 1 + logH
Nτ ′

for some fix τ ′ ≤ τ close to τ , say τ ′ = τ − ε0. The sets E′M computed this way will
be slightly smaller than the sets EM used above, so the process can still be carried
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out successfully and an α0 ∈ I be found. However the speed of convergence of the
discrepancy ∆N of {λαn0}Nn=1 will be relaxed to:

∆N = O
( logN

N
1

4+ε′−ε0

)
But the result is still of the form

∆N = O(N−
1

4+ε )

if 0 < ε0 <
1

4+ε′ −
1

4+ε .

The procedure described here could be unpractical because it would require a
very high computational load. However it does provide a result of at least theoretical
interest: there is a dense set of computable numbers α > 1 such that {λαn}∞n=1 is
u.d. mod. 1 and the discrepancy of {λαn}Nn=1 is O(N−

1
4+ε ).
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