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(0) Motivation - GPS

GPS

CLIENT WANT: Coordinates of satellite and time delay (enables to
calculate distance to a satellite)?
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Motivation - GPS

S , R ∈ H = C(ZN ) —Hilbert space of digital signals, N � 1000.

S , R : {0, ....,N − 1} → C.

Satellite transmits b · S , b =coordinates.

Fact (GPS)
Client receives

R [n] = b ·
m

∑
k=1

αk · e
2πi
N ωk ·n · S [n+ τk ] +W [n], n ∈ ZN ,

m = # paths, αk ∈ C intensity, ∑m
k=1 |αk |

2 ≤ 1, ωk ∈ ZN Doppler,
τk ∈ ZN delay, along path k, W ∈ H random noise.

Problem
Design S ∈ H, and effective method to extract (b, τ), τ = min{τk},
using R and S .
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Motivation - TIME-FREQUENCY SHIFT

Simpler scenario

R [n] = e
2πi
N ω0 ·n · S [n+ τ0] + W [n].

Problem (Time-Frequency Shift)

Design S ∈ H, and method of extracting (τ0,ω0) from S and R.
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(I) Solution - MATCHED FILTER

Definition
Matched filter M(R, S) :

Time-Frequency︷ ︸︸ ︷
ZN ×ZN → C,

M(R,S)[τ,ω] =
〈
R [n] , e

2πi
N ω·n · S [n+ τ]

〉
.

Identity

M(R, S)[τ,ω] =M(S , S)[τ − τ0,ω−ω0] +O(
NSR√
N
).

Question: What S to use for extracting (τ0,ω0) fromM(R,S) ?
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Solution - MATCHED FILTER

Typical solution: S = pseudo-random.

Example

|M(R,S)| , S =pseudo-random, (τ0,ω0) = (50, 50).
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Solution - MATCHED FILTER

Complexity of Pixel-by-Pixel Algorithm

N︸︷︷︸
for each pixel

× N2︸︷︷︸
# of pixels

= N3.

Problem
Faster algorithm.
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MATCHED FILTER - FFT Reduction

Suppose L ⊂ ZN ×ZN line

ComputeM(R, S) on L in O(N · log(N)) operations!
Example:

M(R, S)[τ, 0] = 〈R [n], S [n+ τ]〉 = (S ∗ R)[τ] —Fast by FFT.

Compute entireM(R, S) in O(N2 · log(N)) operations.

Question: Can you design S and method to make almost linear
number of operations?
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(II) Flag Algorithm - IDEA

Suppose for a line L ⊂ ZN ×ZN we construct a signal SL ∈ H with
M(R,SL) of the form

|M(R, SL)|, (τ0,ω0) = (50, 50)

Then we have algorithm of complexity O(N · log(N)) !!
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Flag Algorithm - WAVEFORM DESIGN PROBLEM

Problem (Waveform Design)
For every L ⊂ ZN ×ZN construct SL ∈ H with

1 Flag. Matched filterM(R, SL) of the form

|M(R, SL)|

2 Almost orthogonality. For L 6= M the cross-correlations
|M(SL, SM )[τ,ω]| = O( 1√

N
).
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(III) Waveform Design - EXAMPLE

Consider waveform f [n] = 1√
N
e
2πi
N n.

f [n+ τ] = e
2πi
N τ · f [n], so

M(f , f )[τ,ω] =
〈
f [n], e

2πi
N ω·n · f [n+ τ]

〉
=

{
|·| = 1, if ω = 0;
0, otherwise.

Take S = f︸︷︷︸
exp

+ ϕ︸︷︷︸
pseudo-random

, then

|M(R,S)[τ,ω]| ≈


2, if (τ,ω) = (τ0,ω0);
1, on the line ω = ω0;
O( 1√

N
), otherwise.
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FLAG - Numerics

|M(R,S)|, S = f︸︷︷︸
exp

+ ϕ︸︷︷︸
pseudo-random

, (τ0,ω0) = (50, 50)
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Waveform Design - HEISENBERG (LINES) SYSTEM

Question: How to generalize the "good" orthonormal basis of H

B = {fa[n] =
1√
N
e
2πi
N an; a ∈ ZN} ?

Answer: Consider the Heisenberg operators on H = C(ZN ){
π : ZN ×ZN → U(H),

π(τ,ω)f [n] = e
2πi
N ω·n · f [n+ τ].

Property:

π(τ,ω) ◦ π(τ′,ω′) = e
2πi
N

det︷ ︸︸ ︷
(τω′ −ωτ′) · π(τ′,ω′) ◦ π(τ,ω).
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Waveform Design - HEISENBERG (LINES) SYSTEM

Restrict π to the line L = {(τ, 0); τ ∈ ZN}, obtain commutative
collection of operators

time shift︷ ︸︸ ︷
π(τ, 0) : H → H, τ ∈ ZN .

Theorem (Linear Algebra —Simultaneous Diagonalization)

There exists a basis for H of common eigenfunctions

BL = {fψ; π(τ, 0)[fψ] =

e.v.︷︸︸︷
ψ(τ) · fψ, for all τ ∈ ZN}.

Of course BL = B.
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Waveform Design - HEISENBERG (LINES) SYSTEM

Mechanism to generate ’good waveforms’:

Take any line L ⊂ ZN ×ZN ;
Restrict π to L and obtain commutative collection of operators

π(`) : H → H, ` ∈ L;

Get a basis for H of common eigenfunctions

BL = {fψ; π(`)[ fψ] =

e.v.︷︸︸︷
ψ(`) · fψ, for all ` ∈ L}.

Theorem (Support, [Calderbank—Howard—Moran, Howe])
We have ∣∣M(fψ, fψ)[τ,ω]

∣∣ = { 1, (τ,ω) ∈ L;
0, (τ,ω) /∈ L.
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HEISENBERG (LINES) SYSTEM —Numerics

∣∣M[fψ, fψ]
∣∣, fψ ∈ BL, L = {(τ, τ)}

What is next?

Just add any pseudo-random waveform.

Shamgar Gurevich (Madison) Fast Wireless Communication May 12, 2012 17 / 28



HEISENBERG (LINES) SYSTEM —Numerics

∣∣M[fψ, fψ]
∣∣, fψ ∈ BL, L = {(τ, τ)}

What is next?

Just add any pseudo-random waveform.

Shamgar Gurevich (Madison) Fast Wireless Communication May 12, 2012 17 / 28



HEISENBERG (LINES) SYSTEM —Numerics

∣∣M[fψ, fψ]
∣∣, fψ ∈ BL, L = {(τ, τ)}

What is next?

Just add any pseudo-random waveform.

Shamgar Gurevich (Madison) Fast Wireless Communication May 12, 2012 17 / 28



Waveform Design - WEIL (PEAK) SYSTEM

Discrete Fourier transform (DFT) is defined by system

ΣW : DFT ◦ π

(
τ
ω

)
= π(

(
0 −1
1 0

)
︸ ︷︷ ︸

W

(
τ
ω

)
) ◦DFT , τ,ω ∈ ZN .

Special linear group

W ∈ SL2(ZN ) = {g =
(
a b
c d

)
; a, b, c , d ∈ ZN , det(g) = 1}.

Problem (André Weil)

For each g ∈ SL2(ZN ) find operator ρ(g) on H = C(ZN ), which solves
the system of N2 linear conditions

Σg : ρ(g)︸︷︷︸
?

◦ π

(
τ
ω

)
= π(g ·

(
τ
ω

)
) ◦ ρ(g)︸︷︷︸

?

, τ,ω ∈ ZN .
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; a, b, c , d ∈ ZN , det(g) = 1}.

Problem (André Weil)

For each g ∈ SL2(ZN ) find operator ρ(g) on H = C(ZN ), which solves
the system of N2 linear conditions

Σg : ρ(g)︸︷︷︸
?

◦ π

(
τ
ω

)
= π(g ·

(
τ
ω

)
) ◦ ρ(g)︸︷︷︸

?

, τ,ω ∈ ZN .
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Waveform Design - WEIL (PEAK) SYSTEM

Theorem (Stone—von Neumann—Schur—Weil)

∃! collection {ρ(g) ∈ Sol(Σg ); g ∈ SL2(ZN )} such that{
ρ : SL2(ZN )→ U(H),
ρ(g · h) = ρ(g) ◦ ρ(h).

— Weil representation

Mechanism to generate ’good waveforms’:

Take maximal commutative subgroup T ⊂ SL2(ZN ), i.e., gh = hg for
every g , h ∈ T .
Get a commutative collection of operators

ρ(g) : H → H, g ∈ T .

Get a basis for H of common eigenfunctions

BT = {ϕχ; ρ(g)[ ϕχ] =

e.v.︷︸︸︷
χ(g) · ϕχ, for all g ∈ T}.
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Waveform Design - WEIL (PEAK) SYSTEM

Theorem (Pseudo-Randomness [G—Hadani—Sochen])

For ϕχ ∈ BT we have
∣∣∣M(ϕχ, ϕχ)[τ,ω]

∣∣∣ = { 1, (τ,ω) = (0, 0);
≤ 2√

N
, (τ,ω) 6= (0, 0).

M(ϕχ, ϕχ), T = {
(
a 0
0 a−1

)
}, ϕχ ∈ BT
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HEISENBERG+WEIL (FLAG) SYSTEM

Theorem ([Fish—G—Hadani—Sayeed—Schwartz])
Take SL = fL︸︷︷︸

∈BL

+ ϕχ︸︷︷︸
∈BT

. Then

1 Flag. We have |M(SL, SL)[τ,ω]| =


≈ 2, if (τ,ω) = (0, 0);
≈ 1, if (τ,ω) ∈ Lr (0, 0);
≤ 7√

N
, otherwise.

2 Almost orthogonality. For L 6= M we have |M(SL, SM )[τ,ω]| ≤ 7√
N
,

for every (τ,ω) ∈ ZN× ZN .

|M(SL,SL)|, L = {(τ, τ)}
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(IV) APPLICATIONS

(A) Channel Estimation
Transmit flag waveform S = SL

Receive

R [n] =
m

∑
k=1

αk · e
2πi
N ωk ·n︸ ︷︷ ︸
Doppler

· SL[n+ τk︸︷︷︸
delay

] +W [n],

W = noise, τk = delay along path k, ωk = Doppler along path k,
αk = intensity coeffi cient, |α1|2 + ...+ |αm |2 ≤ 1.
Goal Extract (αk , τk ,ωk )’s, using R and SL.
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Application - CHANNEL ESTIMATION

We have|M(R,SL)[τ,ω]| ≈
2 · αk , if (τ,ω) = (τk ,ωk );
1 · αk , if (τ,ω) ∈ L+ (τk ,ωk )r (τk ,ωk );
≤ O( m√

N
), otherwise.

|M(R, SL)|, L = {(τ, 0)}, (αk , τk ,ωk ) = (
1√
3
, 50k, 50k), k = 1, 2, 3.

Flag method computes channel parameters in O(m ·N log(N)).
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Application - MOBILE COMMUNICATION

(B) Mobile Communication: CDMA, GSM...

User transmits message
+1 or −1︷︸︸︷
b · SL

using his private flag waveform SL.
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Application - MOBILE COMMUNICATION

Antenna receives:

R [n] = b ·
m

∑
k=1

αk · e
2πi
N ωk ·n · SL[n+ τk ] +W [n],

Assumption (slow varying channel): Antenna knows, using our
O(m ·N log(N)) channel estimation, the (αk ,ωk , τk )’s.

Goal: Extract b using R and SL.
Method:〈

R [n],
m

∑
k=1

αk · e
2πi
N ωk ·n · SL[n+ τk ]

〉
≈
(

m

∑
k=1
|αk |2

)
· b.
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Application - GPS

(C) GPS

CLIENT WANT: Coordinates of satellite and time delay (enables to
calculate distance to a satellite)?
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Application - GPS

SL, R ∈ H = C(ZN ), N >> 1000.

Fact
GPS System

R [n] = b ·
m

∑
k=1

αk · e
2πi
N ωk ·n · SL[n+ τk ] + W [n],

τk =delay, ωk =Doppler, b =coordinates of satellite, αk = intensity
coeffi cient, |α1|2 + ...+ |αm |2 ≤ 1.

Problem
Extract (b, τ), τ = min{τk’s} using R and SL.

Solution
Flag method solves in O(m ·N log(N)).
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THANK YOU

Sasha Ronny

Akbar Oded
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