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Abstract. This is a review of several results related to distribution of pow-
ers and combinations of powers modulo 1. We include a proof that given any
sequence of real numbers θn, it is possible to get an α (given λ 6= 0), or a λ
(given α > 1) such that λ αn is close to θn modulo 1. We also prove that in
a number field, if a combination of powers λ1 αn

1 + · · · + λm αn
m has bounded

v-adic absolute value (where v is any non-Archimedean place) for n ≥ n0,
then the αi’s are v-adic algebraic integers. Finally we present several open
problems and topics for further research.

1. Introduction

The study of the behaviour of sequences of the form αn modulo 1 has some inter-
esting connections with subjects such as Waring’s problem. Let g be the function:

g(k) = min { s ∈ N : a = nk
1 + · · ·+ nk

s for all a ∈ N }(1.1)

and ‖x‖ = distance from x to the nearest integer. Then it is well known that for
k ≥ 5, if

‖(3/2)k‖ > (3/4)k(1.2)

then

g(k) = 2k + [(3/2)k]− 2(1.3)

so that the rate to which (3/2)k (mod 1) accumulates near 0 determines the value
of g(k).

In a slightly more general setting, the study of sequences of the form λαn also
has interesting applications. As an example, it is known ([5], theorem 8.1) that a
number λ is normal to the base b, i.e., all its finite sequences of k digits to base
b occur with the same relative frequency 1/bk, if and only if the sequence λ bn

is u.d. mod 1 (uniformly distributed modulo 1, see definition 3.2 below), so that
techniques from the theory of distribution modulo 1 apply to this problem.
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The study of slowly growing sequences such as {nω}∞n=1 is not hard, but when
the sequence grows very rapidly, as with xn = αn for α > 1, the fractional part of
xn becomes almost negligible compared to its integer part. So, special techniques
have had to be developed to tackle the problem in that case.

Several results related to distribution of powers modulo 1 are presented below.

2. Overview of results

A natural question is if a sequence of the form αn, or more generally, of the
form λαn for some fixed λ 6= 0, is u.d. mod 1. Koksma’s metric theorem 3.4 shows
that in fact, λαn is u.d. mod 1 for almost every α > 1, i.e., the exceptional set of
α’s for which λαn is not u.d. mod 1 has Lebesge measure zero. It is surprising,
however, that there is no known concrete example of a real number α > 1 for which
αn is u.d. mod 1; only members of the exceptional set are known. For instance, the
following classes of numbers are known to be in the exceptional set:

(1) Integers (> 1), since αn = 0 (mod 1) for every α ∈ Z.

(2) Pisot-Vijayaraghavan (or P.V., or Thue) numbers. A P.V. number is a
real algebraic integer α > 1 whose conjugates lie inside the open unit disc
{ z ∈ C : |z| < 1 } (the rational integers greater than 1 are P.V. numbers).
If α is a P.V number then limn→∞ αn = 0 (mod 1) geometrically ([12], p. 3;
[1], theorem 5.3.1).

(3) Salem numbers. A Salem number is a real algebraic integer α > 1 whose
conjugates lie all in the closed unit disc { z ∈ C : |z| ≤ 1 }, and at least
one of them is in the border of the disc (actually it can be readily seen that
all of them except one will be in the border). If α is a Salem number, then
{αn}∞n=1 is dense modulo 1, i.e., the fractional parts of αn are dense in the
interval [0, 1), but it is not u.d. mod 1 ([12], p. 33; [1], theorem 5.3.2).

All those examples are algebraic numbers, so it is natural to ask if there is any
transcendental number α such that αn is not u.d. mod 1. A result in this direction
is the following theorem of Boyd ([2]):

Theorem 2.1. Let A, B be real numbers with 3 < A < B, and let a0 be an integer
satisfying a0 > (A + 1) (A − 1)−1 (B − A)−1. Then there is an uncountable set
S ⊂ [A, B], such that for each α ∈ S, there is a real number λ = λ(α) > 0 for
which

‖λαn‖ ≤ (A− 1)−1 (α− 1)−1 for n = 0, 1, . . .(2.1)

The integer a0 is the nearest integer to λ(α) for all α ∈ S.

Since S is uncountable, it will contain transcendental numbers. On the other
hand, (2.1) shows that λαn will be in a small interval around zero modulo 1, so it
cannot be u.d. mod 1.
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The idea behind the proof of theorem 2.1 is to get a sequence of positive integers
an that will play the role of nearest integers to λαn. Then λ and α will be obtained
as the following limits:

α = lim
n→∞

an+1

an
and λ = lim

n→∞ anα−n(2.2)

Here, a0 is given in the hypothesis of the theorem, a1 will be any integer such
that

a0 A + (A− 1)−1 < a1 < a0 B − (A− 1)−1(2.3)

and for n ≥ 1:

an+1 = [a2
n/an−1] + f(n)(2.4)

where [x] is the integer part of x, and f ∈ J = the set of functions Z+ → {0, 1}.
Since J is uncountable, and each function f ∈ J gives a different α, the set of α’s
that can be found this way is uncountable. Furthermore, it can be proved that

|an − λαn| ≤ (A− 1)−1 (α − 1)−1 for n = 0, 1, . . .(2.5)

which gives (2.1) and ensures that an is, in fact, the nearest integer to λαn.

However, this result does not say anything about λ = 1 or any fixed value of
λ 6= 0.

The answer to the question is actually positive, as shown in theorem 3.5. Given
λ > 0, and given any sequence θn, we can get an α such that λαn is close to θn

mod 1. The idea is to start with an ”initial” value α1 > A > 2 (A large) such
that λα1 = θ1 (mod 1). Next, slightly perturb the value of α1, i.e., find a slightly
greater α2 ≥ α1, such that now λα2 = θ2. After doing so, we will not have λα2 = θ1

(mod 1) any more, but the difference ‖λα2−θ1‖ can be made less than 1/α1 < A−1

just by taking 0 ≤ α2 − α1 ≤ 1
λ α1

. The process can be repeated making λαn
n = θn

(mod 1) by perturbing the value of αn−1 less than λ−1 α1−n
n−1 < λ−1 A1−n, in such

a way that the sequence αn will converge to a limit α such that

‖λαn − θn‖ ≤
∞∑

k=1

A−k =
1

A− 1
(2.6)

for n = 1, 2, . . . (actually, a little trick at the end of the proof allows us to halve
the bound).

From here, the existence of uncountably many real numbers, so uncountably
many transcendental numbers, whose powers are not u.d. mod 1, follows easily
(corollary 3.6).

In Pisot’s thesis ([8]) there are some general results related to the previous one.
In particular, the application of his theorem II, on p. 215 of [8], would show that
there are arbitrarily large numbers α such that:

lim sup
n→∞

‖αn − θn‖ ≤ 1
2 (α− 1)

(2.7)
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Also, his theorem on p. 225 of [8] implies that for every ε > 0 there is some
arbitrarily large α such that:

‖αn − θn‖ <
1 + ε

2 (α− 1)
(2.8)

for n ≥ n0(ε).

The next question that arises is if the sequence 〈αn〉 = fractional part of αn

uniquely determines α. This can be stated as if αn − βn ∈ Z for every n ≥ n0, for
some n0, implies that α = β. The answer is yes, except in the trivial case when α
and β are both integers.

The techniques used to solve this problem are easy to generalize to the study of
combinations Sn = λαn +µ βn (with λ, µ, α, β 6= 0 and α 6= β) such that Sn ∈ Z for
every n ≥ n0 for some n0. The result now is that α and β are rational integers or
conjugate algebraic integers of degree two. Furthermore, λ ∈ Q(α) and µ ∈ Q(β).
In general we do not have that Q(λ) = Q(α) and Q(µ) = Q(β). Of course, if α is a
quadratic integer and β = ᾱ denotes its conjugate, then αn + βn ∈ Z, whilst λ = 1
does not generate Q(α). However, the equality does hold whenever λ 6= µ. Pisot’s
thesis ([8]) also contains similar results, applicable to sequences of the form

Sn = λ1(n)αn
1 + λ2(n)αn

2 + · · ·+ λm(n)αn
m(2.9)

where αi ∈ C and the coefficients are polynomials with complex coefficients.

A generalization of those results to local fields is given in theorem 4.2. Note that
Sn ∈ Z can be expressed as Sn ∈ Q and |Sn|v ≤ 1 for every non-Archimedean place
v in Q. The generalization given in theorem 4.2 allows us to study what happens
at each individual non-Archimedean place v. In that theorem, Q is replaced by
some subfield k′ of a finite extension of a local field kv, where kv = completion of
a number field k at a non-Archimedean place v, the αi’s and the coefficients of the
λi’s are in an arbitrary extension of k′, and for n ≥ n0, Sn is assumed to be in
k′ and to have bounded v-adic absolute value. Under those hypothesis, the main
conclusion is that αi ∈ k′ and |αi|v ≤ 1 for every i, which is the local version of
being algebraic integers. The proof runs along the following lines:

Since |Sn|v is bounded for n ≥ n0, it is possible to multiply it by some b ∈ k′ so
that cn = b Sn verifies that |cn|v ≤ 1, i.e.,

cn ∈ Ok′,v = { x ∈ k′ : |x|v ≤ 1 }(2.10)

for n ≥ n0. Furthermore, it is well known that if

f(X) =
m∏

i=1

(X − αi)di = XM − r1 XM−1 − r2 XM−2 − · · · − rM

(2.11)

where di = 1 + deg λi, i = 1, 2, . . . , m, and M =
∑m

i=1 di, then cn verifies a
recurrence relation of the form

cn = r1 cn−1 + r2 cn−2 + · · ·+ rM cn−M(2.12)
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Next, define the formal power series

Ft(X) = ct + ct+1 X + ct+2 X2 + ct+3 X3 + . . .(2.13)

which is in Ok′,v[[X ]]. We have Ft(X) = pt(X)/q(X), where pt(X), q(X) ∈ k′[X ]
and q(X) = XM f(1/X) is the reciprocal of f(X). Using the generalized Fatou’s
lemma (lemma 4.3), we conclude that q(X) ∈ Ok′,v[X ], so f(X) ∈ Ok′,v[X ]. Since
f(X) is monic, we get that its roots verify |αi|v ≤ 1.

Theorem 4.2 also shows that the coefficients of each λi(X) are in k′(αi). Even
more, any k′-automorphism σ in k′(α1, . . . , αm), which acts as a permutation over
the αi’s, induces the same permutation over the λi’s.

Finally, proposition 4.6 shows that the condition |S−n|v = O(1) can be weakened
to a subexponential growth condition of the form |S−n|v = O(An) for every A > 1.

In the next sections we give details about the above results.

3. Distribution of powers modulo 1

Definition 3.1. For any real number x, we define:

(1) Integer part of x: [x] = max {n ∈ Z : n ≤ x }.

(2) Fractional part of x: 〈x〉 = x− [x].

(3) Nearest integer to x: E(x) = max{n ∈ Z : n ≤ x + 1/2 }.

(4) Residue of x modulo 1: ε(x) = x− E(x).

(5) Distance from x the the nearest integer:

‖x‖ = |ε(x)| = min { |x− n| : n ∈ Z }
Definition 3.2. A sequence of real numbers {xn}∞n=1 is said to be uniformly dis-
tributed modulo 1, abbreviated u.d. mod 1, if

lim
N→∞

1
N

N∑
n=1

χs,t(xn) = t− s(3.1)

whenever s < t < s + 1. Here:

χs,t(x) =




1 if s < x− n < t for some n ∈ Z

1/2 if s− x ∈ Z or t− x ∈ Z

0 otherwise
(3.2)

Theorem 3.3 (Weyl criterion). The sequence {xn}∞n=1 is u.d. mod 1 if and only
if for every h ∈ Z \ {0}:

lim
N→∞

1
N

N∑
n=1

exp(2πi h xn) = 0(3.3)
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Proof. See theorem 2.1 in [5].

Theorem 3.4 (Weyl-Koksma’s Metric Theorem).

(a) Let α > 1 be a real number; the sequence {λαn}∞n=1 is uniformly distributed
modulo 1 for almost all real λ (Weyl).

(b) Let λ be a non zero real number; the sequence {λαn}∞n=1 is uniformly distributed
modulo 1 for almost all real α > 1 (Koksma).

Proof. See [14] and [4]. See also [1], p. 71.

Theorem 3.5. Let {θn} be any sequence of real numbers. Then:

(1) Given any λ 6= 0 and A > 1, there exists an α such that:

A ≤ α ≤ A +
A

|λ| (A− 1)
(3.4)

and for every n ≥ 1

‖λαn − θn‖ ≤ 1
2 (A− 1)

(3.5)

(2) Given any α > 1 and L 6= 0, there exists a λ (with the same sign as L) such
that:

|L| ≤ |λ| ≤ |L|+ 1
α− 1

(3.6)

and for every n ≥ 1

‖λαn − θn‖ ≤ 1
2 (α− 1)

(3.7)

Proof.

(1) There is no loss of generality in assuming that λ > 0. Otherwise, make λ′ = −λ
and θ′n = −θn, and use that ‖ − x‖ = ‖x‖.

Construct an increasing sequence A = α0 ≤ α1 ≤ α2 . . . , by the following
recursive rule (n ≥ 0):

αn+1 = λ−1/(n+1) (λαn+1
n + 〈θn+1 − λαn+1

n 〉)1/(n+1)

= λ−1/(n+1) (θn+1 − [θn+1 − λαn+1
n ])1/(n+1)

(3.8)

where [x] = integer part of x, and 〈x〉 = x− [x].

Since 〈θn+1 − λαn+1
n 〉 ≥ 0 we have that αn+1 ≥ αn, so the sequence is non

decreasing. Also, by construction 〈λαn
n〉 = 〈θn〉 for every n ≥ 1.
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Now, for every 1 ≤ m ≤ n:

αm
n+1 − αm

n = λ−m/(n+1) (λαn+1
n + 〈θn+1 − λαn+1

n 〉)m/(n+1) − αm
n

≤ λ−m/(n+1)
(
(λαn+1

n + 1)m/(n+1) − (λαn+1
n )m/(n+1)

)

= λ−m/(n+1) m

n + 1

∫ 1

0

(λαn+1
n + x)(m−n−1)/(n+1) dx

≤ λ−m/(n+1) m

n + 1
(λαn+1

n )(m−n−1)/(n+1)

< λ−1 αm−n−1
n ≤ λ−1 Am−n−1

(3.9)

For m = 1 we have αn+1 − αn < λ−1 A−n, thus:

(3.10) αN − α0 =
N−1∑
n=0

(αn+1 − αn)

=
N−1∑
n=0

λ−1 A−n <

∞∑
n=0

λ−1 A−n =
A

λ (A − 1)

So, for every N ≥ 0 we have A ≤ αN < A + A
λ (A−1) . Hence, α = limN→∞ αN

exists, and

A ≤ α ≤ A +
A

λ (A− 1)

which is (3.4).

Now, for N > m ≥ 1:

(3.11) 0 ≤ λαm
N − λαm

m =
N−1∑
n=m

λ (αm
n+1 − αm

n )

≤
N−1∑
n=m

Am−n−1 <

∞∑
n=m

Am−n−1 =
1

A− 1

Now let N →∞:

0 ≤ λαm − λαm
m ≤ 1

A− 1
(3.12)

Since 〈λαm
m〉 = 〈θm〉, we get:

〈λαm − θm〉 ≤ 1
A− 1

(3.13)

To get the desired result, apply the previous result to the sequence θ′n = θn −
1

2 (A−1) , i.e., for n ≥ 1:

0 ≤ 〈λαn − θn +
1

2 (A− 1)
〉 ≤ 1

A− 1
(3.14)
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Subtracting 1
2 (A−1) we get:∣∣∣∣〈λαn − θn +

1
2 (A− 1)

〉 − 1
2 (A− 1)

∣∣∣∣ ≤ 1
2 (A− 1)

(3.15)

or, using 〈x〉 = x− [x]:∣∣∣∣λαn − θn −
[
λαn − θn +

1
2 (A− 1)

]∣∣∣∣ ≤ 1
2 (A− 1)

(3.16)

Hence:
‖λαn − θn‖ ≤ 1

2 (A− 1)
which is (3.5).

(2) There is no loss of generality in assuming that L > 0. Otherwise, make L′ = −L,
λ′ = −λ and θ′n = −θn, and use that ‖ − x‖ = ‖x‖.

Construct an increasing sequence L = λ0 ≤ λ1 ≤ λ2 ≤ . . . , by the following
recursive rule for n ≥ 0:

λn+1 = λn + α−n−1 〈θn+1 − λn αn+1〉
= α−n−1 (θn+1 − [θn+1 − λαn+1])

(3.17)

Since 〈θn+1 − λn αn+1〉 ≥ 0, we have that λn+1 ≥ λn (n ≥ 0), so the sequence
is actually increasing. Also, by construction 〈λn αn〉 = 〈θn〉 for every n ≥ 1.
Furthermore, since 〈θn+1 − λn αn+1〉 < 1:

0 ≤ λn+1 − λn < α−n−1(3.18)

so, for N ≥ 1:

(3.19) 0 ≤ λN − λ0 =
N−1∑
n=0

(λn+1 − λn)

<

N−1∑
n=0

α−n−1 <

∞∑
n=0

α−n−1 =
1

α− 1

Hence, L ≤ λN < L + 1
α−1 , so λ = limN→∞ λN exists, and:

L ≤ λ ≤ L +
1

α− 1
which is (3.6).

Now, for N > m ≥ 1:

(3.20) 0 ≤ λN αm − λm αm = αm
N−1∑
n=m

(λn+1 − λn)

< αm
N−1∑
n=m

α−n−1 <

∞∑
n=m

αm−n−1 =
1

α− 1

Letting N →∞:

0 ≤ λαm − λm αm ≤ 1
α− 1

(3.21)
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Since 〈λm αm〉 = 〈θm〉, we get:

〈λαm − θm〉 ≤ 1
α− 1

(3.22)

To get the desired result, apply the previous result to the sequence θ′n = θn− 1
α−1 ,

and apply the same reasoning as in part (1).

Corollary 3.6. For any λ 6= 0 there are uncountably many numbers α > 1 such
that λαn is not uniformly distributed modulo 1. Hence, there are transcendental
numbers with that property.

Proof. For every subset I ⊆ Z+ take an αI > 1 such that ‖λαn
I − 1/4‖ ≤ 1/5

if n ∈ I and ‖λαn
I − 3/4‖ ≤ 1/5 if n /∈ I. Such αI exists by theorem 3.5. We

have that I 6= I ′ =⇒ αI 6= αI′ , so the map I 7→ αI is injective. Since there are
uncountably many subsets in Z+, the result follows.

4. Combinations of powers

Remark 4.1 (Notation). In this section, k will be a number field, v a non-trivial,
non-Archimedean place in k, kv the completion of k at v, kv an algebraic closure
of kv, Ωv the completion of kv, k′ ⊆ kv(γ) ⊆ kv any subfield of a finite extension
kv(γ) of kv (γ ∈ kv), k′ ⊆ kv the set of elements of kv that are algebraic over k′,
K any field extension of k′, and Ok′,v the ring Ok′,v = { x ∈ k′ : |x|v ≤ 1 }.
Theorem 4.2. Let λ1(X), λ2(X), . . . , λm(X) be polynomials in K[X ] \ {0}. As-
sume that α1, α2, . . . , αm are distinct elements from K\{0}. Let Sn be the following
sum:

Sn =
m∑

i=1

λi(n)αn
i(4.1)

Also assume that there is an integer n0 such that for every n ≥ n0, Sn ∈ k′. Then
for every n ∈ Z, Sn ∈ k′, and:

(i) α1, α2, . . . , αm are the roots of a polynomial f(X) ∈ k′[X ], so they are in k′.
Moreover, if |Sn|v = O(1), then |αi|v ≤ 1, i = 1, 2, . . . , m.

(ii) For every i = 1, 2, . . . , m: k′(λi) ⊆ k′(αi), where k′(λi) is the field generated by
the coefficients of λi(X).

(iii) For every automorphism σ ∈ Gal(k′(α1, . . . , αm)/k′) such that σ(αi) = απ(i),
i = 1, . . . , m, where π is a permutation of {1, . . . , m}, we have that σ(λi(X)) =
λπ(i)(X), where by definition σ(

∑
i ai X i) =

∑
i σ(ai)X i.

(iv) If λ1(X), . . . , λm(X) are distinct polynomials, then k′(αi) = k′(λi) for every i.

The proof of this theorem requires several lemmas.
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Lemma 4.3 (Generalized Fatou’s Lemma). Let A be a Dedekind ring and F a
rational series in A[[X ]], i.e., F = p/q for some p, q ∈ A[X ]. Then there exist two
polynomials P, Q ∈ A[X ] such that F = P/Q, where P and Q are relatively prime
and Q(0) = 1.

Proof. See [1], p. 15, theorem 1.3.

Lemma 4.4. Let {cn}∞n=−∞ a set of elements from K such that cn ∈ k′ for every
n ≥ n0, and verifying the following recurrence relation of order M:

cn = r1 cn−1 + r2 cn−2 + · · ·+ rM cn−M(4.2)

for every n ∈ Z, where r1, r2, . . . , rM are in K, rM 6= 0. Then:

(i) The coefficients r1, r2, . . . , rM are in k′, and for every n ∈ Z, cn ∈ k′.

(ii) If cn ∈ Ok′,v for every n ≥ n0, then the coefficients r1, r2, . . . , rM are all in
Ok′,v.

Proof.

(i) Let Cn and R be the matrices:

Cn =




cn cn+1 . . . cn+M−1

cn+1 cn+2 . . . cn+M

...
...

. . .
...

cn+M−1 cn+M . . . cn+2M−2


(4.3)

and

R =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
rM rM−1 rM−2 . . . r1




(4.4)

We have that Cn+1 = R Cn. Since the recurrence relation is of order M, Cn is
non singular. On the other hand, R = Cn+1 C−1

n . Since the elements of Cn are in k′

for n ≥ n0, the entries of R, and those of R−1, will be in k′. Since Cn−1 = R−1 Cn,
we get that the entries of Cn will be in k′ also for n < n0.

(ii) For each t ≥ n0 define the formal power series

Ft(X) =
∞∑

n=0

ct+n Xn(4.5)
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which is in Ok′,v[[X ]]. We have Ft(X) = pt(X)/q(X), where pt(X), q(X) ∈ k′[X ]
are the following:

pt(X) =
M−1∑
j=0

(
ct+j −

j∑
i=1

ri ct+j−i

)
Xj(4.6)

q(X) = 1− r1 X − r2 X2 − · · · − rM XM(4.7)

This can be checked by multiplying Ft(X) by qt(X) and using the recurrence rela-
tion, which gives Ft(X) q(X) = pt(X) (see [10] and [11]).

Now we will prove that pt(X) and q(X) are relatively prime. To do so, we will
see that they cannot have any common root (in k′). In fact, assume that α is a
common root of pt0(X) and q(X) for some t0 ≥ n0, i.e.: pt0(α) = q(α) = 0. Since
q(0) = 1, then α 6= 0. Now we have:

X Ft0+1(X) = Ft0(X)− ct0(4.8)

so:

(4.9) X pt0+1(X) = X q(X)Ft0+1(X)

= q(X) (Ft0(X)− ct0) = pt0(X)− ct0 q(X)

Hence pt0+1(α) = 0, which means that α is also a root of pt0+1(X). By induction
we get that pt(α) = 0 for every t ≥ t0. Grouping the terms of pt(X) with respect
to ct, ct+1, . . . , ct+M−1, we get:

pt(X) =
M−1∑
j=0

aj(X) ct+j(4.10)

where

aj(X) = Xj
(
1−

M−j−1∑
i=1

ri X i
)

(4.11)

Note that a0(X), a1(X), . . . , aM−1(X) do not depend on t. On the other hand
pt(α) = 0 implies

M−1∑
j=0

aj(α) ct+j = 0(4.12)

for every t ≥ t0. Note that aM−1(α) = αM−1 6= 0, so a0(α), a1(α), . . . , aM−1(α)
are not all zero, and (4.12) means that the columns of the matrix Ct0 are linearly
dependent, so detCt0 = 0, which contradicts the fact that Ct0 is non singular.
Hence, the hypothesis that pt(X) and q(X) have a common root has to be false.
This proves that pt(X) and q(X) are relatively prime.

By (generalized Fatou’s) lemma 4.3, and taking into account that Ok′,v is a
Dedekind ring (see, for instance, [7], chap. 5), we get that there exist two relatively
prime polynomials Pt(X) and Qt(X) in Ok′,v[X ] such that Ft(X) = Pt(X)/Qt(X)
and Qt(0) = 1. Hence: pt(X)Qt(X) = q(X)Pt(X). By unique factorization of
polynomials in k′[X ], there is a u ∈ k′ such that Pt(X) = u pt(X) and Qt(X) =
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u qt(X). Since Qt(0) = q(0) = 1, we get that u = 1, so Pt(X) = pt(X) and
Qt(X) = q(X). Hence, the coefficients of q(X) are in Ok′,v.

Proof of Theorem 4.2. Let f(X) ∈ K[X ] be the polynomial

f(X) =
m∏

i=1

(X − αi)di = XM − r1 XM−1 − r2 XM−2 − · · · − rM

(4.13)

where di = 1+deg λi, i = 1, 2, . . . , m, and M =
∑m

i=1 di. Note that this is just the
reciprocal of the polynomial q(X) defined in the proof lemma 4.4. It is well known
(see [10] and [11]) that Sn verifies a recurrence relation of order M , of the form:

Sn = r1 Sn−1 + r2 Sn−2 + · · ·+ rM Sn−M(4.14)

By part (i) of lemma 4.4 we get that Sn ∈ k′ for every n ∈ Z.

Now we prove the remaining results.

(i) Since α1, . . . , αm are the roots of f(X) ∈ k′[X ], it is clear that they are in k′.

Assume that |Sn|v = O(1). We have that there are integers B > 0 and n0 such
that for every n ≥ n0, |Sn|v ≤ B. Let b ∈ k′ be any element such that |b|v ≤ 1/B.
Then for every n ≥ n0, |b Sn|v ≤ 1. Putting cn = b Sn we get that cn ∈ Ok′,v for
every n ≥ n0, and also verifies the recurrence:

cn = r1 cn−1 + r2 cn−2 + · · ·+ rM cn−M(4.15)

By part (ii) of lemma 4.4 we get that r1, r2, . . . , rM are in Ok′,v, i.e., |ri|v ≤ 1 for
i = 1, 2, . . . , M . We already know that αi ∈ k′, and using the well known equality:

|r0|v
m∏

l=1

max {1, |αl|v}dl = max { |rl|v : 0 ≤ l ≤ M }(4.16)

(r0 = 1), we get that actually |αi|v ≤ 1.

(ii) For i = 1, 2, . . . , m, we have λi(X) =
∑dj−1

j=0 aij Xj, where the coefficients aij

are in K. If d = max{d1, d2, . . . , dm}, then we can write λi(X) =
∑d−1

j=0 aij Xj,
where aij = 0 for di ≤ j < d. Now consider the following matrices:

~S =




S0

S1

...
Smd−1


 , ~L =




~L1

~L2

...
~Lm


(4.17)

where the ~Li’s are blocks of the form:

~Li =




ai 0

ai 1

...
ai d−1


(4.18)
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and:

A = (A1 A2 . . . Am)(4.19)

where the Ai’s are blocks of the form:

Ai =




1 0 . . . 0
αi αi . . . αi

αi
2 2αi

2 . . . 2d−1 αi
2

αi
3 3αi

3 . . . 3d−1 αi
3

...
...

. . .
...

αi
(md−1) (md− 1)αi

(md−1) . . . (md− 1)(d−1) αi
(md−1)




(4.20)

i.e., the element of Ai in row n, column j, is nj αn
i , for 0 ≤ n ≤ md − 1 and

0 ≤ j ≤ d− 1 (by convention, 00 = 1). Note that A is a square matrix.

It is easy to check that ~S = A ~L. Furthermore, it is known that det A 6= 0 (see
lemma 8.5.1 in [13], 177-182). Next, considering the coefficients aij as unknowns
of a system of md linear equations and md unknowns, and using Cramer’s rule, we
get

aij = det(A′
ij)/ det(A)(4.21)

where A′
ij is matrix A with the j-th column of block Ai substituted by ~S. Consid-

ering aij as a function of α1, α2, . . . , αi−1, αi+1, . . . , αm, we note that interchanging
any two of them, say αl and αr (l, r 6= i), does not change the value of aij , so aij is
a symmetric rational function of the αl’s (l 6= 1), with coefficients in k′(αi). Hence,
aij is a rational function in

k′(αi)(φi1, φi2, . . . , φi,i−1, φi,i+1, . . . , φi,m)(4.22)

where φil for 1 ≤ l ≤ m, l 6= i, are the elementary symmetric functions of {αl}l6=i.
In other words, the φil’s are ± the coefficients of the polynomial

m∏
l=1
l6=i

(X − αl) =
∏m

l=1(X − αl)
X − αi

(4.23)

Since f(X) =
∏m

l=1(X−αl)dl ∈ k′[X ], and in characteristic zero every irreducible
polynomial is separable, it is clear that the polynomial in the numerator of (4.23)
is in k′[X ]. Hence, the quotient is in k′(αi)[[X ]], and actually in k′(αi)[X ], since it
equals a polynomial. This implies that the φil’s are in k′(αi), hence aij ∈ k′(αi).
This proves the desired result.

(iii) We use again the expression aij = det(A′
ij)/ det(A). If σ(αi) = απ(i), then:

σ(det(A1 A2 . . . Am)) = det(Aπ(1) Aπ(2) . . . Aπ(m))(4.24)

The effect of σ on det(A′
ij) is similar, but now S will be in the j-th column of block

Aπ(i). Hence, σ(det(A′
ij))/σ(det(A)) = aπ(i),j , i.e., σ(aij) = aπ(i),j , which proves

the result.
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(iv) From (ii) we have that k′(λi) ⊆ k′(αi), so we will prove the other containment.

If λ1(X), . . . , λm(X) are distinct non zero polynomials, then for some n ∈ Z

the numbers λ1(n), . . . , λm(n) are distinct and non zero. For j ∈ Z, consider the
following sums:

Tj =
m∑

i=1

λi(n)j αi(4.25)

It is easy to see that for every j ∈ Z, Tj ∈ k′. In fact, take any automorphism
σ ∈ Gal(k′(α1, . . . , αm)/k′) such that σ(αi) = απ(i) for i = 1, 2, . . . , m, where π is
some permutation of {1, 2, . . . , m}. Then:

σ(Tj) =
m∑

i=1

λπ(i)(n)j απ(i) =
m∑

i=1

λi(n)j αi = Tj(4.26)

So, Tj is invariant for σ. This implies that Tj ∈ k′.

Now, consider each αi as a polynomial of degree zero. Reasoning as in the proof
of (ii) with the roles of λi and αi interchanged, we get that k′(αi) ⊆ k′(λi(n)).
Since λi(n) ∈ k′(λi), we get the desired result.

Next corollary is the global version of part (i) of theorem 4.2. Here, we take
k′ = k, and Ok =

⋂
finite v

Ok′,v.

Corollary 4.5. Under the same hypothesis as in theorem 4.2 with k′ = k, if there
is an element b ∈ k such that b Sn ∈ Ok for every n ≥ n0, then αi (i = 1, 2, . . . , m)
are algebraic integers.

Proof. b Sn ∈ Ok for every n ≥ n0 implies that Sn ∈ k and |Sn|v = O(1) at every
finite place v, so that by theorem 4.2 we get α ∈ k and |αi|v ≤ 1 for every finite v,
hence, the αi’s are algebraic integers.

Next proposition shows that the condition |Sn|v = O(1) in theorem 4.2 can be
weakened to a growth condition.

Proposition 4.6. Under the hypothesis of theorem 4.2, if |Sn|v = O(An) for every
A > 1, then |Sn|v = O(1).

Proof. Let π be any element in k′ such that π2 is a prime generator of the ideal

M = { x ∈ k′(α1, . . . , αm) : |x|v < 1 }(4.27)

Take A = |π|−1
v . Let α′i = αi π, and let S′n be:

S′n =
m∑

i=1

λi(n) (α′i)
n =

m∑
i=1

λi(n) (αi π)n = Sn πn(4.28)
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By hypothesis, |S′n|v = |Sn|v |π|nv = |Sn|v/An = O(1). Furthermore, we have that
S′n ∈ k′(π) ⊆ kv(γ, π). Since kv(γ, π) is a finite extension of kv, theorem 4.2
applies, hence, by part (i) of that theorem, for every i, |α′i|v = |αi π|v ≤ 1, thus
|αi|v ≤ |π|−1

v , which is strictly less than |π2|−1
v = min{ |x|−1

v : x ∈ M \ {0} }, so
|αi|v ≤ 1, and from here the result follows.

5. Other topics

5.1. Asymptotic results. We mentioned in section 1 that P.V. numbers belong
to the exceptional set of Koksma’s theorem, because if α is a P.V. number, then
limn→∞ ‖αn‖ = 0 (geometrically). We could ask if there are other real numbers
(> 1), besides the P.V. numbers, with this property. In other words, given a real
number α > 1, does limn→∞ ‖αn‖ = 0 imply that α is a P.V. number? The answer
is not known so far, however it is possible to prove that α is actually a P.V. number
when any of the following (increasingly weak) conditions is added ([1], section 5.4):

(1) α is algebraic, and there exists a real λ 6= 0 such that:

lim
n→∞ ‖λαn‖ = 0(5.1)

(2) There exists a real λ 6= 0 such that:
∞∑

n=1

‖λαn‖2 < +∞(5.2)

(3) There exists a real λ 6= 0 such that:

‖λαn‖2 = o(n−1/2)(5.3)

(4) There exists a real λ 6= 0 such that:

‖λαn‖2 ≤ a√
n

(∀n ≥ n0)(5.4)

for some 0 < a < 1/2
√

2(α + 1)2 and some integer n0.

The proofs rest on the rationality of the power series f(X) =
∑∞

n=0 un Xn, where
un = nearest integer to λαn. Next, by Fatou’s lemma, f(X) = A(X)/Q(X) for
some relatively prime A, Q ∈ Z[X ], such that Q(0) = 1. On the other hand we
have that:

f(X) =
A(X)
Q(X)

=
λ

1− α X
+ ε(X)(5.5)

where ε(X) =
∑∞

n=0 εn Xn; εn = un − λαn ∈ [−1/2, 1/2). Since εn → 0, we get
that the meromorphic function ε(z) has no pole on the close unit disk |z| ≤ 1, so
Q(z) has a single zero in the close unit disk. From here it is easy to see that α is a
P.V. number ([1], sec. 5.4.; [12], 4-10).
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5.2. Generalizations to adeles. Let A be the ring of adeles of Q, and I a finite
set of places in Q. The I-adele ring of Q is defined as:

AI = { x ∈ A : xp = 0 for p /∈ I }(5.6)

Which is isomorphic to
∏

p∈I Qp and contains a field canonically isomorphic to Q

(which will also be designed Q). Let QI be:

QI = { x ∈ Q : |x|p ≤ 1 for p /∈ I ∪ {∞} }(5.7)

Then we have that QI is a Dedekind ring, and:

(1) The field Q is dense in AI .

(2) QI is a discrete subring of AI , and the quotient AI/QI is locally compact.

Let FI be the set:

FI = [−1
2
,
1
2
)×

∏
p∈I\{∞}

Op
∼= AI/QI(5.8)

then every element x ∈ AI can be expressed in one and only one way as x =
E(x) + ε(x), with E(x) ∈ QI and ε(x) ∈ FI (Artin decomposition, see [1], theorem
10.1.2). Here, E(x) plays the role of ”nearest integer” to x, and ε(x) is the residue
of x modulo QI . Note that this theory becomes the usual theory of distribution
modulo 1 when I = {∞}.

In this setting we may define the concept of uniform distribution by using Weyl’s
criterion:

Definition 5.1. A sequence {xn}∞n=1 in AI is uniformly distributed modulo QI if
for all a ∈ QI :

lim
N→∞

1
N

N∑
n=1

exp(2πi ε∞(a xn)) = 0(5.9)

Other possible definitions of uniform distribution over rings of adeles can be
found in [3].

The version of Koksma’s theorem here is the following ([1], theorem 10.1.6):

Theorem 5.2.

(i) Let α ∈ AI , with |α|p > 1 for every p ∈ I. Then the sequence {λαn}∞n=1 is
uniformly distributed modulo QI for almost every invertable element λ in AI .

(ii) Let λ be an invertable element of AI . Then the sequence {λαn}∞n=1 is uniformly
distributed modulo QI for almost all α ∈ AI with |α|p > 1 for every p ∈ I.

5.3. Generalization to fields of formal power series. Let k be any finite field,
Z = k[X ] and F = k(X). If |k| = q, then the following are absolute values on F
([1], chap. 12):
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(1) If f, g ∈ Z \ {0}, define |f/g|∞ = q(deg f−deg g).

(2) If v is a prime polynomial in Z and f, g ∈ Z \ {0} are relatively prime to v,
then |vh f/g|v = q−h.

Let Fv be the completion of F at place v, and Zv = { x : |x|v ≤ 1 } the
valuation ring of Fv. Then we have that F∞ = k{X−1} = formal Laurent series
of the form

∑h
n=−∞ an Xn, an ∈ k. Furthermore, every element x ∈ F∞ can be

written in a unique way as x = E(x)+ ε(x), with E(x) ∈ Z and |ε(x)|∞ < 1 (Artin
decomposition; [1], theorem 12.0.3).

The uniform distribution can be defined like this ([1], definition 12.0.1):

Definition 5.3. A sequence {xn}∞n=1 in F∞ is said to be uniformly distributed
modulo Z if, for every h ∈ N and every β ∈ F∞, we have:

lim
N→∞

1
N

A(N ; h, β) = q−h(5.10)

where A(N ; h, β) = number of terms xn of the series such that n ≤ N and
|xn − β|∞ < q−h.

Here the version of Weyl’s metric theorem is the following ([1], theorem 12.0.4):

Theorem 5.4. Given any α ∈ F∞ Z∞, the sequence {λαn}∞n=1 is uniformly dis-
tributed modulo Z for almost all λ ∈ F∞ (in the sense of a Haar measure).

6. Conclusions and future research

Most of the results presented here have been known for several decades, although
I found theorems 3.5 and 4.2 independently.

Theorem 3.5 can be considered as a direct consequence of very general results
in Pisot’s thesis ([8]). On the other hand, the proof presented here gives more
details for the specific case of a sequence of the form λαn. Expression (3.8) gives
a recursive rule that could be used to design an algorithm that approximates the
desired value of α.

In Pisot’s thesis there are also global versions of theorem 4.2. So far, however, I
have not found in any of the papers and works I have read the kind of local version
given here.

Several topics that deserve further study are the following:

(1) Find a concrete (computable?) real number α > 1 such that αn is u.d. mod 1.
To this end, an answer to the following question might be helpful.

(2) In section 3 we saw a method to get a number α such that λαn is close
modulo 1 to a given sequence θn. If the sequence θn is u.d. mod 1, does that
imply that λαn is u.d. mod 1?
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(3) Find a concrete transcendental number α > 1 such that αn is not u.d. mod 1.
The results in section 3 prove that there are transcendental numbers with
this property, but no explicit example is given.

(4) Is there any transcendental number α > 1 such that limn→∞ ‖αn‖ = 0?
According to the results in section 5.1, the convergence ‖αn‖ → 0 should be
rather slow.

(5) Generalize theorem 4 to Dedekind fields (see [7], chap. 5, for a definition of
Dedekind field).

(6) Further asymptotic results: we already know (in R) that if ‖αn − βn‖ = 0
for every n ≥ n0 then α = β or α, β ∈ Z, but what conclusions can be drawn
from limn→∞ ‖αn − βn‖ = 0? And from limn→∞ ‖∑m

i=1 λi αn
i ‖ = 0? How

do the results extend to local fields?

(7) Extend results to distribution over Ov for some ring of v-adic integers Ov =
{ x ∈ kv : |x|v ≤ 1 }, to rings of adeles, and to fields of formal power series.
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série 2, Vol. 7, (1938), 205–248.
9. Alf J. van der Poorten, p-adic methods in the study of Taylor coefficients of rational functions,

Bull. Austral. Math. Soc., Vol. 29, (1984), 109–117.
10. , Some problems of recurrent interest, Report 81-0037, August 1981, School of Math-

ematics and Physics, Macquarie University, North Ryde, Australia 2113.
11. , Some facts that should be better known, especially about rational functions, Report

No. 88-0022, June 1988, Number Theory and Applications (R. A. Mollin, ed.), D. Reidel Publ.
Co., Dordrecht, 1989.

12. Raphael Salem, Algebraic numbers and Fourier Analysis, D. C. Heath and Co., 1963.
13. Kenneth B. Stolarsky, Algebraic Numbers and Diophantine Approximation, Marcel Dekker,

Inc., New York, 1974.
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