
Pre or Post-Softmax Scores in Gradient-based
Attribution Methods, What is Best?

Miguel Lerma
Department of Mathematics

Northwestern University
Evanston, Illinois, USA

mlerma@math.northwestern.edu
ORCID: 0000-0003-4703-6417

Mirtha Lucas
College of Computing and Digital Media

DePaul University
Chicago, Illinos, USA
mlucas3@depaul.edu

ORCID: 0000-0002-4252-7746

Abstract—Gradient based attribution methods for neural net-
works working as classifiers use gradients of network scores.
Here we discuss the practical differences between using gradients
of pre-softmax scores versus post-softmax scores, and their
respective advantages and disadvantages.

Index Terms—Explainable Artificial Intelligence, Attribution
Methods

I. INTRODUCTION

In the last few years the area of eXplainable Artificial
Intelligent (XAI) has gained increasing attention. For deep
neural networks, explanation methods often take the form of
attribution algorithms determining the impact of each input
feature on a given output.

In particular, gradient-based attribution methods work by
computing the gradient ∇xS = (∂S/∂x1, . . . , ∂S/∂xN) of an
output or “score” S of the network respect to a set of inputs
or unit activations x = (x1, . . . , xN). The assumption is that
each derivative ∂S/∂xi provides a measure of the impact of
xi on the score S.

Classifier networks such as the VGG family [6] typically
have a final layer with as many outputs as classes (Fig. 1).
The class imputed to an input sample is given by the score
with the largest value. In those kinds of networks it is common
to place at the end a softmax activation function defined as

yc =
ezc∑n
i=1 e

zi
, (1)

where z1, . . . , zn are the (pre-softmax) outputs of the last
layer. Then, the final (post-softmax) outputs y1, . . . , yn of the
network form a vector of positive scores that add to 1, so
they can be interpreted as a distribution of probabilities. The
network is trained with a loss function that depends on its
post-softmax outputs and ground-truth target values.

Gradient-based attribution methods use different choices
concerning whether to use gradients of pre-softmax zi, or
gradients of post-softmax yi scores. The following are a few
examples:

• As described in [5], Grad-CAM uses the gradients of pre-
softmax scores, although we have found implementations

in which post-softmax scores are used instead (see e.g.
[8]), which makes sense if we consider that those are the
scores compared to the target scores during training. A
problem with using post-softmax scores in Grad-CAM is
that their gradients tend to vanish when the outputs are
close to saturation.

• Integrated Gradients (IG) [7] cannot use pre-softmax
scores without losing the property of being model-
agnostic, so IG is bound to use post-softmax scores only.

• As described in [4], RSI Grad-CAM uses post-softmax
scores. Unlike Grad-CAM, this method does not suffer
from the vanishing gradients problem because it uses
gradients from a sequence of interpolating inputs intended
to capture the total change of the gradient from a baseline
to the given network input. While some of the gradients
in intermediate steps of the interpolation may be zero,
the total change of gradients from baseline is less likely
to also be zero.

• Grad-CAM++ [2] and Grad-CAM plus [3]. The imple-
mentation of Grad-CAM++ has pre-softmax scores fed
to an element-wise exponential function yc = ez

c

. In [3]
it is shown that Grad-CAM++ is practically equivalent to
a small variation of the original Grad-CAM that uses only
positive gradients, called Grad-CAM+ (Grad-CAM plus)
by the authors.

Further examples of gradient-based attribution methods can
be found in [1].

Fig. 1. Structure of a typical classifier network. After a number of con-
volutional blocks this kind of network ends with a fully connected network
producing a (pre-softmax) output z, followed by a softmax activation function
with (post-softmax) output y.979-8-3503-3337-4/23/$31.00 ©2023 IEEE

II. PRE-SOFTMAX VS POST-SOFTMAX OUTPUTS

Understanding the main differences between using gradients
of pre and post-softmax outputs requires first to look at how
gradients backpropagate through a softmax. Then, we will
discuss how each choice is related to the functioning of a
network that has been trained by minimizing a given loss
function.

A. Gradient of a function in terms of pre and post-softmax
scores.

Differentiating the softmax function defined in (1) with
respect to zi we get

∂yc
∂zi

=
∂
∂zi

ezc∑n
j=1 e

zj
−

ezc ∂
∂zi

∑n
j=1 e

zj

(
∑n

j=1 e
zj)2

=
ezcδic∑n
j=1 e

zj
− ezcezi

(
∑n

i=1 e
zi)2

= yc(δic − yi)

(2)

where δij is Kronecker delta, defined

δij =

{
1 if i = j ,

0 if i ̸= j .
(3)

Hence, the derivative of the softmax function is

∂yc
∂zi

= yc(δic − yi) , (4)

If f(y1, . . . , yn) is a (differentiable) function of the post-
softmax outputs of the network, and x = (xi, . . . , xN) is a set
of network inputs or activations of hidden units, we can find
the gradient ∇xf by using the chain rule:

∇xf =
∑
c

∂f

∂yc
∇xyc . (5)

Using the chain rule again we get

∇xf =
∑
c,i

∂f

∂yc

∂yc
∂zi

∇xzc =
∑
c,i

∂f

∂yc
yc(δic − yi)∇xzi . (6)

Equation (5) shows the gradient of f in terms of gradients of
post-softmax scores, and (6) does it in terms of gradients of
pre-softmax scores.

B. Impact of pre and post-softmax score gradients in detecting
a class

Assume we want to determine the impact of a given unit
activation or input variable x in detecting a class c. Letting
f = yc, equation (5) becomes a trivial identity ∂yc

∂x = ∂yc

∂x ,
and (6) becomes

∂yc
∂x

= yc
∑
i

(δic − yi)
∂zi
∂x

. (7)

We immediately see that there can be situations in which the
pre and post-softmax score gradients may lead to radically
different conclusions about the impact of a given activation
in the process of class detection. First, recalling that yc =
ezc/

∑n
i=1 e

zi , we see that replacing zi with z′i = zi + t,

where t is independent of i, we also have yc = ez
′
c/
∑n

i=1 e
z′
i

because:

ez
′
c∑n

i=1 e
z′
i

=
ezc+t∑n
i=1 e

zi+t

=
et ezc

et
∑n

i=1 e
zi

=
ezc∑n
i=1 e

zi
= yc .

(8)

So, the change zi 7→ zi + t for every i does not change the
network post-softmax outputs yc. It does not change the post-
softmax gradients either, as can be seen by replacing zi with
z′i = zi + t in equation (7):

∂yc
∂x

= yc
∑
i

(δic − yi)
∂z′i
∂x

= yc
∑
i

(δic − yi)
∂(zi + t)

∂x

= yc
∑
i

(δic − yi)
∂zi
∂x

+ yc
∂t

∂x

∑
i

(δic − yi)︸ ︷︷ ︸
0

= yc
∑
i

(δic − yi)
∂zi
∂x

,

(9)

where we have used
∑

i δic = 1, and
∑

i yi = 1, hence∑
i(δic − yi) = 1 − 1 = 0. However, ∂z′i/∂x − ∂zi/∂x =

∂t/∂x, hence, even though the post-softmax outputs yc and
the post-softmax gradients ∂yc/∂x remain the same, the pre-
softmax score gradients ∂z′i/∂x and ∂zi/∂x may be very
different. In particular it is possible that two different trainings
of the network may produce two different models for which
outputs and post-softmax gradients are the same, while the pre-
softmax gradients are very different. In such situation saliency
maps using post-softmax gradients would be the same, but
the ones obtained using pre-softmax gradients would be very
different even though the two models are locally functionally
equivalent (in a neighborhood of a given input).

For another situation in which pre and post-softmax gradi-
ents may yield radically different results is as follows. Assume
that ∂zi/∂x is the same for all i, i.e., ∂zi/∂x = K, for
i = 1, . . . , n. Then

∂yc
∂x

= yc
∑
i

(δic − yi)K = yc(1− 1)K = 0 , (10)

where we have again used
∑

i δic = 1, and
∑

i yi = 1. Hence,
using gradients of post-softmax scores we would conclude that
x has no impact in the detection of class c for the particular
network input used. However, for the pre-softmax gradients
we have ∂zi/∂x = K, which can be anything, large or
small. If we have two different activations x1 and x2 such
that ∂zi/∂x1 = K1 and ∂zi/∂x2 = K2 for every i, then
∂yc/∂x1 = ∂yc/∂x2 = 0, implying that x1 and x2 have the
same null impact in the final output corresponding to class c.
However, ∂zi/∂x1 = K1 and ∂zi/∂x2 = K2 may have
very different values and lead to a very different gradient-
based saliency map compared to the one we would obtain
using gradients of post-softmax scores. What is worse, taking
into account that different trainings may produce (locally)
equivalent functional models with very different pre-softmax

gradients, it is perfectly possible that those different training
may lead to situations in which K1 ≫ K2, with the conclusion
that x1 has a much larger contribution than x2 in the detection
of class c, and also situations in which K1 ≪ K2, and the
opposite conclusion would hold.

In the next section we will examine the impact of pre and
post-softmax score gradients on the loss function.

C. Impact of pre and post-softmax score gradients on the loss
function

The most common loss function for training classifier
networks with a final softmax is cross entropy:

L = −
n∑

c=1

tc log yc , (11)

where yc and tc are the softmax output and target output for
class c respectively. The cross entropy function is rooted on
information theory, and reaches its minimum precisely when
yc = tc for all classes c, i.e., minL = −

∑n
c=1 tc log tc.

The difference between L and minL can be interpreted as
the information gained when the predicted class probability
distribution yc is replaced with the actual distribution tc. Given
an attribution method it is natural to determine in what extent
the attributions assigned have an impact on the information
gain of the predicted class distribution, which can be measured
by the gradient of the cross entropy loss function ∇xL. This
gradient can be computed by following the steps outlined in
section II-A with f = L.

In classification tasks with the target given as a 1-hot vector
we have tc = δcc̄, where c̄ is the ground-truth class. In this case
tc̄ = 1, and the loss function can be written L = − log yc̄. The
more general expression (11) plays a role in cases in which
the ground truth cannot be expressed as a 1-hot vector, e.g.
when an input may belong to more than one class.

The partial derivative of the loss function w.r.t. yc is

∂L
∂yc

= − tc
yc

, (12)

and its derivative w.r.t. zc is

∂L
∂zc

=
∑
c′

∂L
∂yc′

∂yc′

∂zc

= −
∑
c′

tc′

yc′
yc′(δcc′ − yc)

= −tc + yc
∑
c′

tc′ = yc − tc .

(13)

In the last step we have used
∑

c tc = 1.
Let x represent the activation of a hidden unit or network

input. We can compare the roles of the pre-softmax and
post-softmax partial derivatives ∂zi/∂x and ∂yi/∂x in the
computation of the gradient of the loss function as follows.
Applying the chain rule we have:

∂L
∂x

=
∑
c

∂L
∂zc

∂zc
∂x

= −
∑
c

(tc − yc)
∂zc
∂x

, (14)

and
∂L
∂x

=
∑
c

∂L
∂yc

∂yc
∂x

= −
∑
c

tc
yc

∂yc
∂x

. (15)

In order to decouple prediction errors from explanation errors
we can focus only on data samples for which the model
yields the right predictions, so assume that c is the right class
associated to the given input, and (t1, . . . , tn) is a 1-hot vector,
tc′ = δcc′ . Then

∂L
∂x

= −
∑
c′

(δcc′ − yc′)
∂zc′

∂x
, (16)

and
∂L
∂x

= − 1

yc

∂yc
∂x

. (17)

So, we see that the gradient of the pre-softmax score zc does
not capture the whole impact of x on the loss function, for
that we would need the gradients of all the pre-softmax scores
zc′ , c′ = 1, . . . , n. On the other hand, the gradient of the post-
softmax score yc alone captures the impact of x on the loss
function, while the gradients of the other post-softmax scores
yc′ (c′ ̸= c) have no effect. From L = −tc log yc, the relation
between gradient of loss function and gradient of post-softmax
score can also be written:

∂yc
∂x

= −∂ exp(L)
∂x

, (18)

stressing the interpretation of the gradient of each post-softmax
score as a function of the loss function. No similar relation
exists between each ∂zc′

∂x and ∂L
∂x because equation (16) is not

invertible in general.

Fig. 2. Various saliency maps generated for Grad-CAM, Grad-CAM plus, and
RSI Grad-CAM respectively at layer block5_pool of a VGG19 network
pretrained on ImageNet, using pre-softmax, post-softmax, and log-softmax
scores respectively. In this example the differences between using post-
softmax and log-softmax scores are barely visible for Grad-CAM and Grad-
CAM plus, however they make a difference for RSI Grad-CAM.

D. Log-softmax scores.

Equation (17) can be rewritten

∂L
∂x

= −∂ log yc
∂x

. (19)

This brings up the question of whether gradients of the log-
softmax scores log yc could also be used in a gradient-based
attribution methods since they have a more direct relation
to information gain. To test this idea we performed some
preliminary tests with gradient-based attribution methods (par-
ticularly Grad-CAM and RSI Grad-CAM) using gradients of
log-softmax scores (∂ log yc/∂x), but with few exceptions they
did not yield results that were noticeable different from the
ones obtained using plain post-softmax scores (see Fig. 2 for
an illustrative example). However, it may still be worth it to
test them in new gradient-based attribution methods in the
future.

III. DISCUSSION

We can look at the outputs of a classifier network in two
different ways:

1) The intended outputs are the pre-softmax scores, with
the post-softmax scores being just a convenient, user-
friendly way to represent the network output as a prob-
ability distribution.

2) The intended outputs are the post-softmax scores, with
the pre-softmax scores being just an intermediate nec-
essary step to compute the final (post-softmax) scores.

The outcome of a classification is the same in both cases if
we set the class selected by the model as the one corresponding
to the maximum score. However, to be consistent, approach (1)
would require to use a loss function written in terms of the
pre-softmax scores and targets representing the desired outputs
of said pre-softmax scores. The closest implementation of this
idea we are aware of is given by the softmax cross entropy
with logits loss function, which in practice is implemented
by performing internally a softmax on the pre-softmax scores
(logits) and then applying the usual cross entropy with post-
softmax targets, so it is in fact approach (2) in disguise.

Hence, the gradients that best capture the impact of a sample
input on a given class output are the post-softmax gradients,
in the following sense:

• The impact of the sample can be interpreted as a measure
of how the increase in the intensity of each input or
activation produces an information gain increase.

• That impact can be channeled through a single class
output rather than a combination of all class outputs.

• The paradoxical situation discussed in section II-B in
which equally well trained networks may lead to radically
different saliency maps is less likely to happen.

IV. CONCLUSIONS

We have discussed the advantages and disadvantages of
using pre-softmax versus post-softmax scores with gradient-
based attribution methods for classifier networks. We have
shown arguments in favor of generally using post-softmax
scores, with some possible exceptions. In general, methods
that are prone to the vanishing gradients problem (such as
Grad-CAM and some of its derivatives) may do better by using
pre-softmax scores, while models that are not affected by that
problem (like the ones based on path integrals of gradients
such as Integrated Gradients and RSI Grad-CAM) may yield
more robust results by using post-softmax scores. Finally, we
suggest the use of log-softmax scores as a third alternative that
may deserve attention.

REFERENCES

[1] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross, “Gradient-based
attribution methods,” in Explainable AI: Interpreting, Explaining and
Visualizing Deep Learning. Berlin, Heidelberg: Springer-Verlag, 2022,
p. 169–191.

[2] A. Chattopadhyay, A. Sarkar, P. Howlader, and V. N. Balasubramanian,
“Grad-CAM++: Generalized gradient-based visual explanations for deep
convolutional networks,” 2018 IEEE Winter Conference on Applications
of Computer Vision (WACV), pp. 839–847, Mar 2018.

[3] M. Lerma and M. Lucas, “Grad-CAM++ is equivalent to Grad-CAM with
positive gradients,” in Proceedings of the 24th Irish Machine Vision and
Image Processing Conference, R. Gault, Ed. Irish Pattern Recognition
& Classification Society, 2022, pp. 113–120.

[4] M. Lucas, M. Lerma, J. Furst, and D. Raicu, “RSI-Grad-CAM: Vi-
sual explanations from deep networks via Riemann-Stieltjes integrated
gradient-based localization,” in Advances in Visual Computing: 17th
International Symposium, ISVC 2022, San Diego, CA, USA, October 3–5,
2022, Proceedings, Part I. Berlin, Heidelberg: Springer-Verlag, 2022,
p. 262–274.

[5] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” International Journal of Computer Vision,
vol. 128, no. 2, p. 336–359, Oct 2019.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition.” in ICLR, Y. Bengio and Y. LeCun, Eds.,
2015.

[7] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep net-
works,” in Proceedings of the 34th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, D. Precup and
Y. W. Teh, Eds., vol. 70. PMLR, 06–11 Aug 2017, pp. 3319–3328.

[8] I. Uddin. (2021) Grad-CAM implemenation in tensorflow 2.x. [Online].
Available: https://github.com/ismailuddin/gradcam-tensorflow-2

