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Abstract. Miscellaneous definitions and results useful in uncertainty quantifica-
tion for machine learning.

Variance and Entropy

Law of Total Variance. If X and Y are random variables on the same probability
space, and the variance of Y is finite, then

V[Y ] = E[V[Y | X]] + V[E[Y | X]] ,

where E denotes expectation and V means variance.

Proof: Recall that by the law of total expectation: E[f(Y )] = E[E[f(Y ) | X]].

So, we have

V(Y ) = E[Y 2]− E[Y ]2 .

On the other hand, by the law of total expectation (with f(Y ) = Y 2):

E[Y 2] = E[E[Y 2 | X]] = E[V[Y | X] + E[Y | X]2] = E[V[Y | X]] + E[E[Y | X]2] ,

hence

V(Y ) =

E[Y 2]︷ ︸︸ ︷
E[V[Y | X]] + E[E[Y | X]2]−E[Y ]2

= E[V[Y | X]] + E[E[Y | X]2]− E[E[Y | X]]2︸ ︷︷ ︸
V[E[Y |X]]

= E[V[Y | X]] + V[E[Y | X]] ,

where we have used again the law of total expectation E[Y ] = E[E[Y | X]] in the
second step. □
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Entropy, Cross-Entropy.

Entropy:

H(P ) = EP (log(P )) .

where E denotes expectation.

Cross-Entropy:

H(P,Q) = EP (log(Q)) .

For discrete distributions:

H(P ) = −
∑
x∈X

P (x) log(P (x)) ,

H(P,Q) = −
∑
x∈X

P (x) log(Q(x)) .

For continuous distributions:

H(P ) = −
∫ ∞

−∞
P (x) log(P (x)) dx ,

H(P,Q) = −
∫ ∞

−∞
P (x) log(Q(x)) dx .

Kullback–Leibler Divergence. Also called relative entropy.

For discrete distributions:

DKL(P || Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
.

For continuous distributions:

DKL(P || Q) =

∫ ∞

−∞
P (x) log

(
P (x)

Q(x)

)
dx .

Relation to entropy and cross-entropy:

DKL(P || Q) = EP (log(P )− log(Q)) = H(P,Q)−H(P ) .

KL-divergence of normal distributions:

DKL(N(µ1, σ1 || N(µ2, σ2)) = log

(
σ2

σ1

)
+

(µ1 − µ2)
2 + σ2

1 − σ2
2

2σ2
2

.
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Bayesian Approach for Uncertainty Estimation in Deep learning

Section based on the following papers:

- Welling et al. (2011) Bayesian Learning via Stochastic Gradient Langevin Dynamics.

- Chakraborty et al. (2021), Augmenting saliency maps with uncertainty.

- Hu et al. (2019), Supervised Uncertainty Quantification for Segmentation with
Multiple Annotations.

Some additional material has been added for clarity.

Bayesian Models. Consider a supervised learning problem such as image classifica-
tion. We assume that both the data and the model parameters have uncertainty, so
rather than taking fix values they will be treated as probabilistic distributions. The
model predictions will be probabilistic too, with the following distribution:

p(ytest|xtest,D) =

∫
θ

p(ytest|xtest, θ)p(θ|D) dθ = Ep(θ|D)[p(ytest|xtest, θ)] ,

where xtest is the test image, ytest is the class label of the test image, D = {(xi, yi)}Ni=1

is the set of training data containing labeled images, and θ are the parameters of
the model (weights and biases of the neural network). Here p(ytest|xtest, θ) means the
probability that the model with parameters θ yields output yi for sample xi. In order
to simplify notation we may represent the pair (xi, yi) as just xi, D = {xi}Ni=1, and
write p(yi|xi,D) and p(yi|xi, θ) as p(xi|D) and p(xi|θ) respectively. If we want to refer
to the probability of an arbitrary output y∗ given an input x∗ without (x∗, y∗) being
an element of the dataset D, then we will revert to the original notation p(y∗|x∗,D),
p(y∗|x∗, θ).

The posterior p(θ|D) can be seen as the result of updating the prior distribution p(θ)
according to Bayes rule using the likelihood p(D|θ) and the evidence p(D):

p(θ|D) =
p(D|θ)p(θ)

p(D)
,

where p(θ) is a prior on θ, and p(D|θ) = ΠN
i=1p(xi|θ). A problem is that finding p(D)

requires to integrate respect to all network parametrizations:

p(D) =

∫
θ

p(D|θ)p(θ) dθ ,

which is intractable. So p(θ|D) is typically approximated either by sampling, or by
using a variational method. In the next two subsecions we address each of these two
approaches.
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Sampling Method: Stochastic Gradient Langevin Dynamics. A technique
to obtain a Maximum A-Posteriori point (MAP) estimate of the model parameters
consists of using Stochastic Gradient Descent (SGD). A typical numerical approach
for approximate Bayesian learning is Markov Chain Monte Carlo (MCMC) sampling,
where the evidence is treated as constant and the posterior distribution of the pa-
rameters is estimated by sampling from the unnormalized distribution p(θ|D) ∝
p(D|θ)p(θ). In particular, the goal is to maximize a Maximum A-Posteriori point
(MAP) estimate of the model parameters by maximizing the following function:

log(p(D|θ)p(θ)) =
N∑
i=1

log(p(xi|θ)p(θ)) = log p(θ) +
N∑
i=1

log p(xi|θ) .

Stochastic Gradient Descent leads to the following parameter update step:1

θk+1 = θk +
ϵk
2

(
∇θ log p(θk) +

N

n

n∑
i=1

∇θ log p(xk,i|θk)
)
,

where N is the total number of training samples, n is the minibacth size, and ϵk is
the step-size of the gradient descent. Robbins and Monro showed that a way to en-
sure convergence to a local maximizer is to require the steps to verify the conditions:∑∞

i=1 ϵk = ∞ and
∑∞

i=1 ϵ
2
k < ∞, e.g. ϵk = a/k for some positive constant a. Intu-

itively, the first constraint ensures that the parameters will reach the high probability
regions no matter how far away they were initialized to, while the second ensures that
the parameters will converge to the mode instead of just bouncing around it.

However, this reduces the expectation to be computed over a single MAP estimate
of the parameters, which does not allow for quantification of uncertainty. An al-
ternative is to use Stochastic Gradient Langevin Dynamics (SGLD) to sample from
the posterior. In this approach, while taking the gradient steps associated with the
traditional stochastic gradient optimization for maximizing the posterior probability
of the parameters, Gaussian noise is induced into the parameter updates so that the
parameters do not collapse into a maximum a-posteriori (MAP) solution. This leads
to the following parameter update:

θk+1 = θk +
ϵk
2

(
∇θ log p(θk) +

N

n

n∑
i=1

∇θ log p(xk,i|θk)
)
+ ηk ,

whereN is the total number of training samples, n is the minibacth size, ηk ∼ N (0, ϵk)
is the injected Langevin noise, and ϵk is the step-size of the gradient descent, verifying
the conditions

∑∞
i=1 ϵk = ∞ and

∑∞
i=1 ϵ

2
k < ∞.2 In the initial phase, the stochastic

gradient noise dominates the added Langevin noise and SGLD imitates standard

1In order for this algorithm to be practical the prior probability p(θ) must be differentiable with
respect to θ, so the gradients ∇θ log p(θ) can be computed.

2These conditions may be relaxed by using a sequence ϵk → ϵ0 > 0. In this case the SGLD
algorithm must be complemented with an accept-reject step similar to the Metropolis–Hastings
algorithm.
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stochastic gradient optimization. In the later phase, also called as Langevin phase, the
injected Langevin noise dominates the stochastic gradient noise and SGLD imitates
Langevin dynamics. This process generates approximate samples from the posterior
distribution of θ after the Langevin phase has been reached, when the variances from
the injected Gaussian noise and stochastic gradient computation get balanced.

Variational Method: Variational Inference. Another popular method is varia-
tional inference, consisting of approximating p(θ|D) with some qλ(θ) from a tractable
family of distributions, where λ is called the variational parameters—e.g., qλ could
be a Gaussian N (µ, σ2) with parameters λ = (µ, σ). The approximation is typically
fitted by minimizing the reverse KL-divergence

DKL(qλ(θ) || p(θ|D)) = Eqλ(θ)(log(qλ(θ))− log(p(θ|D))) ,

which measures how close qλ(θ) is to the true posterior p(θ|D).

This is still intractable because it contains the posterior term, but it can be rearranged
as follows. First note that after using Bayes we get:

DKL(qλ(θ) || p(θ|D)) = Eqλ(θ)(log(qλ(θ))− log(p(D|θ))− log(p(θ)) + log p(D))

= DKL(qλ(θ) || p(θ))− Eqλ(θ)(log(p(D|θ))) + log(p(D))

where p(θ) is a prior on θ, and p(D|θ) = ΠN
i=1p(yi|xi, θ). Since the term log(p(D))

does not depend on θ, minimizing DKL(qλ(θ) || p(θ|D)) is the same as maximizing
the evidence lower-bound (ELBO) = −Lλ(D|θ), where:

Lλ(D|θ) = −Eqλ(θ)[log(p(D|θ))]︸ ︷︷ ︸
likelihood cost

+DKL(qλ(θ) || p(θ))︸ ︷︷ ︸
complexity cost

,

that is:

min
λ

DKL(qλ(θ) || p(θ|D)) = max
λ

−Lλ(D|θ) .

The name evidence lower-bound, or ELBO, comes from the fact that

log( p(D)︸︷︷︸
evidence

) = −Lλ(D|θ) +DKL(qλ(θ) || p(θ|D))︸ ︷︷ ︸
≥0

≥ −Lλ(D|θ)︸ ︷︷ ︸
ELBO

At training time SGD can be used with Lλ(D|θ) as loss function. During the forward
pass θ can be sampled with probability p(θ|D) using MC, and for backpropagation the
gradients of the loss function with respect to λ = (µ, σ) are used (reparametrization
trick).

Aleatoric and Epistemic Uncertainty. The predictive uncertainty is the posterior
of the predictive distribution. It can be decomposed into two parts. By the law of
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total variance, we can write predictive variances as a sum of these two independent
components:

Vp(y|θ,x)[y]︸ ︷︷ ︸
predictive uncertainty

= Eqλ(θ)[Vp(y|θ,x)[y]]︸ ︷︷ ︸
aleatoric uncertainty

+Vqλ(θ)[Ep(y|θ,x)[y]]︸ ︷︷ ︸
epistemic uncertainty

,

The aleatoric term measures the average of the output variance Vp(y|θ,x)[y], and de-
pends on the data. The epistemic term measures fluctuations in the mean prediction.
These fluctuations exist because of uncertainty in the approximate posterior qλ(θ),
which depends on the model.

Dropout Approach to Uncertainty Estimation

(***** This section is under construction *****)
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