Categorical Weil Representation \& Sign Problem

Shamgar Gurevich

Madison

May 16, 2012

Joint work with:

- Ronny Hadani (Math, Austin)

(0) Motivation - CANONICAL CATEGORY

Theorem (Canonical vector space, G-Hadani '04)
There exists a natural functor

$$
\mathcal{H}: \underset{\text { over } k=\mathbb{F}_{q}}{\text { Symp }} \rightarrow \underbrace{\text { Vect. }}_{\text {over } \mathrm{C}}
$$

(0) Motivation - CANONICAL CATEGORY

Theorem (Canonical vector space, G-Hadani '04)

There exists a natural functor

$$
\mathcal{H}: \underset{\text { over } k=\mathbb{F}_{q}}{\text { Symp }} \rightarrow \underbrace{\text { Vect. }}_{\text {over } \mathrm{C}}
$$

- For $V \in$ Symp we have

$$
\rho_{V}: S p(V) \rightarrow G L(\mathcal{H}(V)) \text { - Weil representation. }
$$

Motivation - CANONICAL CATEGORY

- Want: lax 2-functor

$$
\underbrace{\text { Symp }}_{\text {In Var over } k} \ni \mathbf{V} \mapsto \mathcal{C}(\mathbf{V}) \text { - canonical category of } \ell \text {-adic sheaves. }
$$

Motivation - CANONICAL CATEGORY

- Want: lax 2-functor

$$
\underbrace{\text { Symp }}_{\text {Var over } k} \ni \mathbf{V} \mapsto \mathcal{C}(\mathbf{V}) \text { - canonical category of } \ell \text {-adic sheaves. }
$$

- For $\mathbf{V} \in \operatorname{Symp}$ get

$$
\rho_{\mathbf{V}}: S p(\mathbf{V}) \rightarrow \operatorname{Aut}(\mathcal{C}(\mathbf{V}))-\text { categorical Weil representation. }
$$

(I) Canonical Vector Space - CONSTRUCTION

- Heisenberg group

$$
H=V \times k, \quad(v, z) \cdot\left(v^{\prime}, z^{\prime}\right)=\left(v+v^{\prime}, z+z^{\prime}+\frac{1}{2} \omega\left(v, v^{\prime}\right)\right)
$$

(I) Canonical Vector Space - CONSTRUCTION

- Heisenberg group

$$
H=V \times k, \quad(v, z) \cdot\left(v^{\prime}, z^{\prime}\right)=\left(v+v^{\prime}, z+z^{\prime}+\frac{1}{2} \omega\left(v, v^{\prime}\right)\right) .
$$

- Additive character

$$
1 \neq \psi: Z(H)=k \rightarrow \mathbb{C}^{*}
$$

(I) Canonical Vector Space - CONSTRUCTION

- Heisenberg group

$$
H=V \times k, \quad(v, z) \cdot\left(v^{\prime}, z^{\prime}\right)=\left(v+v^{\prime}, z+z^{\prime}+\frac{1}{2} \omega\left(v, v^{\prime}\right)\right)
$$

- Additive character

$$
1 \neq \psi: Z(H)=k \rightarrow \mathbb{C}^{*}
$$

- Oriented Lagrangians

$$
\text { OLag }=\left\{L^{\circ}=\left(L, o_{L}\right) ; \quad L \in \operatorname{Lag}(V), o_{L} \in \Lambda L-0\right\}
$$

(I) Canonical Vector Space - CONSTRUCTION

- Heisenberg group

$$
H=V \times k, \quad(v, z) \cdot\left(v^{\prime}, z^{\prime}\right)=\left(v+v^{\prime}, z+z^{\prime}+\frac{1}{2} \omega\left(v, v^{\prime}\right)\right)
$$

- Additive character

$$
1 \neq \psi: Z(H)=k \rightarrow \mathbb{C}^{*}
$$

- Oriented Lagrangians

$$
\text { OLag }=\left\{L^{\circ}=\left(L, o_{L}\right) ; \quad L \in \operatorname{Lag}(V), o_{L} \in \wedge L-0\right\}
$$

- Irreducible rep'n of H with central character ψ

$$
\mathcal{H}_{L^{\circ}}=\{f: H \rightarrow \mathbb{C} ; f(I \cdot z \cdot h)=\psi(z) f(h) \text { for } I \in L, z \in Z, h \in H\} .
$$

Canonical Vector Space - CONSTRUCTION

- Vector bundle

$$
S p \curvearrowright \underset{O L a g}{\mathfrak{H}}, \quad \mathfrak{H}_{\mid L^{\circ}}=\mathcal{H}_{L^{\circ}} .
$$

Canonical Vector Space - CONSTRUCTION

- Vector bundle

$$
S p \curvearrowright \underset{O L a g}{\stackrel{\mathfrak{H}}{\downarrow},}, \quad \mathfrak{H}_{\mid L^{\circ}}=\mathcal{H}_{L^{\circ}} .
$$

Theorem (Strong S-vN, G-Hadani '04)

We have a natural Sp-equivariant trivialization: $\left\{T_{M^{\circ}, L^{\circ}}: \mathcal{H}_{L^{\circ}} \rightarrow \mathcal{H}_{M^{\circ}}\right\}$ with

$$
T_{N^{\circ}, M^{\circ} \circ} \circ T_{M^{\circ}, L^{\circ}}=T_{N^{\circ}, L^{\circ},}, \text { for every } N^{\circ}, M^{\circ}, L^{\circ} .
$$

Canonical Vector Space - CONSTRUCTION

- Vector bundle

$$
S p \curvearrowright \underset{O L a g}{\stackrel{\mathfrak{H}}{\downarrow},}, \quad \mathfrak{H}_{\mid L^{\circ}}=\mathcal{H}_{L^{\circ}} .
$$

Theorem (Strong S-vN, G-Hadani '04)

We have a natural Sp-equivariant trivialization: $\left\{T_{M^{\circ}, L^{\circ}}: \mathcal{H}_{L^{\circ}} \rightarrow \mathcal{H}_{M^{\circ}}\right\}$ with

$$
T_{N^{\circ}, M^{\circ}} \circ T_{M^{\circ}, L^{\circ}}=T_{N^{\circ}, L^{\circ},}, \text { for every } N^{\circ}, M^{\circ}, L^{\circ} .
$$

- Canonical vector space

$$
\mathcal{H}(V)=\left\{\left(f_{L^{\circ}} \in \mathcal{H}_{L^{\circ}}, L^{\circ} \in O L a g\right) \text { with } T_{M^{\circ}, L^{\circ}}\left(f_{L^{\circ}}\right)=f_{M^{\circ}}\right\}
$$

Canonical Vector Space - KERNELS

- Kernels

$$
\left\{\begin{array}{c}
\mathbb{C}(M \backslash H / L, \psi) \underset{\rightarrow}{\leftrightarrows} \operatorname{Hom}_{H}\left(\mathcal{H}_{L^{\circ}}, \mathcal{H}_{M^{\circ}}\right), \\
K_{M^{\circ}, L^{\circ}} \longmapsto T_{M^{\circ}, L^{\circ}}
\end{array}\right.
$$

Canonical Vector Space - KERNELS

- Kernels

$$
\left\{\begin{array}{c}
\mathbb{C}(M \backslash H / L, \psi) \xrightarrow{\leftrightarrows} \operatorname{Hom}_{H}\left(\mathcal{H}_{L^{\circ}}, \mathcal{H}_{M^{\circ}}\right), \\
K_{M^{\circ}, L^{\circ}} \longmapsto T_{M^{\circ}, L^{\circ}}
\end{array}\right.
$$

- Function of kernels

$$
\left\{\begin{array}{c}
K \in \mathbb{C}\left(O \operatorname{Lag}^{2} \times H\right) \\
K * K=K
\end{array}\right.
$$

Canonical Vector Space - KERNELS

- Kernels

$$
\left\{\begin{array}{c}
\mathbb{C}(M \backslash H / L, \psi) \underset{\leftrightarrows}{\leftrightarrows} \operatorname{Hom}_{H}\left(\mathcal{H}_{L^{\circ}}, \mathcal{H}_{M^{\circ}}\right), \\
K_{M^{\circ}, L^{\circ}} \longmapsto T_{M^{\circ}, L^{\circ}}
\end{array}\right.
$$

- Function of kernels

$$
\left\{\begin{array}{c}
K \in \mathbb{C}\left(O \operatorname{Lag}^{2} \times H\right) \\
K * K=K
\end{array}\right.
$$

- Canonical vector space

$$
\mathcal{H}(V)=\{f \in \mathbb{C}(O \operatorname{Lag} \times H) \text { with } K * f=f\}
$$

(II) Geometric Kernels - DEFINITION

Theorem (Geometrization, G-Hadani '06))
There exists a geometrically irreducible, perverse, ℓ-adic Weil sheaf $\underbrace{\mathcal{K}}_{\text {of kernels }}$ on $\mathbf{O L a g}^{2} \times \mathbf{H}$ with
(1) Convolution. Canonical isomorphism $\theta: \mathcal{K} * \mathcal{K} \leadsto \mathcal{K}$.
(2) Function. We have $\underbrace{f^{\mathcal{K}}}=K$. sheaf-to-function

Geometric Kernels - SIGN PROBLEM

- Consider the commutative diagram with scalar morphism $C=c \cdot l d$

\[

\]

Geometric Kernels - SIGN PROBLEM

- Consider the commutative diagram with scalar morphism $C=c \cdot l d$

\[

\]

Problem (The sign problem, Bernstein-Deligne)
Compute the scalar $c=$?.

Sign Problem - SOLUTION

Theorem (G-Hadani '11, with Gabber)
 We have $c=1$.

Sign Problem - SOLUTION

Theorem (G-Hadani '11, with Gabber)

We have $c=1$.
Proof.

\[

\]

Sign Problem - SOLUTION

Theorem (G-Hadani '11, with Gabber)

We have $c=1$.
Proof.

$$
\begin{array}{ccc}
((\mathcal{K} * \mathcal{K}) * \mathcal{K}) * \mathcal{K} & \alpha & (\mathcal{K} * \mathcal{K}) *(\mathcal{K} * \mathcal{K}) \\
\downarrow_{\alpha * i d} & & \downarrow \alpha \\
(\mathcal{K} *(\mathcal{K} * \mathcal{K})) * \mathcal{K} & \mathcal{K} *(\mathcal{K} *(\mathcal{K} * \mathcal{K})) \\
\downarrow^{\alpha} & & \downarrow l d \\
\mathcal{K} *((\mathcal{K} * \mathcal{K}) * \mathcal{K}) & \xrightarrow{i d * \alpha} \mathcal{K} *(\mathcal{K} *(\mathcal{K} * \mathcal{K}))
\end{array}
$$

- By successive application of θ, each term is identified with \mathcal{K}, and by naturality of α, the arrows become C.

Sign Problem - SOLUTION

Theorem (G-Hadani '11, with Gabber)

We have $c=1$.
Proof.

$$
\begin{array}{ccc}
((\mathcal{K} * \mathcal{K}) * \mathcal{K}) * \mathcal{K} & \alpha & (\mathcal{K} * \mathcal{K}) *(\mathcal{K} * \mathcal{K}) \\
\downarrow_{\alpha * i d} & & \downarrow \alpha \\
(\mathcal{K} *(\mathcal{K} * \mathcal{K})) * \mathcal{K} & \mathcal{K} *(\mathcal{K} *(\mathcal{K} * \mathcal{K})) \\
\downarrow^{\alpha} & & \downarrow l d \\
\mathcal{K} *((\mathcal{K} * \mathcal{K}) * \mathcal{K}) & \xrightarrow{i d * \alpha} \mathcal{K} *(\mathcal{K} *(\mathcal{K} * \mathcal{K}))
\end{array}
$$

- By successive application of θ, each term is identified with \mathcal{K}, and by naturality of α, the arrows become C.
- Hence $C^{3}=C^{2}$, so $C=1$.

(III) Canonical Category - DEFINITION

Definition

We define

$$
\mathcal{C}(\mathbf{V})=\left\{\begin{array}{c}
(\mathcal{F}, \eta) \\
\mathcal{F} \in D^{b}(\mathbf{O L a g} \times \mathbf{H}) \\
\eta: \mathcal{K} * \mathcal{F} \rightarrow \mathcal{F}
\end{array}\right.
$$

such that η is compatible with α and θ, i.e., the following diagram is commutative

\[

\]

We call $\mathcal{C}(\mathbf{V})$ the canonical category associated with $\mathbf{V} \in$ Symp.

THANK YOU

Ronny

