The asymptotic behaviour of doubly periodic instantons and Stokes structure

Takuro Mochizuki

RIMS, Kyoto University

2012 May

Vector bundles on \mathscr{M}^{λ}

Let $T=\mathbb{C} / \Lambda$ for a lattice $\Lambda \subset \mathbb{C}$. Then $T^{\vee}:=\operatorname{Pic}_{0}(T) \simeq \mathbb{C} / \Lambda^{\vee}$, where

$$
\Lambda^{\vee}:=\{z \in \mathbb{C} \mid \operatorname{Im}(z \bar{\zeta}) \in \pi \mathbb{Z} \forall \zeta \in \Lambda\}
$$

The identification is induced by $\mathbb{C} \ni z \longmapsto\left(\mathbb{C}, \bar{\partial}_{T}+z d \bar{\zeta}\right)(\underline{\mathbb{C}}=T \times \mathbb{C}$.
is described as the quotient $\mathscr{M}^{\lambda}=\left\{(\xi, \eta) \in \mathbb{C}^{2}\right\} / \sim$

$$
(\xi, \eta) \sim(\xi+\chi, \eta-\lambda \bar{\chi}) \quad \exists \chi \in \Lambda^{\vee}
$$

The identification is induced by $(\xi, \eta) \longmapsto\left(\mathbb{C}, \bar{\partial}_{T}+\lambda \partial_{T}+\xi d \bar{\zeta}+\eta d \zeta\right)$.
$\left(\underline{\mathbb{C}}, \bar{\partial}_{T}+\lambda \partial_{T}+\xi d \bar{\zeta}+\eta d \zeta\right) \simeq\left(\underline{\mathbb{C}}, \bar{\partial}_{T}+\lambda \partial_{T}+(\xi+\chi) d \bar{\zeta}+(\eta-\lambda \bar{\chi}) d \zeta\right) \Longleftrightarrow \chi \in \Lambda^{\vee}$ The isomorphism is induced by $\rho_{\chi}(\zeta)=\exp (2 \sqrt{-1} \operatorname{Im}(\chi \bar{\zeta}))=\exp (\chi \bar{\zeta}-\bar{\chi} \zeta)$ on T

$$
\rho_{\chi}(\zeta)^{-1} \circ\left(\bar{\partial}_{T}+\lambda \partial_{T}\right) \circ \rho_{\chi}(\zeta)=\left(\bar{\partial}_{T}+\lambda \partial_{T}\right)+\chi d \bar{\zeta}-\lambda \bar{\chi} d \zeta
$$

The fibration $\mathscr{M}^{\lambda} \longrightarrow T^{\vee}$ is given by $(\xi, \eta) \longmapsto \xi$.
λ-flat bundle
A λ-flat bundle on a complex manifold X is a C^{∞}-bundle V with a differential operator $\mathbb{D}^{\lambda}: V \longrightarrow V \otimes \Omega_{X}^{1}$ such that

$$
\begin{aligned}
& \mathbb{D}^{\lambda}(f s)=f \mathbb{D}^{\lambda} s+\left(\lambda \partial_{X}+\bar{\partial}_{X}\right) f \cdot s \quad f \in C^{\infty}(X), s \in C^{\infty}(X, V) \\
& \mathbb{D}^{\lambda} \circ \mathbb{D}^{\lambda}=0
\end{aligned}
$$

If $X \subset \mathbb{C}$, a flat λ-connection is given by commutative actions \mathbb{D}_{w}^{λ} and $\mathbb{D} \frac{\lambda}{w}$, satisfying

$$
\mathbb{D}_{w}^{\lambda}(f s)=f \mathbb{D}_{w}^{\lambda} s+\lambda \partial_{w} f \cdot s \quad \mathbb{D}_{\bar{w}}^{\lambda}(f s)=f \mathbb{D}_{\frac{w}{w}}^{\lambda} s+\bar{\partial}_{w} f \cdot s
$$

Introduction

Let T be an elliptic curve over \mathbb{C}. For $\lambda \in \mathbb{C}$, let \mathscr{M}^{λ} denote the moduli space of line bundles of degree 0 with a flat λ-connection.

$$
\mathscr{M}^{\lambda}:=\left\{\left(L, \mathbb{D}^{\lambda}\right) \mid L \in \operatorname{Pic}_{0}(T), \mathbb{D}^{\lambda}: \lambda \text {-connection of } L\right\} / \sim
$$

A flat λ-connection is a differential operator $\mathbb{D}^{\lambda}: L \longrightarrow L \otimes \Omega_{T}^{1}$ such that (i) $\mathbb{D}^{\lambda}(f s)=f \mathbb{D}^{\lambda} s+\left(\lambda \partial_{T}+\bar{\partial}_{T}\right) f \cdot s$ for $f \in C^{\infty}(T), s \in C^{\infty}(T, L)$, (ii) $\mathbb{D}^{\lambda} \circ \mathbb{D}^{\lambda}=0$.

The space \mathscr{M}^{λ} is affine space bundle over $T^{\vee}:=\operatorname{Pic}_{0}(T)$

Goal

1 The behaviour of holomorphic vector bundles on \mathscr{M}^{λ} around ∞. (Hukuhara-Turrittin type theorem, Stokes structure....)
2 Application to instantons on $T^{\vee} \times \mathbb{C}$.
(
$\mathscr{M}^{0}=T^{\vee} \times \mathbb{C}$. We use the natural coordinate (z, w). We have a natural diffeomorphism $\mathscr{M}^{0} \simeq \mathscr{M}^{\lambda}$ given by

$$
(\xi, \eta)=(z+\lambda \bar{w},-\lambda \bar{z}+w) .
$$

$$
\bar{\partial}_{\xi}=\frac{1}{1+|\lambda|^{2}}\left(\bar{\partial}_{z}+\lambda \partial_{w}\right), \quad \bar{\partial}_{\eta}=\frac{1}{1+|\lambda|^{2}}\left(-\lambda \partial_{z}+\bar{\partial}_{w}\right)
$$

We have the projection $\Psi_{0}: \mathscr{M}^{0} \longrightarrow \mathbb{C}$ given by $(z, w) \longmapsto w$. The induced $C^{\infty}-$ map $\mathscr{M}^{\lambda} \longrightarrow \mathbb{C}$ is also denoted by Ψ_{0}.

A holomorphic vector bundle on \mathscr{M}^{λ} is equipped with commutative actions of $\bar{\partial}_{\xi}$ and $\bar{\partial}_{\eta}$. We regard them as a generalization of a flat λ-connection on \mathbb{C} through Ψ_{0}.

Hitchin transform
Let $X \subset \mathbb{C}$ be an open subset. We obtain an open subset $\Psi_{0}^{-1}(X) \subset \mathscr{M}^{\lambda}$.
λ-flat bundle on $X \Longrightarrow$ holomorphic bundle on $\Psi_{0}^{-1}(X)$
Let $\left(V, \mathbb{D}^{\lambda}\right)$ be a λ-flat bundle on X. Because $\Psi_{0}: \mathscr{M}^{0} \longrightarrow \mathbb{C}$ is holomorphic, $\Psi_{0}^{-1}(V)$ is equipped with a flat λ-connection \mathbb{D}^{λ} on \mathscr{M}^{0}. We set

$$
\bar{\partial}_{\xi}:=\frac{1}{1+|\lambda|^{2}}\left(\mathbb{D}_{\bar{z}}^{\lambda}+\mathbb{D}_{w}^{\lambda}\right), \quad \bar{\partial}_{\eta}:=\frac{1}{1+|\lambda|^{2}}\left(-\mathbb{D}_{z}^{\lambda}+\mathbb{D}_{\bar{w}}^{\lambda}\right)
$$

We obtain a holomorphic vector bundle $\Psi_{0}^{*}\left(V, \mathbb{D}^{\lambda}\right):=\left(\Psi_{0}^{-1}(V), \bar{\partial}_{\xi}, \bar{\partial}_{\eta}\right)$ on $\Psi_{0}^{-1}(X) \subset \mathscr{M}^{\lambda}$.

Proposition We have the following equivalence:

Push-forward

Let \mathscr{C}_{X}^{∞} be the sheaf of C^{∞}-functions on X.
Holomorphic vector bundle on $\Psi_{0}^{-1}(X) \Longrightarrow$ flat λ-connection on X
From a holomorphic vector bundle E, we obtain a \mathscr{C}_{X}^{∞}-module $\Psi_{0 *}(E)$ on X :

$$
\Psi_{0 *}(E)(U)=\left\{C^{\infty} \text {-sections of } E \text { on } \Psi_{0}^{-1}(U)\right\} \quad(U \subset X \text { open })
$$

It is equipped with the actions of $\left(1+|\lambda|^{2}\right) \bar{\partial}_{\xi}$ and $\left(1+|\lambda|^{2}\right) \bar{\partial}_{\eta}$. They give a flat λ-connection of $\Psi_{0 *}(E)$.
It can be regarded as "a λ-flat bundle of infinite rank".
We have a natural inclusion

$$
\left(V, \mathbb{D}^{\lambda}\right) \subset \Psi_{0 *} \Psi_{0}^{*}\left(V, \mathbb{D}^{\lambda}\right) \simeq\left(V, \mathbb{D}^{\lambda}\right) \otimes \Psi_{0 *}\left(\mathscr{O}_{\mathscr{M}^{\lambda}}\right) .
$$

Semistable bundle of degree 0 on an elliptic curve

Holomorphic vector bundles on an elliptic curve was studied by Atiyah in 50's, and then by many people. In particular, semistable vector bundle of degree 0 is very easy to understand.

Let E be a holomorphic vector bundle on an elliptic curve C.

$$
\begin{aligned}
& \operatorname{deg}(E):=\int_{C} c_{1}(E) \\
& \mu(E):=\frac{\operatorname{deg}(E)}{\operatorname{rank} E} \quad \\
&\quad \text { (slope })
\end{aligned}
$$

E semistable $\stackrel{\text { def }}{\Longleftrightarrow} \mu(F) \leq \mu(E)$ holds for any subbundle $F \subset E$.

Ambiguity of descriptions

Let Λ^{\vee} be defined by

$$
\Lambda^{\vee}:=\{\zeta \in \mathbb{C} \mid \operatorname{Im}(\zeta \bar{z}) \in \pi \mathbb{Z} \forall z \in \Lambda\}
$$

$\chi \in \Lambda^{\vee}$ gives the function ρ_{χ} on C :

$$
\rho_{\chi}(z):=\exp (2 \sqrt{-1} \operatorname{Im}(\chi \bar{z}))
$$

The multiplication of ρ_{χ} induces an isomorphism

$$
\left(\underline{V}, \bar{\partial}_{0}+f d \bar{z}\right) \simeq\left(\underline{V}, \bar{\partial}_{0}+\left(f+\chi \operatorname{id}_{V}\right) d \bar{z}\right)
$$

Essentially, all the ambiguity is given in this way.

The analogy of holomorphic vector bundles on \mathscr{M}^{λ} and λ-flat bundles on \mathbb{C} can be more acute around ∞.

Recall $\mathscr{M}^{\lambda} \longrightarrow T^{\vee}$ is affine space bundle given by $(\xi, \eta) \longmapsto \xi$. We obtain the natural projective completion $\overline{\mathscr{M}}^{\lambda}$, by adding $\eta=\infty$. Let T_{∞}^{λ} denote $\{\eta=\infty\}$, which is naturally isomorphic to T^{\vee}.

$$
\overline{\mathscr{M}}^{\lambda}=\mathscr{M}^{\lambda} \sqcup T_{\infty}^{\lambda} \quad \text { (set theoretically) }
$$

- We will consider vector bundles E on a neighbourhood of T_{∞}^{λ} such that $E_{T_{\infty}^{\lambda}}$ is semistable of degree 0 .
- E has a kind of Stokes structure, if $\lambda \neq 0$. (The case $\lambda=0$ is simpler.)

Example

Let $C \simeq \mathbb{C} / \Lambda$. We use the standard coordinate z of \mathbb{C}.
A finite dimensional \mathbb{C}-vector space V induces a C^{∞}-bundle $\underline{V}:=V \times C$ over C. It has a natural holomorphic structure

$$
\bar{\partial}_{0}: C^{\infty}(C, \underline{V}) \longrightarrow C^{\infty}\left(C, \underline{V} \otimes \Omega_{C}^{0,1}\right)
$$

$f \in \operatorname{End}(V)$ gives a holomorphic structure $\bar{\partial}_{0}+f d \bar{z}$ of \underline{V}.
Lemma $\left(\underline{V}, \bar{\partial}_{0}+f d \bar{z}\right)$ is semistable of degree 0 .
Conversely, any semistable vector bundle of degree 0 can be expressed as above (not uniquely).

Let E_{0} be a semistable bundle of degree 0 on C. We have the Fourier-Mukai transform $\operatorname{FM}\left(E_{0}\right)$ on $C^{\vee}=\operatorname{Pic}_{0}(C)$.

```
Fourier-Mukai transform (the simplest case)
We have the universal line bundle \mathscr{L}}\mathrm{ (Poincaré bundle) on C }\times\mp@subsup{C}{}{\vee}\mathrm{ .
Let C}\stackrel{\mp@subsup{p}{1}{}}{\longleftrightarrow}C\times\mp@subsup{C}{}{\vee}\xrightarrow{}{\mp@subsup{p}{2}{}}\mp@subsup{C}{}{\vee}\mathrm{ be the projections.
For an }\mp@subsup{\mathscr{O}}{C}{}\mathrm{ -module }M\mathrm{ , we obtain }\operatorname{FM}(M):=\mp@subsup{p}{2*}{}(\mp@subsup{p}{1}{*}M\otimes\mathscr{L})[1] in D D (\mathscr{O}\mp@subsup{C}{}{\vee})
If M is a semistable bundle of degree 0, FM(M) is a torsion }\mp@subsup{\mathscr{O}}{\mp@subsup{C}{}{v}}{}\mathrm{ -module.
```

Let $\imath: C^{\vee} \longrightarrow C^{\vee}$ be given by $\imath(\zeta)=-\zeta$. We set

$$
\mathfrak{s}\left(E_{0}\right):=\text { the support of } \imath^{*} \mathrm{FM}\left(E_{0}\right)
$$

If $E_{0}=\left(\underline{V}, \bar{\partial}_{0}+f d \bar{z}\right), \mathfrak{s}\left(E_{0}\right)=\left\{\right.$ the eigenvalue of f modulo $\left.\Lambda^{\vee}\right\}$. (V, f) is unique up to isomorphisms, once we fix a lift of $\mathfrak{s}\left(E_{0}\right)$ to \mathbb{C}.

Vector bundles on $\breve{\mathscr{M}}^{\lambda}$

An equivalence

Let $\widetilde{\mathfrak{s}} \subset \mathbb{C}$ be a finite set such that $\widetilde{\mathfrak{s}} \longrightarrow \mathbb{C} \longrightarrow C^{\vee}$ is injective.
The image is denoted by \mathfrak{s}.
$V B_{0}^{s s}(C, \mathfrak{s})$: Semistable bundles E_{0} of degree 0 on C such that $\mathfrak{s}\left(E_{0}\right) \subset \mathfrak{s}$.
$V S^{*}(\widetilde{\mathfrak{s}})$: Vector spaces with an endomorphism (V, f) such that the eigenvalue of $f \in \widetilde{\mathfrak{s}}$

The construction $(V, f) \longmapsto\left(\underline{V}, \bar{\partial}_{0}+f d \bar{z}\right)$ gives an equivalence of categories

$$
V S^{*}(\widetilde{\mathfrak{s}}) \simeq \mathrm{VB}_{0}^{s s}(C, \mathfrak{s})
$$

This equivalence will be enhanced later.

Construction Ψ_{1}^{*}

It is convenient to consider the $C^{\infty}-$ maps $\Psi_{1}: \mathscr{M}^{\lambda} \longrightarrow \mathbb{C}$ or $\Psi_{1}: \overline{\mathscr{M}}^{\lambda} \longrightarrow \mathbb{P}^{1}$ given by $\Psi_{1}(\xi, \eta)=\left(1+|\lambda|^{2}\right) \Psi_{0}(\xi, \eta)=\eta+\lambda \bar{\xi}$.

For $(\tau, y)=(\xi, \eta+\lambda \bar{\xi})$, we have

$$
\bar{\partial}_{\xi}=\bar{\partial}_{\tau}+\lambda \partial_{y}, \quad \bar{\partial}_{\eta}=\bar{\partial}_{y}
$$

Let $X \subset \mathbb{C}$ be open

λ-flat bundle on $X \Longrightarrow$ holomorphic bundle on $\Psi_{1}^{-1}(X)$
Let $\left(V, \mathbb{D}^{\lambda}\right)$ be a λ-flat bundle on X. A C^{∞}-bundle $\Psi_{1}^{-1}(V)$ on $\Psi_{1}^{-1}(X)$
is equipped with an induced flat λ-connection \mathbb{D}^{λ} (with respect to $(\tau, y))$. Then,

$$
\bar{\partial}_{\xi}=\mathbb{D}_{\bar{\tau}}^{\lambda}+\mathbb{D}_{y}^{\lambda}, \quad \bar{\partial}_{\eta}=\mathbb{D}_{\bar{y}}^{\lambda}
$$

gives a holomorphic structure on $\Psi_{1}^{-1}(V)$. The holomorphic bundle is denoted by $\Psi_{1}^{*}\left(V, \mathbb{D}^{\lambda}\right)$.

Extension at ∞
Let $\bar{X}:=\{y \in \mathbb{C}| | y \mid \geq R\} \cup\{\infty\}$.
Meromorphic λ-connection on $\bar{X} \Longrightarrow$ holomorphic vector bundle on $\Psi_{1}^{-1}(\bar{X})$ Let V be a holomorphic vector bundle on \bar{X} with a meromorphic flat λ-connection \mathbb{D}^{λ} such that $\mathbb{D}^{\lambda}(V) \subset V \otimes d y$. The construction Ψ_{1}^{*} gives a holomorphic bundle $\Psi_{1}^{*}\left(V, \mathbb{D}^{\lambda}\right)$ on $\Psi_{1}^{-1}(\bar{X})$.

Let v_{1}, \ldots, v_{r} be a holomorphic frame of V. Let A be determined by $\mathbb{D}_{y}^{\lambda}\left(v_{1}, \ldots, v_{r}\right)=\left(v_{1}, \ldots, v_{r}\right) A\left(y^{-1}\right)$, which is holomorphic in y^{-1}. We set $\tilde{v}_{i}:=\Psi_{1}^{-1}\left(v_{i}\right)$. Then,

$$
\bar{\partial}_{\eta}\left(\widetilde{v}_{1}, \ldots, \widetilde{v}_{r}\right)=0 \quad \bar{\partial}_{\xi}\left(\widetilde{v}_{1}, \ldots, \widetilde{v}_{r}\right)=\left(\widetilde{v}_{1}, \ldots, \widetilde{v}_{r}\right) A\left(y^{-1}\right)
$$

Remark Ψ_{0}^{*} is not naturally extended on \bar{X}. We use Ψ_{0}^{*} in relation with instantons.

Analogy around infinity

$$
\overline{\mathscr{M}}^{\lambda}=\mathscr{M}^{\lambda} \sqcup T_{\infty}^{\lambda}
$$

The map $\Psi_{0}: \mathscr{M}^{\lambda} \longrightarrow \mathbb{C}$ is extended to a $C^{\infty}-\operatorname{map} \Psi_{0}: \overline{\mathscr{M}}^{\lambda} \longrightarrow \mathbb{P}^{1}$. Let \bar{X} be a neighbourhood of ∞ in \mathbb{P}^{1}.

We would like to explain the analogy between

- holomorphic vector bundles E on $\Psi_{0}^{-1}(\bar{X})$ such that $E_{\mid T_{\infty}^{\lambda}}$ are semistable of degree 0 .
- vector bundles V on \bar{X} with a meromorphic λ-connection \mathbb{D}^{λ} such that $\mathbb{D}^{\lambda}(V) \subset V \otimes d w$.
(Note that $d w$ has pole of order 2 at ∞.)

Comparison of Ψ_{0}^{*} and Ψ_{1}^{*}
Ψ_{0}^{*} and Ψ_{1}^{*} are essentially the same construction. (They are the same in the casse $\lambda=0$.)

Let $X_{0}:=\{|w|>R\}$ and $X_{1}:=\left\{|w|>\left(1+|\lambda|^{2}\right) R\right\}$.

- We have $\Psi_{0}^{-1}\left(X_{0}\right)=\Psi_{1}^{-1}\left(X_{1}\right)$.
- a λ-flat bundle on $X_{0} \longleftrightarrow$ a λ-flat bundle on X_{1}.

Let $\left(V, \mathbb{D}^{\lambda}\right)$ on X_{0}. By the parallel transport of the flat λ-connection along the segment connecting w and $\left(1+|\lambda|^{2}\right) w$, we obtain an isomorphism

$$
V_{\mid w} \simeq V_{\mid\left(1+|\lambda|^{2}\right) w} .
$$

It induces a C^{∞}-isomorphism

$$
\Psi_{0}^{*}(V) \simeq \Psi_{1}^{*}(V)
$$

We can check that it is holomorphic by an easy computation.

Let $\widetilde{\mathfrak{s}} \subset \mathbb{C}$ be a finite subset such that $\widetilde{\mathfrak{s}} \longrightarrow T$ is injective.
The image is denoted by \mathfrak{s}.
$\mathrm{VB}_{0}^{s s}\left(\overline{\mathscr{X}}^{\lambda}, \mathfrak{s}\right)$: Holomorphic vector bundles E on $\overline{\mathscr{X}}^{\lambda}:=\Psi_{1}^{-1}(\bar{X})$ s.t. $E_{\mid T_{\infty}^{\lambda}} \in \mathrm{VB}_{0}^{s s}\left(T_{\infty}^{\lambda}, \mathfrak{s}\right)$.
$\operatorname{Conn}^{\lambda}(\bar{X}, \widetilde{\mathfrak{s}})$: Vector bundles V on \bar{X} with a meromorphic flat λ-connection \mathbb{D}^{λ} such that
(i) $\mathbb{D}^{\lambda}(V) \subset V \otimes d y$,
(ii) the eigenvalues of $\operatorname{Top}\left(\mathbb{D}^{\lambda}\right)$ is contained in $\widetilde{\mathfrak{s}}$, i.e., $\left(V_{\mid \infty}, \operatorname{Top}\left(\mathbb{D}^{\lambda}\right)\right) \in V S^{*}(\widetilde{\mathfrak{s}})$.

If $\mathbb{D}^{\lambda}(V) \subset V \otimes d y$, we have the induced endomorphism $\operatorname{Top}\left(\mathbb{D}^{\lambda}\right)$ of $V_{\mid \infty}$.

We have the functor $\Psi_{1}^{*}: \operatorname{Conn}^{\lambda}(\bar{X}, \widetilde{\mathfrak{s}}) \longrightarrow \mathrm{VB}_{0}^{s s}\left(\overline{\mathscr{X}}^{\lambda}, \mathfrak{s}\right)$.

Formal case
Let \widehat{X} denote the formal completion of \mathbb{P}_{y}^{1} at ∞. Let $\widehat{\mathscr{X}}^{\lambda}$ denote the formal completion of \bar{X}^{λ} along T_{∞}^{λ}. We have the formal version of the functor Ψ_{1}^{*}.

Theorem $\Psi_{1}^{*}: \operatorname{Conn}^{\lambda}(\widehat{X}, \widetilde{\mathfrak{s}}) \longrightarrow \mathrm{VB}_{0}^{s s}\left(\widehat{X}^{\lambda}, \mathfrak{s}\right)$ is an equivalence.
It might be useful to describe the behaviour of a holomorphic vector bundle on $\overline{\mathscr{M}}^{\lambda}$ around T_{∞}^{λ}.
"Local Fourier transform and Stationary phase formula" (Interlude)
Recall the simplest version of the generalized Fourier-Mukai transform due to Laumon-Rothstein.

Over $T \times \mathscr{M}^{\lambda}$, we have a universal family of line bundles \mathscr{L} with a family of flat λ-connections $\mathbb{D}^{\lambda}: \mathscr{L} \longrightarrow \mathscr{L} \otimes \Omega_{T \times \mathscr{M}^{\lambda} / \mathscr{M}^{\lambda}}^{1}$.
Let $T \stackrel{p_{1}}{\longleftrightarrow} T \times \mathscr{M}^{\lambda} \xrightarrow{p_{2}} \mathscr{M}^{\lambda}$ be the projections.
For a meromorphic λ-flat bundle $\left(M, \mathbb{D}^{\lambda}\right)$ on T, we obtain

$$
\mathrm{FM}^{L R}(M):=p_{2+}\left(p_{1}^{*}\left(M, \mathbb{D}^{\lambda}\right) \otimes\left(\mathscr{L}, \mathbb{D}^{\lambda}\right)\right)[1] \in D_{\mathrm{coh}}^{b}\left(\mathscr{O}_{\mathscr{M}^{\lambda}}\right)
$$

If M is simple with $\operatorname{rank} M \neq 1, \mathrm{FM}^{L R}(M)$ is an algebraic vector bundle on \mathscr{M}^{λ}. Hence, it naturally gives a locally free $\mathscr{O}_{\overline{\mathscr{M}}^{\lambda}}\left(* T_{\infty}^{\lambda}\right)$-module.

An explicit stationary phase formula for $\mathrm{FM}^{L R}$.
Let $\left(M, \mathbb{D}^{\lambda}\right)$ be a meromorphic λ-flat bundle on T. For simplicity, we assume that $\left(M, \mathbb{D}^{\lambda}\right)$ is simple with $\operatorname{rank} M \neq 1$. We obtain a locally free $\mathscr{O}_{\bar{M}^{\lambda}}\left(* T_{\infty}^{\lambda}\right)$-module $\operatorname{FM}^{L R}\left(M, \mathbb{D}^{\lambda}\right)$ on $\overline{\mathscr{M}}^{\lambda}$.
Let $\mathfrak{s} \subset T$ be the set of poles of $\left(M, \mathbb{D}^{\lambda}\right)$.

Theorem

- There exists a lattice $E \subset \mathrm{FM}^{L R}\left(M, \mathbb{D}^{\lambda}\right)$ such that $E \in \mathrm{VB}_{0}^{s s}\left(\overline{\mathscr{M}}^{\lambda}, \mathfrak{s}\right)$.
- The formal completion $\left.\mathrm{FM}^{L R}\left(M, \mathbb{D}^{\lambda}\right)\right|_{\widehat{X}^{\lambda}}$ depends only on the formal completion of $\left(M, \mathbb{D}^{\lambda}\right)$ along the poles.
- The corresponding object in $\operatorname{Conn}^{\lambda}(\widehat{X}, \widetilde{\mathfrak{s}})$ is described by the stationary phase formula of local Fourier transform.

Classical Hukuhara-Levelt-Turrittin decomposition
Let $K=\mathbb{C}((z))$ be the field of Laurent power series. Let V be differential K-vector space. If we take an appropriate extension $K \subset K^{\prime}=\mathbb{C}\left(\left(z^{1 / e}\right)\right)$, we have a formal isomorphism

$$
V \otimes K^{\prime} \simeq \bigoplus_{\mathfrak{a} \in z^{-1 / e} \mathbb{C}\left[z^{-1 / e}\right]} L_{\mathfrak{a}} \otimes R_{\mathfrak{a}}
$$

where $R_{\mathfrak{a}}$ are regular singular, and $L_{\mathfrak{a}}=\mathbb{C}\left(\left(z^{1 / e}\right)\right) v_{\mathfrak{a}}$ such that $\partial_{z} v_{\mathfrak{a}}=v_{\mathfrak{a}} \partial_{z} \mathfrak{a}$.
The set $\left\{\mathfrak{a} \mid R_{\mathfrak{a}} \neq 0\right\}$ and the formal monodromy of $R_{\mathfrak{a}}$ are the important invariants for the differential module V.

By the equivalence $\operatorname{Conn}^{\lambda}(\widehat{X}, \widetilde{\mathfrak{s}}) \simeq \mathrm{VB}_{0}^{s s}\left(\widehat{\mathscr{X}}^{\lambda}, \mathfrak{s}\right)$, these invariants are transferred to objects in $\mathrm{VB}^{s s}\left(\widehat{\mathscr{X}}^{\lambda}, \mathfrak{s}\right)$.

Classical Fourier transform
We have a line bundle with a flat connection $\left(\mathscr{O}_{\mathbb{C}_{z} \times \mathbb{C}_{\zeta}}, d+d(z \zeta)\right)$ on $\mathbb{C}_{z} \times \mathbb{C}_{\zeta}$.
For a meromorphic flat bundle (M, ∇) on \mathbb{C}_{z}, we have

$$
\mathfrak{F}(M, \nabla):=p_{2+}\left(p_{1}^{*}(M, \nabla) \otimes\left(\mathscr{O}_{\mathbb{C}_{z} \times \mathbb{C}_{\zeta}}, d+d(z \zeta)\right)\right) \in D^{b}\left(\mathscr{D}_{\mathbb{C}_{\zeta}}\right)
$$

For \mathfrak{F}, a local Fourier transform and an explicit stationary phase formula were studied by Arinkin, Beilinson, Bloch, Deligne, Esnault, Fang, Fu, Graham-Squire, Laumon, Malgrange, Sabbah,....

$$
\begin{aligned}
& \mathfrak{F}(M, \nabla)_{\mid \widehat{\infty}}=\bigoplus_{\substack{\alpha \in \mathbb{C} \\
\text { pole }}} \mathfrak{F}^{(\alpha, \infty)}\left((M, \nabla)_{\mid \widehat{\alpha}}\right) \oplus \mathfrak{F}^{(\infty, \infty)}\left((M, \nabla)_{\mid \hat{\infty}}\right) \\
& \mathfrak{F}^{(\alpha, \infty)}(M, \nabla)_{\mid \widehat{\alpha}} \in \operatorname{Conn}^{1}(\widehat{X},\{\alpha\}) .
\end{aligned}
$$

Asymptotic analysis
We come back to the study of $E \in \mathrm{VB}_{0}^{\text {ss }}\left(\overline{\mathscr{X}}^{\lambda}, \mathfrak{s}\right)$, where $X=\{y \in \mathbb{C}| | y \mid \geq R\}$, $\bar{X}=X \cup\{\infty\}$ and $\bar{X}^{\lambda}=\Psi_{1}^{-1}(\bar{X})$.
There exists $\left(V, \mathbb{D}^{\lambda}\right) \in \operatorname{Conn}^{\lambda}(\bar{X}, \tilde{\mathfrak{s}})$ such that

$$
\begin{equation*}
\Psi_{1}^{*}\left(V, \mathbb{D}^{\lambda}\right)_{\mid \widehat{\mathscr{X}}} \widehat{\mid c}^{\lambda} \simeq E_{\mid \mathscr{X}^{\lambda}} \tag{1}
\end{equation*}
$$

As in the case of meromorphic flat bundles, the isomorphism is not convergent, in general.

Theorem For any small sector $S \subset X$, there exists a holomorphic isomorphism $E_{\mid \Psi_{1}^{-1}(S)} \simeq \Psi_{1}^{*}\left(V, \mathbb{D}^{\lambda}\right)_{\mid \Psi_{1}^{-1}(S)}$, asymptotic to (1).
(It is called an admissible trivialization in this talk.)

A sector is $S=\left\{w \in \mathbb{C}| | w \mid \geq R, \theta_{0} \leq \arg (w) \leq \theta_{1}\right\}$.
This is an analogue of the classical asymptotic analysis for meromorphic flat bundles.

Classical asymptotic analysis for a meromorphic flat bundle
Let (V, ∇) be a meromorphic flat bundle on $\{z||z|<1\}$ with the pole at $z=0$.
We have a formal isomorphism

$$
\begin{equation*}
(V, \nabla)_{\mid \infty} \otimes \mathbb{C}\left(\left(z^{1 / e}\right)\right) \simeq \bigoplus_{\mathfrak{a} \in z^{-1 / e} \mathbb{C}\left[z^{-1 / e]}\right.} L_{\mathfrak{a}} \otimes R_{\mathbf{a}} . \tag{2}
\end{equation*}
$$

Here $R_{\mathfrak{a}}$ is regular singular, and $L_{\mathfrak{a}}=(\mathscr{O}, \lambda d+d \mathfrak{a})$. It is not convergent in general.
But, for any small sector $S=\left\{0<|z|<r_{0}, \theta_{0} \leq \arg (z) \leq \theta_{1}\right\}$, we have a flat isomorphism, asymptotic to (2)

$$
(V, \nabla)_{\mid S} \simeq\left(\bigoplus_{\mathfrak{a}} L_{\mathfrak{a}} \otimes R_{\mathfrak{a}}\right)_{\mid S}
$$

Stokes filtration
For $E \in \mathrm{VB}_{0}^{s s}\left(\overline{\mathscr{X}}^{\lambda}, \mathfrak{s}\right)$, we have $\left(V, \mathbb{D}^{\lambda}\right) \in \operatorname{Conn}^{\lambda}(\bar{X}, \widetilde{\mathfrak{s}})$ such that

$$
E_{\mid \widehat{\mathscr{X}}} \widehat{x i}^{\wedge} \simeq \Psi_{1}^{*}\left(V, \mathbb{D}^{\lambda}\right)_{\mid \widehat{\mathscr{X}}}
$$

An admissible trivialization $E_{\mid \Psi_{1}^{-1}(S)} \simeq \Psi_{1}^{*}\left(V, \mathbb{D}^{\lambda}\right)_{\mid \Psi_{1}^{-1}(S)}$ is not unique. We would like to obtain something canonically determined for E.

We have a $\mathscr{C}_{\bar{X}}^{\infty}$-module (infinite dimensional bundle) $\Psi_{1 *}(E)$ with the meromorphic λ-connection induced by $\bar{\partial}_{\xi}$ and $\bar{\partial}_{\eta}$.
For a small sector $S \subset X$, we use the partial order $\leq s$ on \mathbb{C} given by

$$
\alpha \leq s \beta \stackrel{\text { def }}{\Longrightarrow}-\operatorname{Re}(\alpha y / \lambda) \leq-\operatorname{Re}(\beta y / \lambda) \quad(\forall y \in S)
$$

We shall introduce a filtartion $\mathscr{F}^{(1)}$ of $\Psi_{1 *}(E)_{\mid S}$ indexed by $(\widetilde{\mathfrak{s}}+\Lambda, \leq S)$.

The construction $\mathrm{Gr}^{(1)} \Psi_{1_{*}}$

- By varying sectors S and gluing $\operatorname{Gr}_{\alpha}^{(1)}\left(\Psi_{1 *}(E)_{\mid S}\right)$, we obtain a λ-flat bundle $\mathrm{Gr}_{\alpha}^{(1)} \Psi_{1 *}(E)_{X}$ on X.
- By the construction on the real blow up $\widetilde{X}(D)$, we obtain a natural extension of $\operatorname{Gr}_{\alpha}^{(1)} \Psi_{1 *}(E)_{X}$ to a vector bundle $\operatorname{Gr}_{\alpha}^{(1)} \Psi_{1 *}(E)$ on \bar{X} with a meromorphic flat λ-connection, for which

$$
\operatorname{Gr}_{\alpha}^{(1)} \Psi_{1_{*}}(E)_{\mid \widehat{X}} \simeq\left(V_{\alpha}, \mathbb{D}^{\lambda}\right)_{\mid \widehat{X}} \quad(\alpha \in \widetilde{\mathfrak{s}})
$$

We obtain a functor $\operatorname{Gr}_{\alpha}^{(1)} \Psi_{1 *}: \mathrm{VB}_{0}^{s s}\left(\bar{X}^{\lambda}, \mathfrak{s}\right) \longrightarrow \operatorname{Conn}^{\lambda}(\bar{X},\{\alpha\})$ for $\alpha \in \widetilde{\mathfrak{s}}+\Lambda$.

- $\operatorname{Gr}_{\alpha}^{(1)} \Psi_{1 *}(E)$ may have non-trivial Stokes structure. It is not necessarily isomorphic to $\left(V, \mathbb{D}^{\lambda}\right)$.
- We have a similar classical construction $\operatorname{Gr}_{\alpha}^{(1)}: \operatorname{Conn}^{\lambda}(\bar{X}, \tilde{\mathfrak{s}}) \longrightarrow \operatorname{Conn}^{\alpha}(\bar{X},\{\alpha\})$ for $\alpha \in \widetilde{\mathfrak{s}}$. We have $\operatorname{Gr}_{\alpha}^{(1)} \Psi_{1 *} \Psi_{1}^{*}=\operatorname{Gr}_{\alpha}^{(1)}$.

Ambiguity of admissible trivializations
For $\alpha, \beta \in \mathbb{C}$, we consider

$$
V_{\alpha}=\mathscr{O}_{\bar{X}} e_{\alpha} \quad \mathbb{D}_{y}^{\lambda} e_{\alpha}=\alpha e_{\alpha}, \quad V_{\beta}=\mathscr{O}_{\bar{X}} e_{\beta} \quad \mathbb{D}_{y}^{\lambda} e_{\beta}=\beta e_{\beta}
$$

We put $\Psi_{1}^{-1}\left(e_{\alpha}\right):=\widetilde{e}_{\alpha}$ and $\Psi_{1}^{-1}\left(e_{\beta}\right):=\widetilde{e}_{\beta}$.
For $\chi \in \Lambda$, we have the C^{∞}-function $\rho_{\chi}(\tau)=\exp (2 \sqrt{-1} \operatorname{Im}(\chi \bar{\tau}))$ on T^{\vee}.
A $C^{\infty}-$ morphism $f: \Psi_{1}^{*}\left(V_{\alpha}, \mathbb{D}^{\lambda}\right)_{\mid \Psi_{1}^{-1}(S)} \longrightarrow \Psi_{1}^{*}\left(V_{\beta}, \mathbb{D}^{\lambda}\right)_{\mid \Psi_{1}^{-1}(S)}$ is expressed as

$$
f=\sum_{\chi \in \Lambda} f_{\chi}(y) \rho_{\chi}(\tau) \widetilde{e}_{\alpha}^{v} \otimes \widetilde{e}_{\beta}
$$

f is holomorphic $\Longleftrightarrow \bar{\partial}_{y} f_{\chi}=0$ and $\lambda \partial_{y} f_{\chi}(y)+(\chi-\alpha+\beta) f_{\chi}(y)=0$

$$
\Longleftrightarrow f_{\chi}(y)=a_{\chi} \exp (-(\chi-\alpha+\beta) y / \lambda) \text { for some } a_{\chi} \in \mathbb{C}
$$

$|f|=O\left(|y|^{-N}\right)$ for $\forall N>0$ on $S \Longleftrightarrow f_{\chi}=0$ unless $\operatorname{Re}((-\chi+\alpha-\beta) y / \lambda)<0$ on S.

Such holomorphic morphisms cause ambiguity of admissible trivializations.

$$
\exists F: \Psi_{1}^{*}\left(V_{\alpha}+V_{\beta}, \mathbb{D}^{\lambda}\right) \longrightarrow \Psi_{1}^{*}\left(V_{\alpha}+V_{\beta}, \mathbb{D}^{\lambda}\right) \quad \text { s.t. } F \sim \text { id, } F \neq \text { id }
$$

For simplicity, we assume $\left(V, \mathbb{D}^{\lambda}\right)=\bigoplus_{\alpha \in \tilde{\mathfrak{s}}}\left(V_{\alpha}, \mathbb{D}^{\lambda}\right)$ for $\left(V_{\alpha}, \mathbb{D}^{\lambda}\right) \in \operatorname{Conn}^{\lambda}(\bar{X},\{\alpha\})$. Let v_{1}, \ldots, v_{r} be a frame of V, obtained from frames of V_{α}. $\left(v_{i} \in V_{\alpha_{i}}\right.$.)
Let $U \subset S$ be any open subset. A C^{∞}-section f of $\Psi_{1}^{*}\left(V, \mathbb{D}^{\lambda}\right)$ on $\Psi_{1}^{-1}(U)$ is expressed as

$$
f=\sum_{i, \chi} f_{\chi i}(y) \rho_{\chi}(\tau) v_{i} .
$$

We set $\mathscr{F}_{\beta}^{(1)} \Psi_{1 *}\left(\Psi_{1}^{*}(V)\right)_{\mid \bar{S}}(U):=\left\{f \mid f_{\chi, i}=0\right.$ unless $\left.\alpha_{i}+\chi \leq_{S} \beta\right\}$.
We define a filtration $\mathscr{F}^{(1)} \Psi_{1 *}(E)_{\mid S}$ by using an admissible trivialization.

Proposition

- The filtration is independent of the choice of an admissible trivialization. It is characterized in terms of the growth order.
- The filtration is preserved by the λ-connection.
- For $S^{\prime} \subset S$, we have $\left(\mathscr{F}_{\alpha}^{(1)} \Psi_{1 *}(E)_{\mid S}\right)_{\mid S^{\prime}} \subset \mathscr{F}_{\alpha}^{(1)} \Psi_{1 *}(E)_{\mid S^{\prime}}$, and $\left(\operatorname{Gr}_{\alpha}^{(1)} \Psi_{1 *}(E)_{\mid S}\right)_{\mid S^{\prime}} \simeq \operatorname{Gr}_{\alpha}^{(1)} \Psi_{1 *}(E)_{\mid S^{\prime}}$.
(We put $\left.\operatorname{Gr}_{\alpha}^{(1)} \Psi_{1 *}(E)_{\mid S}:=\mathscr{F}_{\alpha}^{(1)} \Psi_{1 *}(E)_{\mid S} / \mathscr{F}_{<\alpha}^{(1)} \Psi_{1 *}(E)_{\mid S}\right)$
"Riemann-Hilbert-Birkhoff correspondence"
Let E^{*} be a holomorphic vector bundle on $\mathscr{X}^{\lambda}=\overline{\mathscr{X}}^{\lambda} \backslash T_{\infty}^{\lambda}$.
(We obtain an infinite dimensional λ-flat bundle $\Psi_{1 *}\left(E^{*}\right)$ on X.)
- $\widetilde{\mathfrak{s}} \subset \mathbb{C}$: a finite subset such that $\widetilde{\mathfrak{s}} \longrightarrow T$ is injective.
- For each small sector $S \subset X$, let $\mathscr{F}^{(1)}$ be a filtration of $\Psi_{1 *}\left(E^{*}\right)_{\mid S}$ indexed by $\left(\widetilde{\mathfrak{s}}+\Lambda, \leq_{S}\right)$ which can be "trivialized", satisfying some compatibility condition (We obtain a λ-flat bundle $\operatorname{Gr}_{\alpha}^{(1)} \Psi_{1 *}\left(E^{*}\right)$ on X.)
- For each $\alpha \in \widetilde{\mathfrak{s}}$, let $\left(V_{\alpha}, \mathbb{D}^{\lambda}\right) \in \operatorname{Conn}^{\lambda}(\bar{X},\{\alpha\})$ s.t. $\left(V_{\alpha}, \mathbb{D}^{\lambda}\right)_{\mid X} \simeq \operatorname{Gr}_{\alpha}^{(1)} \Psi_{1 *}\left(E^{*}\right)$. $\left(\left\{\mathscr{F}^{(1)}\right\},\left\{\left(V_{\alpha}, \mathbb{D}^{\lambda}\right)\right\}\right)$ is called a Stokes structure of E^{*} of type $\widetilde{\mathfrak{s}}$.

Theorem An object in $\operatorname{VB}_{0}^{s s}\left(\overline{\mathscr{X}}^{\lambda}, \mathfrak{s}\right)$ naturally corresponds to a holomorphic vector bundle on \mathscr{X}^{λ} with Stokes structure of type $\widetilde{\mathfrak{s}}$.

Application to instantons on $T^{\vee} \times \mathbb{C}$

Instanton
We use the metric $d z d \bar{z}+d w d \bar{w}$ on $T^{\vee} \times \mathbb{C}$. Let $X:=\{w \in \mathbb{C}| | w \mid \geq R\}$.
Let E be a C^{∞}-bundle on $\Psi_{0}^{-1}(X)=T^{\vee} \times X$ with a hermitian metric h and a unitary connection ∇. The curvature of ∇ is denoted by $F(\nabla)$.

The connection ∇ is called anti-self dual, if $* F(\nabla)=-F(\nabla)$, where $*$ denotes the Hodge star operator. In this case, (E, ∇, h) is called an instanton.

It is equivalent to the following:

- The $(0,1)$-part of ∇ gives a holomorphic structure.
- For the expression $F(\nabla)=F_{z \bar{z}} d z d \bar{z}+F_{w \bar{w}} d w d \bar{w}+F_{z \bar{w}} d z d \bar{w}+F_{w \bar{z}} d w d \bar{z}$, we have $F_{z \bar{z}}+F_{w \bar{w}}=0$.
We would like to explain how to use the Stokes structure of vector bundles on $T^{\vee} \times X$ for the study of instantons on \mathscr{X}^{λ} such that $F(\nabla)$ is L^{2}.

Nahm transform

For a closed subgroup $\Gamma \subset \mathbb{R}^{4}$, let $\Gamma^{\vee}:=\left\{\chi \in\left(\mathbb{R}^{4}\right)^{\vee} \mid \chi(\Gamma) \subset \mathbb{Z}\right\}$.
It is believed and established in some degree

$$
\left(\begin{array}{c}
\Gamma \text {-equivariant instanton } \\
\text { satisfying some condition } \\
\text { with some singularity }
\end{array}\right) \longleftrightarrow\left(\begin{array}{c}
\Gamma^{\vee} \text {-equivariant instanton } \\
\text { satisfying some condition } \\
\text { with some singularity }
\end{array}\right)
$$

An instanton on $T^{\vee} \times \mathbb{C}$ is Λ^{\vee}-equivariant instanton.

- ADHM construction (Atiyah-Drinfeld-Hitchin-Manin) in the case $\Gamma=\{1\}$ and $\Gamma^{\vee}=\mathbb{R}^{4}$.
- Nahm studied the case $\Gamma=\mathbb{R}$ and $\Gamma^{\vee}=\mathbb{R}^{3}$. It was refined by Hitchin and Nakajima.

Since then, the other cases were also studied by many people.

Let (E, ∇, h) be an instanton on $T^{\vee} \times X$ such that $F(\nabla)$ is L^{2}. Let $\bar{\partial}_{E}$ be the $(0,1)$-part of ∇, with which $\left(E, \bar{\partial}_{E}\right)$ is a holomorphic vector bundle on $T^{\vee} \times X$.

Lemma $\exists R>0$ such that $\left(E, \bar{\partial}_{E}\right)_{\mid T^{\vee} \times\{w\}}$ are semistable of degree 0 for any $w \in X$ with $|w|>R$.

We may assume that $\left(E, \bar{\partial}_{E}\right)_{\mid T^{\vee} \times\{w\}}$ are semistable of degree 0 from the beginning.
By the relative Fourier-Mukai transform, we obtain a coherent sheaf $F M(E)$ on $T \times X$. The support $\mathscr{Z} \subset T \times X$ is relatively 0 -dimensional over X.

Proposition \mathscr{Z} is naturally extended to a subvariety $\overline{\mathscr{Z}}$ in $T \times \bar{X}$.

Harmonic bundle
Let (E, ∇, h) be an instanton on $T^{\vee} \times X$ which is T^{\vee}-equivariant.

- We obtain a C^{∞}-bundle E_{1} on X with a hermitian metric h_{1} such that $\Psi_{0}^{*}\left(E_{1}, h_{1}\right)=(E, h)$.
- We also have a unitary connection ∇_{1} of $\left(E_{1}, h_{1}\right)$ such that $\Psi_{0}^{*}\left(\nabla_{1}\right)(v)=\nabla(v)$ for $v=a \partial_{w}+b \partial_{w}$.
- Because ∇ is T^{\vee}-equivariant, $\nabla-\Psi_{0}^{*} \nabla_{1}=\Psi_{0}^{*} f d \bar{z}-\Psi_{0}^{*} f^{\dagger} d z$ for $f, f^{\dagger} \in \operatorname{End}\left(E_{1}\right)$.

The anti-self duality condition is reduced to the Hitchin equation

$$
F\left(\nabla_{1}\right)+\left[f d w, f^{\dagger} d \bar{w}\right]=0
$$

$\left(E_{1}, \bar{\partial}_{E_{1}}, f d w\right)$ with the metric h is called a harmonic bundle, where $\bar{\partial}_{E_{1}}$ is the $(0,1)$-part of ∇_{1}.

Hitchin

T^{\vee}-equivariant instanton on $T^{\vee} \times X$ is equivalent to a harmonic bundle on X.

What I would like to do?
The case $\Gamma=\Lambda^{\vee}$ and $\Gamma^{\vee}=\Lambda \times \mathbb{C}^{2}$ was previously studied by Jardim collaborated with Biquard. They established the Nahm transform between

- Harmonic bundles on T with tame singularity.
- Instantons on $T^{\vee} \times \mathbb{C}$ satisfying the quadratic decay condition. i.e., $|F(\nabla)|=O\left(|w|^{-2}\right)$ with respect to h and $d z d \bar{z}+d w d \bar{w}$.

My goals

1 Refine the condition from "quadratic decay" to " $L^{2 "}$, and establish the correspondence between

- Harmonic bundles on T with wild singularity
- Instantons on $T^{\vee} \times \mathbb{C}$ such that $F(\nabla)$ is L^{2}.
(We do not explain this anymore in this talk.)
2 Refine the study by using the twistor viewpoint.
- Stokes structure naturally appears.
- We obtain wild harmonic bundle as a graduation of instanton with respect to the Stokes structure.

Let $\mathbb{C} \times \bar{X} \longrightarrow T \times \bar{X}$ be the morphism induced by a universal covering $\mathbb{C} \longrightarrow T$.
We fix a lift $\widetilde{\mathscr{Z}} \subset \mathbb{C} \times \bar{X}$ of \mathscr{Z}, and put $\widetilde{\mathfrak{s}}:=i^{*}(\widetilde{\mathscr{Z}} \cap(\mathbb{C} \times\{\infty\}))$.

$$
\text { Lemma } \exists\left(V^{0}, \mathbb{D}^{0}\right) \in \operatorname{Conn}^{0}(\bar{X}, \tilde{\mathfrak{s}}) \text { such that } \Psi_{0}^{*}\left(V^{0}, \mathbb{D}^{0}\right)=\left(E, \bar{\partial}_{E}\right) .
$$

We obtain the following theorem.
Theorem We have an induced harmonic metric h_{0} of $\left(V^{0}, \mathbb{D}^{0}\right)$, for which

$$
\Psi_{0}^{*}\left(h_{0}\right)-h=O\left(\exp \left(-C|w|^{\delta}\right)\right)
$$

for some $C, \delta>0$.
We would like to explain how to obtain a harmonic bundle $\left(V^{0}, \mathbb{D}^{0}, h_{0}\right)$, or equivalently T^{\vee}-equivariant instanton $\Psi_{0}^{*}\left(V^{0}, \mathbb{D}^{0}, h_{0}\right)$, by using the previous consideration on the Stokes structure of objects in $\mathrm{VB}_{0}^{s s}\left(\overline{\mathscr{M}}^{\lambda}\right)$.

Deligne-Hitchin space
We recall the construction of Deligne-Hitchin space

- We have the natural family $\mathscr{M} \longrightarrow \mathbb{C}$ such that the fiber $\mathscr{M} \times_{\mathbb{C}}\{\lambda\}$ is M^{λ}.
- We also have the natural family $\mathscr{M}^{\dagger} \longrightarrow \mathbb{C}$ such that the fiber $\mathscr{M}^{\dagger \mu}=\mathscr{M}^{\dagger} \times_{\mathbb{C}}\{\mu\}$ is the moduli of line bundles with flat μ-connection on T^{\dagger}, where T^{\dagger} denotes the conjugate of T.
- We have the natural holomorphic isomorphism $\mathscr{M} \times_{\mathbb{C}} \mathbb{C}^{*} \simeq \mathscr{M}^{\dagger} \times_{\mathbb{C}} \mathbb{C}^{*}$. ($\lambda^{-1}=\mu$.)
- By gluing, we obtain a complex manifold $\mathscr{M}_{D H}$ with a morphism $\mathscr{M}_{D H} \longrightarrow \mathbb{P}_{\lambda}^{1}$. (The twistor space of the hyperkähler manifold $T^{\vee} \times \mathbb{C}$.)

We recall some basic facts.

- We have a C^{∞}-isomorphism $\mathscr{M}_{D H} \simeq \mathbb{P}_{\lambda}^{1} \times T^{\vee} \times \mathbb{C}$.
- The twistor lines $C_{Q}:=\mathbb{P}_{\lambda}^{1} \times\{Q\}$ are complex submanifolds for any $Q \in T^{\vee} \times \mathbb{C}$.
- We have an anti-holomorphic involution $\sigma: \mathscr{M}_{D H} \longrightarrow \mathscr{M}_{D H}$, compatible with $\sigma: \mathbb{P}_{\lambda}^{1} \longrightarrow \mathbb{P}_{\lambda}^{1}$ given by $\sigma(\lambda)=-\bar{\lambda}^{-1}$.

Prolongation

Let (E, h, ∇) be an L^{2}-instanton on $T^{\vee} \times X$. Let \mathscr{E} be the corresponding
holomorphic vector bundle on $\mathscr{X}_{D H}$. For $\lambda \in \mathbb{P}_{\lambda}^{1} \backslash\{\infty\}$, we set $\mathscr{E}^{\lambda}:=\mathscr{E}_{\mid \mathscr{P}^{\lambda}}$.
Proposition $\left(\mathscr{E}^{\lambda}, h\right)$ is acceptable, i.e., the curvature of $\left(\mathscr{E}^{\lambda}, h\right)$ is bounded with respect to h and the Poincaré like metric of \mathscr{M}^{λ}.

For each $a \in \mathbb{R}$, we obtain an $\mathscr{O}_{\overline{\boldsymbol{A}}^{\lambda}}$-module $\mathscr{P}_{a} \mathscr{E}^{\lambda}$ such that $\mathscr{P}_{a} \mathscr{E}_{\mid \mathscr{C}^{\lambda}}^{\lambda}=\mathscr{E}^{\lambda}$.
For each open $U \subset \overline{\mathscr{X}}^{\lambda}$, we set

$$
\mathscr{P}_{a} \mathscr{E}^{\lambda}(U)=\left\{\left.f \in \mathscr{E}^{\lambda}\left(U \backslash T_{\infty}^{\lambda}\right)| | f\right|_{h}=O\left(|w|^{-a-\varepsilon}\right) \text { locally on } U \forall \varepsilon>0\right\}
$$

By the above proposition and a general theory for acceptable bundles, $\mathscr{P}_{a} \mathscr{E}^{\lambda}$ is locally free $\sigma_{\bar{\pi}^{\lambda}}$-module.

Proposition $\mathscr{P}_{a} \mathscr{E}^{\lambda}$ is an object in $\mathrm{VB}_{0}^{s s}\left(\overline{\mathscr{X}}^{\lambda}, \mathfrak{s}\right)$.

Twistor description of an instanton

- We have the C^{∞}-map $\Psi_{D H}: \mathscr{M}_{D H}=\mathbb{P}_{\lambda}^{1} \times T^{\vee} \times \mathbb{C} \longrightarrow \mathbb{C}$.
- For $X=\{w \in \mathbb{C}| | w \mid \geq R\}$, we set $\mathscr{X}_{D H}:=\Psi_{D H}^{-1}(X)$.

Recall the following well known fact.
An instanton on $T^{\vee} \times X$ is equivalent to a holomorphic vector bundle $\mathscr{E}_{D H}$ on $\mathscr{X}_{D H}$ with a holomorphic pairing $P: \mathscr{E}_{D H} \times \sigma^{*} \mathscr{E}_{D H} \longrightarrow \mathscr{O}_{\mathscr{C}_{D H}}$ satisfying the following for any $Q \in T^{\vee} \times X$.

- $\left(\mathscr{E}_{D H}, P\right)_{\mid C_{\Omega}}$ are polarized pure twistor structure of weight 0 , i.e., $\mathscr{E}_{D H, Q}:=\mathscr{E}_{D H \mid C_{Q}}$ are isomorphic to $\mathscr{O}_{\mathbb{P}^{1}}^{\oplus r}$, and P_{Q} induces a positive definite hermitian metric of $H^{0}\left(C_{Q}, \mathscr{E}_{D H, Q}\right)$.

Taking Gr
We obtain a vector bundle with a meromorphic flat λ-connection on $\Psi_{1}\left(\bar{X}^{\lambda}\right)$

$$
\left(V^{\lambda}, \mathbb{D}^{\lambda}\right):=\bigoplus_{\alpha \in \tilde{\mathfrak{s}}}\left(\operatorname{Gr}_{\alpha}^{\mathscr{F}} \Psi_{1 *} \mathscr{P}_{a} \mathscr{E}^{\lambda}, \mathbb{D}^{\lambda}\right)
$$

We obtain a vector bundle $\mathscr{E}_{0}^{\lambda}:=\Psi_{1}^{*}\left(V^{\lambda}, \mathbb{D}^{\lambda}\right)_{\mid \mathscr{X}^{\lambda}}$ on \mathscr{X}^{λ}.
Proposition $\bigcup_{\lambda \in \mathbb{P}^{P} \backslash\{\infty\}} \mathscr{E}_{0}^{\lambda}$ naturally gives a holomorphic vector bundle \mathscr{E}_{0} on
$\mathscr{X}_{D H} \cap \mathscr{M}$. (Recall $\left.\mathscr{M}_{D H}=\mathscr{M} \cup \mathscr{M}^{\dagger}.\right)$

- By considering the conjugate, we obtain $\mathscr{E}_{0}^{\dagger}$ on $\mathscr{X}_{D H} \cap \mathscr{M}^{\dagger}$ over $\mathbb{P}_{\lambda}^{1} \backslash\{0\}$.

- By gluing \mathscr{E}_{0} and $\mathscr{E}_{0}^{\dagger}$, we obtain a holomorphic vector bundle $\mathscr{E}_{0, D H}$ on $\mathscr{X}_{D H}$.
- We have a naturally induced pairing $P_{0}: \mathscr{E}_{0, D H} \times \sigma^{*} \mathscr{E}_{0, D H} \longrightarrow \mathscr{O}_{\mathscr{X}_{D H}}$.

Theorem After X is shrank appropriately, $\left(\mathscr{E}_{0, D H}, P_{0}\right)$ gives an instanton. It is T^{\vee}-equivariant.

