The Heisenberg–Weil Representation and Fast Wireless Communication

Shamgar Gurevich

Madison

May 12, 2012

Shamgar Gurevich (Madison)

Fast Wireless Communication

May 12, 2012 1 / 28

- Alexander Fish (Math, Madison)
- Ronny Hadani (Math, Austin)
- Akbar Sayeed (ECE, Madison)
- Oded Schwartz (EECS, Berkeley)

(0) Motivation - GPS

• GPS

CLIENT WANT: Coordinates of satellite and time delay (enables to calculate distance to a satellite)?

Shamgar Gurevich (Madison)

May 12, 2012 3 / 28

• S, $R \in \mathcal{H} = \mathbb{C}(\mathbb{Z}_N)$ – Hilbert space of digital signals, $N \gg 1000$.

Shamgar Gurevich (Madison)

Fast Wireless Communication

▶ ◀ 클 ▶ 클 ∽ ९ ୯ May 12, 2012 4 / 28

(日) (同) (三) (三)

S, R ∈ H = C(Z_N) - Hilbert space of digital signals, N ≫ 1000. S, R : {0, ..., N − 1} → C.

< ロト < 同ト < ヨト < ヨト

- S, $R \in \mathcal{H} = \mathbb{C}(\mathbb{Z}_N)$ Hilbert space of digital signals, $N \gg 1000$.
 - $S, R: \{0, \dots, N-1\} \rightarrow \mathbb{C}.$
 - Satellite transmits $b \cdot S$, b =coordinates.

- S, R ∈ H = C(Z_N) Hilbert space of digital signals, N ≫ 1000.
 S, R : {0,..., N − 1} → C.
 - Satellite transmits $b \cdot S$, b =coordinates.

Fact (GPS)

Client receives

$$R[n] = b \cdot \sum_{k=1}^{m} \alpha_k \cdot e^{\frac{2\pi i}{N} \omega_k \cdot n} \cdot S[n + \tau_k] + \mathcal{W}[n], \quad n \in \mathbb{Z}_N,$$

m = # paths, $\alpha_k \in \mathbb{C}$ intensity, $\sum_{k=1}^m |\alpha_k|^2 \leq 1$, $\omega_k \in \mathbb{Z}_N$ Doppler, $\tau_k \in \mathbb{Z}_N$ delay, along path k, $\mathcal{W} \in \mathcal{H}$ random noise.

- S, R ∈ H = C(Z_N) Hilbert space of digital signals, N ≫ 1000.
 S, R : {0,..., N − 1} → C.
 - Satellite transmits $b \cdot S$, b = coordinates.

Fact (GPS)

Client receives

$$R[n] = b \cdot \sum_{k=1}^{m} \alpha_k \cdot e^{\frac{2\pi i}{N} \omega_k \cdot n} \cdot S[n+\tau_k] + \mathcal{W}[n], \quad n \in \mathbb{Z}_N,$$

m = # paths, $\alpha_k \in \mathbb{C}$ intensity, $\sum_{k=1}^m |\alpha_k|^2 \leq 1$, $\omega_k \in \mathbb{Z}_N$ Doppler, $\tau_k \in \mathbb{Z}_N$ delay, along path k, $\mathcal{W} \in \mathcal{H}$ random noise.

Problem

Design $S \in \mathcal{H}$, and effective method to extract (b, τ) , $\tau = \min{\{\tau_k\}}$, using R and S.

Shamgar Gurevich (Madison)

• Simpler scenario

$$R[n] = e^{\frac{2\pi i}{N}\omega_0 \cdot n} \cdot S[n+\tau_0] + \mathcal{W}[n].$$

Simpler scenario

$$R[n] = e^{\frac{2\pi i}{N}\omega_0 \cdot n} \cdot S[n+\tau_0] + \mathcal{W}[n].$$

Problem (Time-Frequency Shift)

Design $S \in \mathcal{H}$, and method of extracting (τ_0, ω_0) from S and R.

(I) Solution - MATCHED FILTER

Definition

Matched filter

$$\mathcal{M}(R,S): \underbrace{\mathbb{Z}_{N} \times \mathbb{Z}_{N}}_{\mathsf{Time-Frequency}} \to \mathbb{C},$$
$$\mathcal{M}(R,S)[\tau,\omega] = \left\langle R[n] , e^{\frac{2\pi i}{N}\omega \cdot n} \cdot S[n+\tau] \right\rangle.$$

Image: A match a ma

(I) Solution - MATCHED FILTER

Definition

Matched filter

$$\mathcal{M}(R,S): \underbrace{\overline{\mathbb{Z}_{N} \times \mathbb{Z}_{N}}}_{\mathcal{M}(R,S)} \to \mathbb{C},$$
$$\mathcal{M}(R,S)[\tau,\omega] = \left\langle R[n] , e^{\frac{2\pi i}{N}\omega \cdot n} \cdot S[n+\tau] \right\rangle.$$

Identity

$$\mathcal{M}(R,S)[\tau,\omega] = \mathcal{M}(S,S)[\tau-\tau_0,\omega-\omega_0] + O(\frac{NSR}{\sqrt{N}}).$$

(I) Solution - MATCHED FILTER

Definition

Matched filter

$$\mathcal{M}(R,S): \quad \overbrace{\mathbb{Z}_N \times \mathbb{Z}_N}^{\mathsf{Time-Frequency}} \to \mathbb{C},$$
$$\mathcal{M}(R,S)[\tau,\omega] = \left\langle R[n] , \ e^{\frac{2\pi i}{N}\omega \cdot n} \cdot S[n+\tau] \right\rangle.$$

Identity

$$\mathcal{M}(R,S)[\tau,\omega] = \mathcal{M}(S,S)[\tau-\tau_0,\omega-\omega_0] + O(\frac{NSR}{\sqrt{N}}).$$

• Question: What S to use for extracting (au_0, ω_0) from $\mathcal{M}(R, S)$?

- ∢ ∃ ▶

Solution - MATCHED FILTER

• Typical solution: S = pseudo-random.

Example

 $|\mathcal{M}(\textit{R},\textit{S})|$, S=pseudo-random, $(au_{0},\omega_{0})=($ 50, 50).

• Complexity of Pixel-by-Pixel Algorithm

► < ∃ ►</p>

• Complexity of Pixel-by-Pixel Algorithm

Problem

Faster algorithm.

Shamgar Gurevich (Madison)

Fast Wireless Communication

May 12, 2012 8 / 28

- ∢ ∃ →

• Suppose $L \subset \mathbb{Z}_N \times \mathbb{Z}_N$ line

• Suppose $L \subset \mathbb{Z}_N \times \mathbb{Z}_N$ line

• Compute $\mathcal{M}(R, S)$ on L in $O(N \cdot \log(N))$ operations!

• Suppose $L \subset \mathbb{Z}_N \times \mathbb{Z}_N$ line

- Compute $\mathcal{M}(R, S)$ on L in $O(N \cdot \log(N))$ operations!
- Example:

 $\mathcal{M}(\textit{R},\textit{S})[\tau,0] = \langle \textit{R}[\textit{n}],\textit{S}[\textit{n}+\tau] \rangle = (\textit{S}*\textit{R})[\tau] ~~\text{-}~\text{Fast by FFT}.$

• Suppose $L \subset \mathbb{Z}_N \times \mathbb{Z}_N$ line

- Compute $\mathcal{M}(R, S)$ on L in $O(N \cdot \log(N))$ operations!
- Example:

 $\mathcal{M}(\mathsf{R},\mathsf{S})[\tau,\mathsf{0}] = \langle \mathsf{R}[\mathsf{n}],\mathsf{S}[\mathsf{n}+\tau]\rangle = (\mathsf{S}*\mathsf{R})[\tau] \;\;\text{-}\;\mathsf{Fast}\;\mathsf{by}\;\mathsf{FFT}.$

• Compute entire $\mathcal{M}(R, S)$ in $O(N^2 \cdot \log(N))$ operations.

• Suppose $L \subset \mathbb{Z}_N \times \mathbb{Z}_N$ line

• Compute $\mathcal{M}(R, S)$ on L in $O(N \cdot \log(N))$ operations!

Example:

 $\mathcal{M}(\mathsf{R},\mathsf{S})[\tau,\mathsf{0}] = \langle \mathsf{R}[\mathsf{n}],\mathsf{S}[\mathsf{n}+\tau]\rangle = (\mathsf{S}*\mathsf{R})[\tau] \;\;\text{-}\;\mathsf{Fast}\;\mathsf{by}\;\mathsf{FFT}.$

- Compute entire $\mathcal{M}(R, S)$ in $O(N^2 \cdot \log(N))$ operations.
- **Question:** Can you design S and method to make almost linear number of operations?

Shamgar Gurevich (Madison)

(II) Flag Algorithm - IDEA

 Suppose for a line L ⊂ Z_N × Z_N we construct a signal S_L ∈ H with *M*(R, S_L) of the form

 $|\mathcal{M}(\textit{R},\textit{S}_L)|$, $(au_0,\omega_0)=(50,50)$

Then we have algorithm of complexity $O(N \cdot \log(N))$!!

Shamgar Gurevich (Madison)

Fast Wireless Communication

May 12, 2012 10 / 28

Flag Algorithm - WAVEFORM DESIGN PROBLEM

Problem (Waveform Design)

For every $L \subset \mathbb{Z}_N \times \mathbb{Z}_N$ construct $S_L \in \mathcal{H}$ with

3

• • • • • • • • • • • •

Flag Algorithm - WAVEFORM DESIGN PROBLEM

Problem (Waveform Design)

For every $L \subset \mathbb{Z}_N \times \mathbb{Z}_N$ construct $S_L \in \mathcal{H}$ with

1 Flag. Matched filter $\mathcal{M}(R, S_L)$ of the form

 $|\mathcal{M}(R, S_L)|$

Shamgar Gurevich (Madison)

Fast Wireless Communication

May 12, 2012 11 / 28

Flag Algorithm - WAVEFORM DESIGN PROBLEM

Problem (Waveform Design)

For every $L \subset \mathbb{Z}_N \times \mathbb{Z}_N$ construct $S_L \in \mathcal{H}$ with

1 Flag. Matched filter $\mathcal{M}(R, S_L)$ of the form

 $|\mathcal{M}(R, S_L)|$

2 Almost orthogonality. For $L \neq M$ the cross-correlations $|\mathcal{M}(S_L, S_M)[\tau, \omega]| = O(\frac{1}{\sqrt{N}}).$

(III) Waveform Design - EXAMPLE

• Consider waveform
$$f[n] = \frac{1}{\sqrt{N}} e^{\frac{2\pi i}{N}n}$$

イロト イヨト イヨト イヨト

(III) Waveform Design - EXAMPLE

• Consider waveform
$$f[n] = \frac{1}{\sqrt{N}} e^{\frac{2\pi i}{N}n}$$
.
• $f[n+\tau] = e^{\frac{2\pi i}{N}\tau} \cdot f[n]$, so
 $\mathcal{M}(f,f)[\tau,\omega] = \langle f[n], e^{\frac{2\pi i}{N}\omega \cdot n} \cdot f[n+\tau] \rangle$
 $= \begin{cases} |\cdot| = 1, \text{ if } \omega = 0; \\ 0, & \text{otherwise.} \end{cases}$

æ

(III) Waveform Design - EXAMPLE

• Consider waveform
$$f[n] = \frac{1}{\sqrt{N}} e^{\frac{2\pi i}{N}n}$$
.
• $f[n+\tau] = e^{\frac{2\pi i}{N}\tau} \cdot f[n]$, so
 $\mathcal{M}(f,f)[\tau,\omega] = \langle f[n], e^{\frac{2\pi i}{N}\omega \cdot n} \cdot f[n+\tau] \rangle$
 $= \begin{cases} |\cdot| = 1, \text{ if } \omega = 0; \\ 0, & \text{otherwise.} \end{cases}$
• Take $S = \underbrace{f}_{e \times p} + \underbrace{\varphi}_{pseudo-random}$, then
 $|\mathcal{M}(R,S)[\tau,\omega]| \approx \begin{cases} 2, & \text{if } (\tau,\omega) = (\tau_0,\omega_0); \\ 1, & \text{on the line } \omega = \omega_0; \\ O(\frac{1}{\sqrt{N}}), & \text{otherwise.} \end{cases}$

æ

<ロト </p>

FLAG - Numerics

May 12, 2012 13 / 28

э

→ 米温→ 米温→

 \bullet Question: How to generalize the "good" orthonormal basis of ${\cal H}$

$$\mathcal{B} = \{f_a[n] = rac{1}{\sqrt{N}}e^{rac{2\pi i}{N}an}; a \in \mathbb{Z}_N\} ?$$

• Question: How to generalize the "good" orthonormal basis of ${\cal H}$

$$\mathcal{B}=\{f_{\mathsf{a}}[\mathsf{n}]=rac{1}{\sqrt{N}}e^{rac{2\pi i}{N}\mathsf{a}\mathsf{n}};\;\mathsf{a}\in\mathbb{Z}_{N}\}\;?$$

• Answer: Consider the Heisenberg operators on $\mathcal{H} = \mathbb{C}(\mathbb{Z}_N)$

$$\begin{cases} \pi: \mathbb{Z}_N \times \mathbb{Z}_N \to U(\mathcal{H}), \\ \pi(\tau, \omega) f[n] = e^{\frac{2\pi i}{N}\omega \cdot n} \cdot f[n+\tau]. \end{cases}$$

• Question: How to generalize the "good" orthonormal basis of ${\cal H}$

$$\mathcal{B}=\{f_{a}[n]=rac{1}{\sqrt{N}}e^{rac{2\pi i}{N}an};\;a\in\mathbb{Z}_{N}\}$$
 ?

• Answer: Consider the Heisenberg operators on $\mathcal{H} = \mathbb{C}(\mathbb{Z}_N)$

$$\begin{cases} \pi: \mathbb{Z}_N \times \mathbb{Z}_N \to U(\mathcal{H}), \\ \pi(\tau, \omega) f[n] = e^{\frac{2\pi i}{N} \omega \cdot n} \cdot f[n+\tau]. \end{cases}$$

Property:

$$\pi(\tau,\omega)\circ\pi(\tau',\omega')=e^{\frac{2\pi i}{N}(\tau\omega'-\omega\tau')}\cdot\pi(\tau',\omega')\circ\pi(\tau,\omega).$$

Restrict π to the line L = {(τ, 0); τ ∈ Z_N}, obtain commutative collection of operators

time shift $\overbrace{\pi(\tau,0)}^{\sim}:\mathcal{H}\to\mathcal{H}, \ \tau\in\mathbb{Z}_N.$

Restrict π to the line L = {(τ, 0); τ ∈ Z_N}, obtain commutative collection of operators

$$\overbrace{\pi(\tau,0)}^{\text{time shift}}:\mathcal{H}\to\mathcal{H}, \ \tau\in\mathbb{Z}_N.$$

Theorem (Linear Algebra – Simultaneous Diagonalization)

There exists a basis for $\mathcal H$ of common eigenfunctions

$$\mathcal{B}_L = \{ f_{\psi}; \ \pi(\tau, 0)[f_{\psi}] = \overbrace{\psi(\tau)}^{e.v.} \cdot f_{\psi}, \ \text{for all } \tau \in \mathbb{Z}_N \}.$$

Restrict π to the line L = {(τ, 0); τ ∈ Z_N}, obtain commutative collection of operators

$$\overbrace{\pi(\tau,0)}^{\text{time shift}}:\mathcal{H}\to\mathcal{H}, \ \tau\in\mathbb{Z}_N.$$

Theorem (Linear Algebra – Simultaneous Diagonalization)

There exists a basis for $\mathcal H$ of common eigenfunctions

$$\mathcal{B}_L = \{ f_{\psi}; \ \pi(\tau, 0)[f_{\psi}] = \overbrace{\psi(\tau)}^{e.v.} \cdot f_{\psi}, \ \text{for all } \tau \in \mathbb{Z}_N \}.$$

• Of course $\mathcal{B}_L = \mathcal{B}_L$.

• Mechanism to generate 'good waveforms':

Shamgar Gurevich (Madison)

Fast Wireless Communication

May 12, 2012 16 / 28
- Mechanism to generate 'good waveforms':
 - Take any line $L \subset \mathbb{Z}_N \times \mathbb{Z}_N$;

• Mechanism to generate 'good waveforms':

- Take any line $L \subset \mathbb{Z}_N \times \mathbb{Z}_N$;
- Restrict π to L and obtain <u>commutative</u> collection of operators

 $\pi(\ell): \mathcal{H} \to \mathcal{H}, \ \ell \in L;$

• Mechanism to generate 'good waveforms':

- Take any line $L \subset \mathbb{Z}_N \times \mathbb{Z}_N$;
- Restrict π to L and obtain <u>commutative</u> collection of operators

$$\pi(\ell): \mathcal{H} \to \mathcal{H}, \ \ell \in L;$$

 $\bullet\,$ Get a basis for ${\cal H}$ of common eigenfunctions

$$\mathcal{B}_{L} = \{ f_{\psi}; \ \pi(\ell)[\ f_{\psi}] = \overbrace{\psi(\ell)}^{\text{e.v.}} \cdot f_{\psi}, \text{ for all } \ell \in L \}.$$

• Mechanism to generate 'good waveforms':

- Take any line $L \subset \mathbb{Z}_N \times \mathbb{Z}_N$;
- Restrict π to L and obtain <u>commutative</u> collection of operators

$$\pi(\ell): \mathcal{H} \to \mathcal{H}, \ \ell \in L;$$

 $\bullet\,$ Get a basis for ${\cal H}$ of common eigenfunctions

$$\mathcal{B}_{L} = \{ f_{\psi}; \ \pi(\ell)[\ f_{\psi}] = \overbrace{\psi(\ell)}^{\text{e.v.}} \cdot f_{\psi}, \text{ for all } \ell \in L \}.$$

Theorem (Support, [Calderbank–Howard–Moran, Howe])

We have

$$\left|\mathcal{M}(f_{\psi},f_{\psi})[\tau,\omega]\right| = \begin{cases} 1, \ (\tau,\omega) \in L; \\ 0, \ (\tau,\omega) \notin L. \end{cases}$$

Shamgar Gurevich (Madison)

Fast Wireless Communication

HEISENBERG (LINES) SYSTEM - Numerics

 $\left|\mathcal{M}[f_{\psi},f_{\psi}]\right|, f_{\psi} \in \mathcal{B}_{L}, L = \{(\tau,\tau)\}$

Shamgar Gurevich (Madison)

May 12, 2012 17 / 28

HEISENBERG (LINES) SYSTEM – Numerics

• What is next?

HEISENBERG (LINES) SYSTEM - Numerics

$$\left|\mathcal{M}[f_{\psi}, f_{\psi}]\right|, f_{\psi} \in \mathcal{B}_L, L = \{(\tau, \tau)\}$$

۲

- What is next?
- Just add any pseudo-random waveform.

• Discrete Fourier transform (DFT) is defined by system

$$\Sigma_W: \quad DFT \circ \pi \begin{pmatrix} \tau \\ \omega \end{pmatrix} = \pi(\underbrace{\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}_{W} \begin{pmatrix} \tau \\ \omega \end{pmatrix}) \circ DFT, \quad \tau, \omega \in \mathbb{Z}_N.$$

• Discrete Fourier transform (DFT) is defined by system

$$\Sigma_W: \quad DFT \circ \pi\begin{pmatrix} \tau\\ \omega \end{pmatrix} = \pi(\underbrace{\begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix}}_{W} \begin{pmatrix} \tau\\ \omega \end{pmatrix}) \circ DFT, \quad \tau, \omega \in \mathbb{Z}_N.$$

Special linear group

$$W \in SL_2(\mathbb{Z}_N) = \{g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}; a, b, c, d \in \mathbb{Z}_N, \det(g) = 1\}.$$

• Discrete Fourier transform (DFT) is defined by system

$$\Sigma_W: \quad DFT \circ \pi \begin{pmatrix} \tau \\ \omega \end{pmatrix} = \pi(\underbrace{\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}_W \begin{pmatrix} \tau \\ \omega \end{pmatrix}) \circ DFT, \quad \tau, \omega \in \mathbb{Z}_N.$$

Special linear group

$$W \in SL_2(\mathbb{Z}_N) = \{g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}; a, b, c, d \in \mathbb{Z}_N, \det(g) = 1\}.$$

Problem (André Weil)

For each $g \in SL_2(\mathbb{Z}_N)$ find operator $\rho(g)$ on $\mathcal{H} = \mathbb{C}(\mathbb{Z}_N)$, which solves the system of N^2 linear conditions

$$\Sigma_{g}: \qquad \underbrace{\rho(g)}_{?} \circ \pi\begin{pmatrix} \tau\\ \omega \end{pmatrix} = \pi(g \cdot \begin{pmatrix} \tau\\ \omega \end{pmatrix}) \circ \underbrace{\rho(g)}_{?}, \qquad \tau, \omega \in \mathbb{Z}_{N}.$$

Shamgar Gurevich (Madison)

Theorem (Stone-von Neumann-Schur-Weil)

 $\exists ! \ \textit{collection} \ \{\rho(g) \in Sol(\Sigma_g); \ g \in \textit{SL}_2(\mathbb{Z}_N) \}$ such that

$$\begin{cases} \rho: SL_2(\mathbb{Z}_N) \to U(\mathcal{H}), \\ \rho(g \cdot h) = \rho(g) \circ \rho(h). \end{cases}$$
 — Weil representation

Theorem (Stone-von Neumann-Schur-Weil)

 $\exists ! \mbox{ collection } \{\rho(g) \in Sol(\Sigma_g); \, g \in SL_2(\mathbb{Z}_N) \}$ such that

• Mechanism to generate 'good waveforms':

Theorem (Stone-von Neumann-Schur-Weil)

 $\exists ! \mbox{ collection } \{\rho(g) \in Sol(\Sigma_g); \, g \in SL_2(\mathbb{Z}_N) \}$ such that

$$\begin{cases} \rho: SL_2(\mathbb{Z}_N) \to U(\mathcal{H}), \\ \rho(g \cdot h) = \rho(g) \circ \rho(h). \end{cases}$$
 — Weil representation

- Mechanism to generate 'good waveforms':
 - Take maximal commutative subgroup T ⊂ SL₂(Z_N), i.e., gh = hg for every g, h ∈ T.

Theorem (Stone-von Neumann-Schur-Weil)

 $\exists ! \mbox{ collection } \{\rho(g) \in Sol(\Sigma_g); \, g \in SL_2(\mathbb{Z}_N) \}$ such that

 $\left\{ \begin{array}{ll} \rho: SL_2(\mathbb{Z}_N) \to U(\mathcal{H}), \\ \rho(g \cdot h) = \rho(g) \circ \rho(h). \end{array} \right.$ Weil representation

- Mechanism to generate 'good waveforms':
 - Take maximal commutative subgroup T ⊂ SL₂(Z_N), i.e., gh = hg for every g, h ∈ T.
 - Get a <u>commutative</u> collection of operators

$$\rho(g): \mathcal{H} \to \mathcal{H}, g \in T.$$

Theorem (Stone-von Neumann-Schur-Weil)

 $\exists ! \mbox{ collection } \{\rho(g) \in Sol(\Sigma_g); \, g \in SL_2(\mathbb{Z}_N) \}$ such that

 $\left\{ \begin{array}{ll} \rho: SL_2(\mathbb{Z}_N) \to U(\mathcal{H}), \\ \rho(g \cdot h) = \rho(g) \circ \rho(h). \end{array} \right. \quad \text{Weil representation}$

• Mechanism to generate 'good waveforms':

- Take maximal commutative subgroup $T \subset SL_2(\mathbb{Z}_N)$, i.e., gh = hg for every $g, h \in T$.
- Get a <u>commutative</u> collection of operators

$$ho(g):\mathcal{H}
ightarrow\mathcal{H},\ g\in\mathcal{T}.$$

 $\bullet\,$ Get a basis for ${\cal H}$ of common eigenfunctions

$$\mathcal{B}_{\mathcal{T}} = \{ \varphi_{\chi}; \ \rho(g)[\ \varphi_{\chi}] = \overbrace{\chi(g)}^{\text{e.v.}} \cdot \varphi_{\chi}, \ \text{ for all } g \in \mathcal{T} \}.$$

Theorem (Pseudo-Randomness [G–Hadani–Sochen])

For
$$\varphi_{\chi} \in \mathcal{B}_{T}$$
 we have $\left| \mathcal{M}(\varphi_{\chi}, \varphi_{\chi})[\tau, \omega] \right| = \begin{cases} 1, & (\tau, \omega) = (0, 0); \\ \leq \frac{2}{\sqrt{N}}, & (\tau, \omega) \neq (0, 0). \end{cases}$

Theorem ([Fish–G–Hadani–Sayeed–Schwartz])

Take
$$S_L = \underbrace{f_L}_{\in \mathcal{B}_L} + \underbrace{\varphi_{\chi}}_{\in \mathcal{B}_T}$$
. Then

Shamgar Gurevich (Madison)

Fast Wireless Communication

≣▶ < ≣▶ ≣ √००० May 12, 2012 21 / 28

Theorem ([Fish–G–Hadani–Sayeed–Schwartz])

Take $S_L = \underbrace{f_L}_{\in \mathcal{B}_L} + \underbrace{\varphi_{\chi}}_{\in \mathcal{B}_T}$. Then

• Flag. We have
$$|\mathcal{M}(S_L, S_L)[\tau, \omega]| = \begin{cases} \approx 2, \text{ if } (\tau, \omega) = (0, 0); \\ \approx 1, \text{ if } (\tau, \omega) \in L \setminus (0, 0); \\ \leq \frac{7}{\sqrt{N}}, \text{ otherwise.} \end{cases}$$

イロト イポト イヨト イヨト

Theorem ([Fish–G–Hadani–Sayeed–Schwartz])

Take $S_L = \underbrace{f_L}_{\in \mathcal{B}_L} + \underbrace{\varphi_{\chi}}_{\in \mathcal{B}_T}$. Then

• Flag. We have
$$|\mathcal{M}(S_L, S_L)[\tau, \omega]| = \begin{cases} \approx 2, \text{ if } (\tau, \omega) = (0, 0); \\ \approx 1, \text{ if } (\tau, \omega) \in L \setminus (0, 0); \\ \leq \frac{7}{\sqrt{N}}, \text{ otherwise.} \end{cases}$$

2 Almost orthogonality. For $L \neq M$ we have $|\mathcal{M}(S_L, S_M)[\tau, \omega]| \leq \frac{7}{\sqrt{N}}$, for every $(\tau, \omega) \in \mathbb{Z}_N \times \mathbb{Z}_N$.

Theorem ([Fish–G–Hadani–Sayeed–Schwartz])

Take $S_L = \underbrace{f_L}_{\in \mathcal{B}_L} + \underbrace{\varphi_{\chi}}_{\in \mathcal{B}_T}$. Then

• Flag. We have
$$|\mathcal{M}(S_L, S_L)[\tau, \omega]| = \begin{cases} \approx 2, \text{ if } (\tau, \omega) = (0, 0); \\ \approx 1, \text{ if } (\tau, \omega) \in L \smallsetminus (0, 0); \\ \leq \frac{7}{\sqrt{N}}, \text{ otherwise.} \end{cases}$$

2 Almost orthogonality. For $L \neq M$ we have $|\mathcal{M}(S_L, S_M)[\tau, \omega]| \leq \frac{7}{\sqrt{N}}$, for every $(\tau, \omega) \in \mathbb{Z}_N \times \mathbb{Z}_N$.

(IV) APPLICATIONS

- (A) Channel Estimation
 - Transmit flag waveform $S = S_L$

Image: Image:

(IV) APPLICATIONS

- (A) Channel Estimation
 - Transmit flag waveform $S = S_L$

Receive

$$R[n] = \sum_{k=1}^{m} \alpha_k \cdot \underbrace{e^{\frac{2\pi i}{N}\omega_k \cdot n}}_{\text{Doppler}} \cdot S_L[n + \underbrace{\tau_k}_{\text{delay}}] + \mathcal{W}[n],$$

 $\mathcal{W} = \text{noise}, \ \tau_k = \text{delay along path } k, \ \omega_k = \text{Doppler along path } k, \ \alpha_k = \text{intensity coefficient}, \ |\alpha_1|^2 + ... + \ |\alpha_m|^2 \leq 1.$

(IV) APPLICATIONS

- (A) Channel Estimation
 - Transmit flag waveform $S = S_L$

Receive

$$R[n] = \sum_{k=1}^{m} \alpha_k \cdot \underbrace{e^{\frac{2\pi i}{N}\omega_k \cdot n}}_{\text{Doppler}} \cdot S_L[n + \underbrace{\tau_k}_{\text{delay}}] + \mathcal{W}[n],$$

 $\mathcal{W} =$ noise, $\tau_k =$ delay along path k, $\omega_k =$ Doppler along path k, $\alpha_k =$ intensity coefficient, $|\alpha_1|^2 + ... + |\alpha_m|^2 \leq 1$. • Goal Extract $(\alpha_k, \tau_k, \omega_k)$'s, using R and S_L .

Application - CHANNEL ESTIMATION

• We have
$$|\mathcal{M}(R, S_L)[\tau, \omega]| \approx$$

$$\begin{cases}
2 \cdot \alpha_k, \text{ if } (\tau, \omega) = (\tau_k, \omega_k); \\
1 \cdot \alpha_k, \text{ if } (\tau, \omega) \in L + (\tau_k, \omega_k) \smallsetminus (\tau_k, \omega_k); \\
\leq O(\frac{m}{\sqrt{N}}), \text{ otherwise.} \end{cases}$$

 $|\mathcal{M}(R, S_L)|, L = \{(\tau, 0)\}, (\alpha_k, \tau_k, \omega_k) = (\frac{1}{\sqrt{3}}, 50k, 50k), k = 1, 2, 3.$

Application - CHANNEL ESTIMATION

• We have
$$|\mathcal{M}(R, S_L)[\tau, \omega]| \approx$$

$$\begin{cases}
2 \cdot \alpha_k, \text{ if } (\tau, \omega) = (\tau_k, \omega_k); \\
1 \cdot \alpha_k, \text{ if } (\tau, \omega) \in L + (\tau_k, \omega_k) \smallsetminus (\tau_k, \omega_k); \\
\leq O(\frac{m}{\sqrt{N}}), \text{ otherwise.} \end{cases}$$

 $|\mathcal{M}(R, S_L)|, L = \{(\tau, 0)\}, (\alpha_k, \tau_k, \omega_k) = (\frac{1}{\sqrt{3}}, 50k, 50k), k = 1, 2, 3.$

• Flag method computes channel parameters in $O(m \cdot N \log(N))$.

Shamgar Gurevich (Madison)

Fast Wireless Communication

May 12, 2012 23 / 28

Application - MOBILE COMMUNICATION

• (B) Mobile Communication: CDMA, GSM...

Application - MOBILE COMMUNICATION

• (B) Mobile Communication: CDMA, GSM...

• User transmits message

 $b^{+1 \text{ or } -1} \cdot S_l$

using his private flag waveform S_L .

Application - MOBILE COMMUNICATION

• Antenna receives:

$$R[n] = b \cdot \sum_{k=1}^{m} \alpha_k \cdot e^{\frac{2\pi i}{N}\omega_k \cdot n} \cdot S_L[n+\tau_k] + \mathcal{W}[n],$$

► < ∃ ►</p>

• Antenna receives:

$$R[n] = b \cdot \sum_{k=1}^{m} \alpha_k \cdot e^{\frac{2\pi i}{N} \omega_k \cdot n} \cdot S_L[n+\tau_k] + \mathcal{W}[n],$$

• Assumption (slow varying channel): Antenna knows, using our $O(m \cdot N \log(N))$ channel estimation, the $(\alpha_k, \omega_k, \tau_k)$'s.

• Antenna receives:

$$R[n] = b \cdot \sum_{k=1}^{m} \alpha_k \cdot e^{\frac{2\pi i}{N} \omega_k \cdot n} \cdot S_L[n + \tau_k] + \mathcal{W}[n],$$

- Assumption (slow varying channel): Antenna knows, using our $O(m \cdot N \log(N))$ channel estimation, the $(\alpha_k, \omega_k, \tau_k)$'s.
- Goal: Extract b using R and S_L .

• Antenna receives:

$$R[n] = b \cdot \sum_{k=1}^{m} \alpha_k \cdot e^{\frac{2\pi i}{N}\omega_k \cdot n} \cdot S_L[n+\tau_k] + \mathcal{W}[n],$$

- Assumption (slow varying channel): Antenna knows, using our $O(m \cdot N \log(N))$ channel estimation, the $(\alpha_k, \omega_k, \tau_k)$'s.
- Goal: Extract b using R and S_L .
- Method:

$$\left\langle R[n], \sum_{k=1}^{m} \alpha_k \cdot e^{\frac{2\pi i}{N}\omega_k \cdot n} \cdot S_L[n+\tau_k] \right\rangle \approx \left(\sum_{k=1}^{m} |\alpha_k|^2 \right) \cdot b.$$

• (C) GPS

CLIENT WANT: Coordinates of satellite and time delay (enables to calculate distance to a satellite)?

Shamgar Gurevich (Madison)

Fast Wireless Communication

May 12, 2012 26 / 28

•
$$S_L$$
, $R \in \mathcal{H} = \mathbb{C}(\mathbb{Z}_N)$, $N >> 1000$.

Shamgar Gurevich (Madison)

メロト メポト メヨト メヨト

•
$$S_L$$
, $R \in \mathcal{H} = \mathbb{C}(\mathbb{Z}_N)$, $N >> 1000$.

Fact

GPS System

$$R[n] = b \cdot \sum_{k=1}^{m} \alpha_k \cdot e^{\frac{2\pi i}{N}\omega_k \cdot n} \cdot S_L[n+\tau_k] + \mathcal{W}[n],$$

 $\tau_k = delay, \ \omega_k = Doppler, \ b = coordinates \ of \ satellite, \ \alpha_k = intensity \ coefficient, \ |\alpha_1|^2 + ... + |\alpha_m|^2 \leq 1.$

イロト イ団ト イヨト イヨト 三日

•
$$S_L$$
, $R \in \mathcal{H} = \mathbb{C}(\mathbb{Z}_N)$, $N >> 1000$.

Fact

GPS System

$$R[n] = b \cdot \sum_{k=1}^{m} \alpha_k \cdot e^{\frac{2\pi i}{N}\omega_k \cdot n} \cdot S_L[n+\tau_k] + \mathcal{W}[n],$$

 $\tau_k = delay, \ \omega_k = Doppler, \ b = coordinates \ of \ satellite, \ \alpha_k = intensity \ coefficient, \ |\alpha_1|^2 + ... + |\alpha_m|^2 \leq 1.$

Problem

Extract
$$(b, \tau)$$
, $\tau = \min{\{\tau_k \ s\}}$ using R and S_L .

個人 くほん くほん … ほ

•
$$S_L$$
, $R \in \mathcal{H} = \mathbb{C}(\mathbb{Z}_N)$, $N >> 1000$.

Fact

GPS System

$$R[n] = b \cdot \sum_{k=1}^{m} \alpha_k \cdot e^{\frac{2\pi i}{N}\omega_k \cdot n} \cdot S_L[n+\tau_k] + \mathcal{W}[n],$$

 $\tau_k = delay, \ \omega_k = Doppler, \ b = coordinates \ of \ satellite, \ \alpha_k = intensity \ coefficient, \ |\alpha_1|^2 + ... + |\alpha_m|^2 \leq 1.$

Problem

Extract
$$(b, \tau)$$
, $\tau = \min{\{\tau_k \ s\}}$ using R and S_L .

Solution

Flag method solves in $O(m \cdot N \log(N))$.

Shamgar Gurevich (Madison)
THANK YOU

Sasha

Ronny

Akbar

Oded

• • • • • • • •

Shamgar Gurevich (Madison)

æ May 12, 2012

∃ →