	Introduction
	Let <i>T</i> be an elliptic curve over \mathbb{C} . For $\lambda \in \mathbb{C}$, let \mathscr{M}^{λ} denote the moduli space of line bundles of degree 0 with a flat λ -connection.
The asymptotic behaviour of doubly periodic instantons and Stokes structure	$\mathscr{M}^{\lambda} := \left\{ (L, \mathbb{D}^{\lambda}) \big L \in \operatorname{Pic}_{0}(T), \mathbb{D}^{\lambda} : \lambda \text{-connection of } L \right\} / \sim$
Takuro Mochizuki	A flat λ -connection is a differential operator $\mathbb{D}^{\lambda} : L \longrightarrow L \otimes \Omega_{T}^{1}$ such that (i) $\mathbb{D}^{\lambda}(fs) = f\mathbb{D}^{\lambda}s + (\lambda\partial_{T} + \overline{\partial}_{T})f \cdot s$ for $f \in C^{\infty}(T), s \in C^{\infty}(T,L)$, (ii) $\mathbb{D}^{\lambda} \circ \mathbb{D}^{\lambda} = 0$.
RIMS, Kyoto University	The space \mathscr{M}^{λ} is affine space bundle over $T^{\vee} := \operatorname{Pic}_0(T)$
2012 May T. Mochizuki (RIMS) 2012 May 1 / 40	Goal 1 The behaviour of holomorphic vector bundles on M ^λ around ∞. (Hukuhara-Turrittin type theorem, Stokes structure) 2 Application to instantons on T [∨] × C.
Vector bundles on \mathscr{M}^{λ}	
Let $T = \mathbb{C}/\Lambda$ for a lattice $\Lambda \subset \mathbb{C}$. Then $T^{\vee} := \operatorname{Pic}_0(T) \simeq \mathbb{C}/\Lambda^{\vee}$, where $\Lambda^{\vee} := \{z \in \mathbb{C} \mid \operatorname{Im}(z\overline{\zeta}) \in \pi\mathbb{Z} \ \forall \zeta \in \Lambda\}.$ The identification is induced by $\mathbb{C} \ni z \longmapsto (\underline{\mathbb{C}}, \overline{\partial}_T + zd\overline{\zeta}) \ (\underline{\mathbb{C}} = T \times \mathbb{C}.)$ \mathscr{M}^{λ} is described as the quotient $\mathscr{M}^{\lambda} = \{(\xi, \eta) \in \mathbb{C}^2\}/\sim$ $(\xi, \eta) \sim (\xi + \chi, \eta - \lambda \overline{\chi}) \exists \chi \in \Lambda^{\vee}$ The identification is induced by $(\xi, \eta) \longmapsto (\underline{\mathbb{C}}, \overline{\partial}_T + \lambda \partial_T + \xi d\overline{\zeta} + \eta d\zeta).$ $(\underline{\mathbb{C}}, \overline{\partial}_T + \lambda \partial_T + \xi d\overline{\zeta} + \eta d\zeta) \simeq (\underline{\mathbb{C}}, \overline{\partial}_T + \lambda \partial_T + (\xi + \chi) d\overline{\zeta} + (\eta - \lambda \overline{\chi}) d\zeta) \iff \chi \in \Lambda^{\vee}$ The isomorphism is induced by $\rho_{\chi}(\zeta) = \exp(2\sqrt{-1}\operatorname{Im}(\chi \overline{\zeta})) = \exp(\chi \overline{\zeta} - \overline{\chi} \zeta)$ on T $\rho_{\chi}(\zeta)^{-1} \circ (\overline{\partial}_T + \lambda \partial_T) \circ \rho_{\chi}(\zeta) = (\overline{\partial}_T + \lambda \partial_T) + \chi d\overline{\zeta} - \lambda \overline{\chi} d\zeta$ The fibration $\mathscr{M}^{\lambda} \longrightarrow T^{\vee}$ is given by $(\xi, \eta) \longmapsto \xi$.	$\begin{split} \mathscr{M}^0 &= T^\vee \times \mathbb{C}. \text{ We use the natural coordinate } (z,w). \text{ We have a natural diffeomorphism } \mathscr{M}^0 \simeq \mathscr{M}^\lambda \text{ given by} \\ &\qquad \qquad $
$\begin{array}{l} \lambda \text{-flat bundle} \\ \mathbf{A} \ \lambda \text{-flat bundle on a complex manifold } X \text{ is a } C^{\infty}\text{-bundle } V \text{ with a differential operator } \mathbb{D}^{\lambda}: V \longrightarrow V \otimes \Omega^{1}_{X} \text{ such that} \\ \mathbb{D}^{\lambda}(fs) = f \mathbb{D}^{\lambda}s + (\lambda \partial_{X} + \overline{\partial}_{X})f \cdot s f \in C^{\infty}(X), \ s \in C^{\infty}(X, V) \\ \mathbb{D}^{\lambda} \circ \mathbb{D}^{\lambda} = 0 \end{array}$ $\begin{array}{l} \bullet \text{If } X \subset \mathbb{C}, \text{ a flat } \lambda \text{-connection is given by commutative actions } \mathbb{D}^{\lambda}_{w} \text{ and } \mathbb{D}^{\lambda}_{w}, \\ \text{ satisfying} \\ \mathbb{D}^{\lambda}_{w}(fs) = f \mathbb{D}^{\lambda}_{w}s + \lambda \partial_{w}f \cdot s \qquad \mathbb{D}^{\lambda}_{w}(fs) = f \mathbb{D}^{\lambda}_{w}s + \overline{\partial}_{w}f \cdot s. \end{array}$	$\begin{array}{l} \hline \label{eq:constraint} \begin{array}{c} \mbox{Hitchin transform} \\ \mbox{Let } X \subset \mathbb{C} \mbox{ be an open subset. We obtain an open subset } \Psi_0^{-1}(X) \subset \mathscr{M}^{\lambda}. \\ \hline \mbox{λ-flat bundle on } X \implies holomorphic bundle on } \Psi_0^{-1}(X) \\ \mbox{Let } (V, \mathbb{D}^{\lambda}) \mbox{ be a } \lambda \mbox{-flat bundle on } X. \mbox{ Because } \Psi_0 : \mathscr{M}^0 \longrightarrow \mathbb{C} \mbox{ is holomorphic, } \Psi_0^{-1}(V) \mbox{ is equipped with a flat } \lambda \mbox{-connection } \mathbb{D}^{\lambda} \mbox{ on } \\ \mathscr{M}^0. \mbox{ We set} \\ \hline \mbox{$\partial_{\xi} := \frac{1}{1+ \lambda ^2}(\mathbb{D}_{z}^{\lambda} + \mathbb{D}_{w}^{\lambda}), \overline{\partial}_{\eta} := \frac{1}{1+ \lambda ^2}(-\mathbb{D}_{z}^{\lambda} + \mathbb{D}_{w}^{\lambda})} \\ \mbox{ We obtain a holomorphic vector bundle } \Psi_0^*(V, \mathbb{D}^{\lambda}) := (\Psi_0^{-1}(V), \overline{\partial}_{\xi}, \overline{\partial}_{\eta}) \\ \mbox{ on } \Psi_0^{-1}(X) \subset \mathscr{M}^{\lambda}. \end{array}$

Push-forward

Let \mathscr{C}_{X}^{∞} be the sheaf of C^{∞} -functions on X.

Holomorphic vector bundle on $\Psi_0^{-1}(X) \Longrightarrow \text{flat } \lambda$ -connection on XFrom a holomorphic vector bundle E, we obtain a \mathscr{C}_X^{∞} -module $\Psi_{0*}(E)$ on X:

 $\Psi_{0*}(E)(U) = \left\{ C^{\infty} \text{-sections of } E \text{ on } \Psi_0^{-1}(U) \right\} \quad (U \subset X \text{ open})$

It is equipped with the actions of $(1+|\lambda|^2)\overline{\partial}_{\xi}$ and $(1+|\lambda|^2)\overline{\partial}_{\eta}$. They give a flat λ -connection of $\Psi_{0*}(E)$. It can be regarded as "a λ -flat bundle of infinite rank".

We have a natural inclusion

easy to understand.

$$(V, \mathbb{D}^{\lambda}) \subset \Psi_{0*} \Psi_0^* (V, \mathbb{D}^{\lambda}) \simeq (V, \mathbb{D}^{\lambda}) \otimes \Psi_{0*} (\mathscr{O}_{\mathscr{M}^{\lambda}}).$$

Semistable bundle of degree 0 on an elliptic curve

Holomorphic vector bundles on an elliptic curve was studied by Atiyah in 50's, and

 $\deg(E) := \int_C c_1(E)$ (degree)

 $\mu(E) := \frac{\deg(E)}{\operatorname{rank} E} \quad (\mathsf{slope})$

E semistable $\stackrel{\text{def}}{\iff} \mu(F) \leq \mu(E)$ holds for any subbundle $F \subset E$.

then by many people. In particular, semistable vector bundle of degree 0 is very

Let E be a holomorphic vector bundle on an elliptic curve C.

The analogy of holomorphic vector bundles on \mathscr{M}^{λ} and λ -flat bundles on \mathbb{C} can be more acute around ∞ .

Recall $\mathscr{M}^{\lambda} \longrightarrow T^{\vee}$ is affine space bundle given by $(\xi, \eta) \longmapsto \xi$. We obtain the natural projective completion $\overline{\mathscr{M}}^{\lambda}$, by adding $\eta = \infty$.

Let T_{∞}^{λ} denote $\{\eta = \infty\}$, which is naturally isomorphic to T^{\vee} .

$$\overline{\mathscr{M}}^{\lambda} = \mathscr{M}^{\lambda} \sqcup T_{\infty}^{\lambda}$$
 (set theoretically)

- We will consider vector bundles E on a neighbourhood of T_{∞}^{λ} such that $E_{|T_{\infty}^{\lambda}}$ is semistable of degree 0.
- *E* has a kind of Stokes structure, if λ ≠ 0.
 (The case λ = 0 is simpler.)

Example

Let $C \simeq \mathbb{C}/\Lambda$. We use the standard coordinate z of \mathbb{C} .

A finite dimensional \mathbb{C} -vector space V induces a C^{∞} -bundle $\underline{V} := V \times C$ over C. It has a natural holomorphic structure

$$\overline{\partial}_0: C^{\infty}(C, \underline{V}) \longrightarrow C^{\infty}(C, \underline{V} \otimes \Omega_C^{0,1})$$

 $f \in \text{End}(V)$ gives a holomorphic structure $\overline{\partial}_0 + f d\overline{z}$ of \underline{V} .

Lemma $(\underline{V}, \overline{\partial}_0 + f d\overline{z})$ is semistable of degree 0. Conversely, any semistable vector bundle of degree 0 can be expressed as above (not uniquely).

Ambiguity of descriptions

Let $\Lambda^{\!\vee}$ be defined by

$$\Lambda^{\vee} := \left\{ \zeta \in \mathbb{C} \mid \operatorname{Im}(\zeta \overline{z}) \in \pi \mathbb{Z} \ \forall z \in \Lambda \right\}$$

 $\chi \in \Lambda^{ee}$ gives the function ho_{χ} on C:

$$\rho_{\chi}(z) := \exp\left(2\sqrt{-1}\operatorname{Im}(\chi \overline{z})\right)$$

The multiplication of ρ_{χ} induces an isomorphism

$$(\underline{V},\overline{\partial}_0 + f \, d\overline{z}) \simeq (\underline{V},\overline{\partial}_0 + (f + \chi \, \mathrm{id}_V) \, d\overline{z})$$

Essentially, all the ambiguity is given in this way.

Let E_0 be a semistable bundle of degree 0 on C. We have the Fourier-Mukai transform $FM(E_0)$ on $C^{\vee}={\rm Pic}_0(C).$

Fourier-Mukai transform (the simplest case) We have the universal line bundle \mathscr{L} (Poincaré bundle) on $C \times C^{\vee}$. Let $C \xleftarrow{p_1} C \times C^{\vee} \xrightarrow{p_2} C^{\vee}$ be the projections. For an \mathscr{O}_C -module M, we obtain $\operatorname{FM}(M) := p_{2*}(p_1^*M \otimes \mathscr{L})[1]$ in $D^b(\mathscr{O}_{C^{\vee}})$. If M is a semistable bundle of degree 0, $\operatorname{FM}(M)$ is a torsion $\mathscr{O}_{C^{\vee}}$ -module.

Let $\iota: C^{\vee} \longrightarrow C^{\vee}$ be given by $\iota(\zeta) = -\zeta$. We set

 $\mathfrak{s}(E_0) := \mathsf{the support of } \iota^* \mathrm{FM}(E_0)$

If $E_0 = (\underline{V}, \overline{\partial}_0 + f \, d\overline{z})$, $\mathfrak{s}(E_0) = \{$ the eigenvalue of $f \mod \Lambda^{\vee} \}$. (V, f) is unique up to isomorphisms, once we fix a lift of $\mathfrak{s}(E_0)$ to \mathbb{C} .

	Vector bundles on $\overline{\mathscr{M}}^{\lambda}$
An equivalence Let $\tilde{\mathfrak{s}} \subset \mathbb{C}$ be a finite set such that $\tilde{\mathfrak{s}} \longrightarrow \mathbb{C} \longrightarrow C^{\vee}$ is injective. The image is denoted by \mathfrak{s} .	Analogy around infinity
$VB_0^{ss}(C, \mathfrak{s})$: Semistable bundles E_0 of degree 0 on C such that $\mathfrak{s}(E_n) \subset \mathfrak{s}$	$\overline{\mathscr{M}}^{\lambda} = \mathscr{M}^{\lambda} \sqcup T^{\lambda}_{\infty}$
$VS^*(\tilde{\mathfrak{s}})$: Vector spaces with an endomorphism (V, f) such that the eigenvalue of $f \in \tilde{\mathfrak{s}}$	The map $\Psi_0: \mathscr{M}^{\wedge} \longrightarrow \mathbb{C}$ is extended to a C^{∞} -map $\Psi_0: \mathscr{M}^{\sim} \longrightarrow \mathbb{P}^1$. Let \overline{X} be a neighbourhood of ∞ in \mathbb{P}^1 .
The construction $(V, f) \mapsto (\underline{V}, \overline{\partial}_0 + f d\overline{z})$ gives an equivalence of categories $VS^*(\tilde{s}) \simeq VB_0^{ss}(C, s)$ This equivalence will be enhanced later.	We would like to explain the analogy between • holomorphic vector bundles E on $\Psi_0^{-1}(\overline{X})$ such that $E_{ T_{\alpha}^{\lambda}}$ are semistable of degree 0. • vector bundles V on \overline{X} with a meromorphic λ -connection \mathbb{D}^{λ} such that $\mathbb{D}^{\lambda}(V) \subset V \otimes dw$. (Note that dw has pole of order 2 at ∞ .)
Construction Ψ_1^* It is convenient to consider the C^{∞} -maps $\Psi_1 : \mathcal{M}^{\lambda} \longrightarrow \mathbb{C}$ or $\Psi_1 : \overline{\mathcal{M}}^{\lambda} \longrightarrow \mathbb{P}^1$	Comparison of Ψ_0^* and Ψ_1^* Ψ_0^* and Ψ_1^* are essentially the same construction. (They are the same in
given by $\Psi_1(\xi,\eta) = (1+ \lambda ^2)\Psi_0(\xi,\eta) = \eta + \lambda\xi.$	the cases $\lambda = 0$.) Let $X_0 := f w > R$ and $X_1 := f w > (1 + \lambda ^2)R$.
For $(\tau, y) = (\xi, \eta + \lambda \xi)$, we have	• We have $\Psi_0^{-1}(X_0) = \Psi_1^{-1}(X_1)$.
$\partial_{\xi} = \partial_{\tau} + \lambda \partial_{y}, \partial_{\eta} = \partial_{y}$	• a λ -flat bundle on $X_0 \leftrightarrow$ a λ -flat bundle on X_1 .
Let $X \subset \mathbb{C}$ be open. λ -flat bundle on $X \Longrightarrow$ holomorphic bundle on $\Psi_1^{-1}(X)$ Let $(V, \mathbb{D}^{\lambda})$ be a λ -flat bundle on X . A C^{∞} -bundle $\Psi_1^{-1}(V)$ on $\Psi_1^{-1}(X)$ is equipped with an induced flat λ -connection \mathbb{D}^{λ} (with respect to (τ, y)). Then, $\overline{\partial}_{\xi} = \mathbb{D}_{\tau}^{\lambda} + \mathbb{D}_{y}^{\lambda}, \overline{\partial}_{\eta} = \mathbb{D}_{y}^{\lambda}$ gives a holomorphic structure on $\Psi_1^{-1}(V)$. The holomorphic bundle is denoted by $\Psi_1^{*}(V, \mathbb{D}^{\lambda})$.	Let $(V, \mathbb{D}^{\lambda})$ on X_0 . By the parallel transport of the flat λ -connection along the segment connecting w and $(1 + \lambda ^2)w$, we obtain an isomorphism $V_{ w} \simeq V_{ (1+ \lambda ^2)w}$. It induces a C^{∞} -isomorphism $\Psi_0^*(V) \simeq \Psi_1^*(V)$. We can check that it is holomorphic by an easy computation.
Extension at ∞ . Let $\overline{X} := \{y \in \mathbb{C} \mid y \ge R\} \cup \{\infty\}.$	Let $\tilde{\mathfrak{s}} \subset \mathbb{C}$ be a finite subset such that $\tilde{\mathfrak{s}} \longrightarrow T$ is injective. The image is denoted by \mathfrak{s} .
$\begin{array}{c} \hline \textit{Meromorphic } \lambda\text{-connection on } \overline{X} \Longrightarrow \textit{holomorphic vector bundle on } \Psi_1^{-1}(\overline{X}) \\ \text{Let } V \textit{ be a holomorphic vector bundle on } \overline{X} \textit{ with a meromorphic flat} \\ \lambda\text{-connection } \mathbb{D}^{\lambda} \textit{ such that } \mathbb{D}^{\lambda}(V) \subset V \otimes dy. \textit{ The construction } \Psi_1^* \textit{ gives} \\ \text{a holomorphic bundle } \Psi_1^*(V, \mathbb{D}^{\lambda}) \textit{ on } \Psi_1^{-1}(\overline{X}). \end{array}$	$VB_0^{ss}(\overline{\mathscr{X}}^{\lambda},\mathfrak{s}): \text{ Holomorphic vector bundles } E \text{ on } \overline{\mathscr{X}}^{\lambda} := \Psi_1^{-1}(\overline{X})$ s.t. $E_{ T_{\infty}^{\lambda}} \in VB_0^{ss}(T_{\infty}^{\lambda},\mathfrak{s}).$ Conn ^{λ} ($\overline{X}, \widetilde{\mathfrak{s}}$): Vector bundles V on \overline{X} with a meromorphic flat
Let v_1, \ldots, v_r be a holomorphic frame of V . Let A be determined by $\mathbb{D}_y^{\lambda}(v_1, \ldots, v_r) = (v_1, \ldots, v_r)A(y^{-1})$, which is holomorphic in y^{-1} . We set $\tilde{v}_i := \Psi_1^{-1}(v_i)$. Then, $\overline{\partial}_{\eta}(\tilde{v}_1, \ldots, \tilde{v}_r) = 0$ $\overline{\partial}_{\xi}(\tilde{v}_1, \ldots, \tilde{v}_r) = (\tilde{v}_1, \ldots, \tilde{v}_r)A(y^{-1})$.	$\begin{array}{l} \lambda\text{-connection } \mathbb{D}^{\lambda} \text{ such that} \\ \textbf{(i)} \ \mathbb{D}^{\lambda}(V) \subset V \otimes dy, \\ \textbf{(ii) the eigenvalues of } \operatorname{Top}(\mathbb{D}^{\lambda}) \text{ is contained in } \widetilde{\mathfrak{s}}, \\ \textbf{i.e., } (V_{ \infty}, \operatorname{Top}(\mathbb{D}^{\lambda})) \in VS^{*}(\widetilde{\mathfrak{s}}). \end{array}$
Remark Ψ_0^* is not naturally extended on \overline{X} . We use Ψ_0^* in relation with instantons.	If $\mathbb{D}^{\hat{\lambda}}(V) \subset V \otimes dy$, we have the induced endomorphism $\operatorname{Top}(\mathbb{D}^{\hat{\lambda}})$ of $V_{ _{\infty}}$. We have the functor $\Psi_1^* : \operatorname{Conn}^{\hat{\lambda}}(\overline{X}, \widetilde{\mathfrak{s}}) \longrightarrow \operatorname{VB}_0^{ss}(\overline{\mathscr{X}}^{\hat{\lambda}}, \mathfrak{s}).$

Formal case

Let \widehat{X} denote the formal completion of \mathbb{P}^1_y at ∞ . Let $\widehat{\mathscr{X}}^{\lambda}$ denote the formal completion of $\overline{\mathscr{X}}^{\lambda}$ along T^{λ}_{∞} . We have the formal version of the functor Ψ_1^* .

Theorem $\Psi_1^*: \operatorname{Conn}^{\lambda}(\widehat{X}, \widetilde{\mathfrak{s}}) \longrightarrow \operatorname{VB}_0^{ss}(\widehat{\mathscr{X}}^{\lambda}, \mathfrak{s})$ is an equivalence.

It might be useful to describe the behaviour of a holomorphic vector bundle on $\overline{\mathscr{M}}^{\lambda}$ around T_{∞}^{λ} .

Classical Hukuhara-Levelt-Turrittin decomposition

Let $K = \mathbb{C}((z))$ be the field of Laurent power series. Let V be a differential K-vector space. If we take an appropriate extension $K \subset K' = \mathbb{C}((z^{1/e}))$, we have a formal isomorphism $K \subset K' = \mathbb{C}(z^{1/e}) = K \subset \mathbb{R}$

$$V \otimes K' \simeq \bigoplus_{\mathfrak{a} \in z^{-1/e} \mathbb{C}[z^{-1/e}]} L_{\mathfrak{a}} \otimes R$$

where $R_{\mathfrak{a}}$ are regular singular, and $L_{\mathfrak{a}} = \mathbb{C}((z^{1/e}))v_{\mathfrak{a}}$ such that $\partial_z v_{\mathfrak{a}} = v_{\mathfrak{a}}\partial_z \mathfrak{a}$.

The set $\{a | R_a \neq 0\}$ and the formal monodromy of R_a are the important invariants for the differential module V.

By the equivalence $\mathrm{Conn}^{\lambda}(\widehat{X},\widetilde{\mathfrak{s}})\simeq \mathrm{VB}_0^{ss}(\widehat{\mathscr{X}^{\lambda}},\mathfrak{s})$, these invariants are transferred to objects in $\mathrm{VB}^{ss}(\widehat{\mathscr{X}^{\lambda}},\mathfrak{s}).$

"Local Fourier transform and Stationary phase formula" (Interlude)

Recall the simplest version of the generalized Fourier-Mukai transform due to Laumon-Rothstein.

Over $T \times \mathscr{M}^{\lambda}$, we have a universal family of line bundles \mathscr{L} with a family of flat λ -connections $\mathbb{D}^{\lambda} : \mathscr{L} \longrightarrow \mathscr{L} \otimes \Omega^1_{T \times \mathscr{M}^{\lambda} / \mathscr{M}^{\lambda}}$.

Let $T \xleftarrow{p_1} T \times \mathscr{M}^{\lambda} \xrightarrow{p_2} \mathscr{M}^{\lambda}$ be the projections.

For a meromorphic λ -flat bundle $(M, \mathbb{D}^{\lambda})$ on T, we obtain

 $\mathrm{FM}^{LR}(M):=p_{2+}\left(p_1^*(M,\mathbb{D}^{\lambda})\otimes(\mathscr{L},\mathbb{D}^{\lambda})\right)[1]\in D^b_{\mathrm{coh}}(\mathscr{O}_{\mathscr{M}^{\lambda}})$

If M is simple with $\operatorname{rank} M \neq 1$, $\operatorname{FM}^{LR}(M)$ is an algebraic vector bundle on \mathscr{M}^{λ} . Hence, it naturally gives a locally free $\mathscr{O}_{\mathscr{A}^{\lambda}}(*T_{\infty}^{\lambda})$ -module.

For a meromorphic flat bundle (M, ∇) on \mathbb{C}_z , we have

Classical Fourier transform

 $\mathfrak{F}(M,\nabla) := p_{2+}\Big(p_1^*(M,\nabla) \otimes \big(\mathscr{O}_{\mathbb{C}_r \times \mathbb{C}_r}, d+d(z\zeta)\big)\Big) \in D^b(\mathscr{D}_{\mathbb{C}_r})$

We have a line bundle with a flat connection $(\mathscr{O}_{\mathbb{C}_z \times \mathbb{C}_\zeta}, d + d(z\zeta))$ on $\mathbb{C}_z \times \mathbb{C}_\zeta$.

For \mathfrak{F} , a local Fourier transform and an explicit stationary phase formula were studied by Arinkin, Beilinson, Bloch, Deligne, Esnault, Fang, Fu, Graham-Squire, Laumon, Malgrange, Sabbah,....

$$\mathfrak{F}(M,\nabla)_{\mid\widehat{\infty}}=\bigoplus_{\substack{\alpha\in\mathbb{C}\\pole}}\mathfrak{F}^{(\alpha,\infty)}\big((M,\nabla)_{\mid\widehat{\alpha}}\big)\oplus\mathfrak{F}^{(\infty,\infty)}\big((M,\nabla)_{\mid\widehat{\infty}}\big)$$

$$\mathfrak{F}^{(\alpha,\infty)}(M,\nabla)_{|\widehat{\alpha}} \in \operatorname{Conn}^1(\widehat{X},\{\alpha\}).$$

Asymptotic analysis

We come back to the study of $E \in \operatorname{VB}_0^{ss}(\overline{\mathscr{X}}^\lambda, \mathfrak{s})$, where $X = \{y \in \mathbb{C} \mid |y| \ge R\}$, $\overline{X} = X \cup \{\infty\}$ and $\overline{\mathscr{X}}^\lambda = \Psi_1^{-1}(\overline{X})$. There exists $(V, \mathbb{D}^\lambda) \in \operatorname{Conn}^\lambda(\overline{X}, \widetilde{\mathfrak{s}})$ such that

$$\Psi_1^*(V, \mathbb{D}^\lambda)_{|\widehat{\mathscr{T}^\lambda}} \simeq E_{|\widehat{\mathscr{T}^\lambda}}.$$
 (1)

As in the case of meromorphic flat bundles, the isomorphism is not convergent, in general.

Theorem For any small sector $S \subset X$, there exists a holomorphic isomorphism $E_{|\Psi_1^{-1}(S)} \simeq \Psi_1^*(V, \mathbb{D}^{\lambda})_{|\Psi_1^{-1}(S)}$, asymptotic to (1). (It is called an admissible trivialization in this talk.)

A sector is $S = \{w \in \mathbb{C} \mid |w| \ge R, \theta_0 \le \arg(w) \le \theta_1\}.$

This is an analogue of the classical asymptotic analysis for meromorphic flat bundles.

An explicit stationary phase formula for FM^{LR}.

Let $(M, \mathbb{D}^{\lambda})$ be a meromorphic λ -flat bundle on T. For simplicity, we assume that $(M, \mathbb{D}^{\lambda})$ is simple with rank $M \neq 1$. We obtain a locally free $\mathscr{O}_{\overline{\mathcal{M}}^{\lambda}}(*T_{\infty}^{\lambda})$ -module $\mathrm{FM}^{LR}(M, \mathbb{D}^{\lambda})$ on $\overline{\mathcal{M}}^{\lambda}$.

Let $\mathfrak{s} \subset T$ be the set of poles of $(M, \mathbb{D}^{\lambda})$.

Theorem

- There exists a lattice $E \subset FM^{LR}(M, \mathbb{D}^{\lambda})$ such that $E \in VB_0^{ss}(\overline{\mathscr{M}}^{\lambda}, \mathfrak{s})$.
- The formal completion FM^{LR}(M, D^λ)_{|𝔅λ} depends only on the formal completion of (M, D^λ) along the poles.
- The corresponding object in $\operatorname{Conn}^{\lambda}(\widehat{X}, \widehat{\mathfrak{s}})$ is described by the stationary phase formula of local Fourier transform.

Classical asymptotic analysis for a meromorphic flat bundle Let (V, ∇) be a meromorphic flat bundle on $\{z \mid |z| < 1\}$ with the pole at z = 0. We have a formal isomorphism

$$(V,\nabla)_{\mid \infty} \otimes \mathbb{C}((z^{1/e})) \simeq \bigoplus_{\mathfrak{a} \in z^{-1/e} \mathbb{C}[z^{-1/e}]} L_{\mathfrak{a}} \otimes R_{\mathfrak{a}}.$$
 (2)

Here $R_{\mathfrak{a}}$ is regular singular, and $L_{\mathfrak{a}} = (\mathcal{O}, \lambda d + d\mathfrak{a})$. It is not convergent in general.

But, for any small sector $S = \{0 < |z| < r_0, \ \theta_0 \le \arg(z) \le \theta_1\}$, we have a flat isomorphism, asymptotic to (2)

$$(V, \nabla)_{|S} \simeq \left(\bigoplus_{a} L_{\mathfrak{a}} \otimes R_{\mathfrak{a}}\right)_{|S}$$

Ambiguity of admissible trivializations For $\alpha, \beta \in \mathbb{C}$, we consider

 $V_{\alpha} = \mathscr{O}_{\overline{X}} e_{\alpha} \quad \mathbb{D}_{y}^{\lambda} e_{\alpha} = \alpha e_{\alpha}, \qquad V_{\beta} = \mathscr{O}_{\overline{X}} e_{\beta} \quad \mathbb{D}_{y}^{\lambda} e_{\beta} = \beta e_{\beta}$

We put $\Psi_1^{-1}(e_{\alpha}) := \tilde{e}_{\alpha}$ and $\Psi_1^{-1}(e_{\beta}) := \tilde{e}_{\beta}$.

 $\text{For }\chi\in\Lambda\text{, we have the }C^{\infty}\text{-function }\rho_{\chi}(\tau)=\exp\bigl(2\sqrt{-1}\operatorname{Im}(\chi\overline{\tau})\bigr)\text{ on }T^{\vee}.$

A C^{∞} -morphism $f: \Psi_1^*(V_{\alpha}, \mathbb{D}^{\lambda})_{|\Psi_1^{-1}(S)} \longrightarrow \Psi_1^*(V_{\beta}, \mathbb{D}^{\lambda})_{|\Psi_1^{-1}(S)}$ is expressed as

$$f = \sum_{\boldsymbol{\chi} \in \boldsymbol{\lambda}} f_{\boldsymbol{\chi}}(\boldsymbol{y}) \boldsymbol{\rho}_{\boldsymbol{\chi}}(\boldsymbol{\tau}) \widetilde{\boldsymbol{e}}_{\boldsymbol{\alpha}}^{\vee} \otimes \widetilde{\boldsymbol{e}}_{\boldsymbol{\beta}}$$

 $\begin{array}{l} f \text{ is holomorphic } \Longleftrightarrow \overline{\partial}_y f_\chi = 0 \text{ and } \lambda \partial_y f_\chi(y) + (\chi - \alpha + \beta) f_\chi(y) = 0 \\ \iff f_\chi(y) = a_\chi \exp \bigl(- (\chi - \alpha + \beta) y / \lambda \bigr) \text{ for some } a_\chi \in \mathbb{C}. \end{array}$

 $|f| = O(|y|^{-N}) \text{ for } \forall N > 0 \text{ on } S \Longleftrightarrow f_{\chi} = 0 \text{ unless } \operatorname{Re}\bigl((-\chi + \alpha - \beta)y/\lambda\bigr) < 0 \text{ on } S.$

Such holomorphic morphisms cause ambiguity of admissible trivializations.

 $\exists F: \Psi_1^*(V_{\alpha}+V_{\beta}, \mathbb{D}^{\lambda}) \longrightarrow \Psi_1^*(V_{\alpha}+V_{\beta}, \mathbb{D}^{\lambda}) \quad \text{s.t. } F \sim \mathrm{id}, F \neq \mathrm{id}$

For simplicity, we assume $(V, \mathbb{D}^{\lambda}) = \bigoplus_{\alpha \in \widehat{\mathfrak{s}}} (V_{\alpha}, \mathbb{D}^{\lambda})$ for $(V_{\alpha}, \mathbb{D}^{\lambda}) \in \operatorname{Conn}^{\lambda}(\overline{X}, \{\alpha\})$. Let v_1, \ldots, v_r be a frame of V, obtained from frames of V_{α} . $(v_i \in V_{\alpha_i}.)$ Let $U \subset S$ be any open subset. A C^{∞} -section f of $\Psi_1^*(V, \mathbb{D}^{\lambda})$ on $\Psi_1^{-1}(U)$ is expressed as

$$f = \sum_{i,\chi} f_{\chi i}(y) \rho_{\chi}(\tau) v_i$$

We set $\mathscr{F}^{(1)}_{\beta}\Psi_{1*}(\Psi_1^*(V))_{|\overline{S}}(U) := \{f \mid f_{\chi,i} = 0 \text{ unless } \alpha_i + \chi \leq_S \beta \}.$

We define a filtration $\mathscr{F}^{(1)}\Psi_{1*}(E)_{|\mathcal{S}}$ by using an admissible trivialization.

Proposition

- The filtration is independent of the choice of an admissible trivialization. It is characterized in terms of the growth order.
- The filtration is preserved by the λ -connection.

• For
$$S' \subset S$$
, we have $\left(\mathscr{F}^{(1)}_{\alpha} \Psi_{1*}(E)|_{S}\right)_{|S'} \subset \mathscr{F}^{(1)}_{\alpha} \Psi_{1*}(E)|_{S'}$, and $\left(\operatorname{Gr}^{(1)}_{\alpha} \Psi_{1*}(E)|_{S}\right)_{|S'} \simeq \operatorname{Gr}^{(1)}_{\alpha} \Psi_{1*}(E)|_{S'}.$

(We put
$$\operatorname{Gr}_{\alpha}^{(1)} \Psi_{1*}(E)_{|S} := \mathscr{F}_{\alpha}^{(1)} \Psi_{1*}(E)_{|S} / \mathscr{F}_{<\alpha}^{(1)} \Psi_{1*}(E)_{|S}$$
)

The construction $Gr^{(1)}\Psi_{1*}$

- By varying sectors S and gluing Gr⁽¹⁾_α(Ψ_{1*}(E)_{|S}), we obtain a λ-flat bundle Gr⁽¹⁾_αΨ_{1*}(E)_X on X.
- By the construction on the real blow up $\widetilde{X}(D)$, we obtain a natural extension of $\operatorname{Gr}_{\alpha}^{(1)}\Psi_{1*}(E)_X$ to a vector bundle $\operatorname{Gr}_{\alpha}^{(1)}\Psi_{1*}(E)$ on \overline{X} with a meromorphic flat λ -connection, for which

$$\operatorname{Gr}_{\alpha}^{(1)} \Psi_{1*}(E)_{|\widehat{X}} \simeq (V_{\alpha}, \mathbb{D}^{\lambda})_{|\widehat{X}} \quad (\alpha \in \widetilde{\mathfrak{s}})$$

We obtain a functor $\operatorname{Gr}_{\alpha}^{(1)}\Psi_{1*}: \operatorname{VB}_0^{ss}(\overline{\mathscr{X}}^{\lambda}, \mathfrak{s}) \longrightarrow \operatorname{Conn}^{\lambda}(\overline{X}, \{\alpha\})$ for $\alpha \in \widetilde{\mathfrak{s}} + \Lambda$.

- $\operatorname{Gr}_{\alpha}^{(1)} \Psi_{1*}(E)$ may have non-trivial Stokes structure. It is not necessarily isomorphic to $(V, \mathbb{D}^{\lambda})$.
- We have a similar classical construction $\operatorname{Gr}_{\alpha}^{(1)} : \operatorname{Conn}^{\lambda}(\overline{X}, \widetilde{s}) \longrightarrow \operatorname{Conn}^{\alpha}(\overline{X}, \{\alpha\})$ for $\alpha \in \widetilde{s}$. We have $\operatorname{Gr}_{\alpha}^{(1)} \Psi_{1*} \Psi_{1}^{*} = \operatorname{Gr}_{\alpha}^{(1)}$.

"Riemann-Hilbert-Birkhoff correspondence"

Let E^* be a holomorphic vector bundle on $\mathscr{X}^\lambda=\overline{\mathscr{X}}^\lambda\setminus T^\lambda_\infty.$ (We obtain an infinite dimensional λ -flat bundle $\Psi_{1*}(E^*)$ on X.)

- $\tilde{\mathfrak{s}} \subset \mathbb{C}$: a finite subset such that $\tilde{\mathfrak{s}} \longrightarrow T$ is injective.
- For each small sector $S \subset X$, let $\mathscr{F}^{(1)}$ be a filtration of $\Psi_{1*}(E^*)_{|S}$ indexed by $(\tilde{\mathfrak{s}} + \Lambda, \leq_S)$ which can be "trivialized", satisfying some compatibility condition. (We obtain a λ -flat bundle $\mathrm{Gr}^{(1)}_{\alpha}\Psi_{1*}(E^*)$ on X.)

• For each
$$\alpha \in \widetilde{\mathfrak{s}}$$
, let $(V_{\alpha}, \mathbb{D}^{\lambda}) \in \operatorname{Conn}^{\lambda}(\overline{X}, \{\alpha\})$ s.t. $(V_{\alpha}, \mathbb{D}^{\lambda})_{|X} \simeq \operatorname{Gr}_{\alpha}^{(1)} \Psi_{1*}(E^*)$.

 $(\{\mathscr{F}^{(1)}\},\{(V_{\alpha},\mathbb{D}^{\lambda})\})$ is called a Stokes structure of E^* of type $\widetilde{\mathfrak{s}}$.

Theorem An object in $VB_0^{ss}(\overline{\mathscr{X}}^\lambda,\mathfrak{s})$ naturally corresponds to a holomorphic vector bundle on \mathscr{X}^λ with Stokes structure of type $\widetilde{\mathfrak{s}}.$

Stokes filtration

For $E \in \mathrm{VB}^{ss}_0(\overline{\mathscr{X}}^{\lambda},\mathfrak{s})$, we have $(V,\mathbb{D}^{\lambda}) \in \mathrm{Conn}^{\lambda}(\overline{X},\widetilde{\mathfrak{s}})$ such that

$$E_{|\widehat{\mathscr{T}^{\lambda}}} \simeq \Psi_1^*(V, \mathbb{D}^{\lambda})_{|\widehat{\mathscr{T}^{\lambda}}}$$

An admissible trivialization $E_{|\Psi_1^{-1}(S)} \simeq \Psi_1^*(V, \mathbb{D}^{\lambda})_{|\Psi_1^{-1}(S)}$ is not unique. We would like to obtain something canonically determined for E.

We have a $\mathscr{C}^{\infty}_{\overline{\lambda}}$ -module (infinite dimensional bundle) $\Psi_{1*}(E)$ with the meromorphic λ -connection induced by $\overline{\partial}_{\xi}$ and $\overline{\partial}_{\eta}$.

For a small sector $S \subset X$, we use the partial order \leq_S on $\mathbb C$ given by

 $\alpha \leq_{S} \beta \stackrel{\text{def}}{\longleftrightarrow} - \operatorname{Re}(\alpha y / \lambda) \leq -\operatorname{Re}(\beta y / \lambda) \quad (\forall y \in S)$

We shall introduce a filtartion $\mathscr{F}^{(1)}$ of $\Psi_{1*}(E)_{|S|}$ indexed by $(\tilde{\mathfrak{s}} + \Lambda, \leq_S)$.

Application to instantons on $T^{\vee} \times \mathbb{C}$ InstantonWe use the metric $dzd\overline{z}+dwd\overline{w}$ on $T^{\vee} \times \mathbb{C}$. Let $X := \{w \in \mathbb{C} \mid w \ge R\}$.Let E be a C^{∞} -bundle on $\Psi_0^{-1}(X) = T^{\vee} \times X$ with a hermitian metric h and a unitary connection ∇ . The curvature of ∇ is denoted by $F(\nabla)$.The connection ∇ is called anti-self dual, if $*F(\nabla) = -F(\nabla)$, where $*$ denotes the Hodge star operator. In this case, (E, ∇, h) is called an instanton.It is equivalent to the following:• The $(0,1)$ -part of ∇ gives a holomorphic structure.	Harmonic bundle Let (E, ∇, h) be an instanton on $T^{\vee} \times X$ which is T^{\vee} -equivariant. • We obtain a C^{∞} -bundle E_1 on X with a hermitian metric h_1 such that $\Psi_0^*(E_1, h_1) = (E, h)$. • We also have a unitary connection ∇_1 of (E_1, h_1) such that $\Psi_0^*(\nabla_1)(v) = \nabla(v)$ for $v = a\partial_w + b\partial_{\overline{w}}$. • Because ∇ is T^{\vee} -equivariant, $\nabla - \Psi_0^* \nabla_1 = \Psi_0^* f d\overline{z} - \Psi_0^* f^{\dagger} dz$ for $f, f^{\dagger} \in \text{End}(E_1)$. The anti-self duality condition is reduced to the Hitchin equation $F(\nabla_1) + [f dw, f^{\dagger} d\overline{w}] = 0$ ($E_1, \overline{\partial}_E, f dw$) with the metric h is called a harmonic bundle, where $\overline{\partial}_E$ is the
 For the expression F(∇) = F_{zz} dz dz + F_{ww} dw dw + F_{zw} dz dw + F_{wz} dw dz, we have F_{zz} + F_{ww} = 0. We would like to explain how to use the Stokes structure of vector bundles on T[∨] × X for the study of instantons on X^λ such that F(∇) is L². 	$(0,1)$ -part of ∇_1 . Hitchin T^{\vee} -equivariant instanton on $T^{\vee} \times X$ is equivalent to a harmonic bundle on X .
Nahm transform For a closed subgroup $\Gamma \subset \mathbb{R}^4$, let $\Gamma^{\vee} := \{\chi \in (\mathbb{R}^4)^{\vee} \mid \chi(\Gamma) \subset \mathbb{Z}\}$. It is believed and established in some degree $\begin{pmatrix} \Gamma \text{-equivariant instanton} \\ \text{satisfying some condition} \\ \text{with some singularity} \end{pmatrix} \longleftrightarrow \begin{pmatrix} \Gamma^{\vee} \text{-equivariant instanton} \\ \text{satisfying some condition} \\ \text{with some singularity} \end{pmatrix}$ An instanton on $T^{\vee} \times \mathbb{C}$ is Λ^{\vee} -equivariant instanton. • ADHM construction (Atiyah-Drinfeld-Hitchin-Manin) in the case $\Gamma = \{1\}$ and $\Gamma^{\vee} = \mathbb{R}^4$. • Nahm studied the case $\Gamma = \mathbb{R}$ and $\Gamma^{\vee} = \mathbb{R}^3$. It was refined by Hitchin and Nakajima. Since then, the other cases were also studied by many people.	 What I would like to do? The case Γ = Λ[∨] and Γ[∨] = Λ × C² was previously studied by Jardim collaborated with Biquard. They established the Nahm transform between Harmonic bundles on T with tame singularity. Instantons on T[∨] × C satisfying the quadratic decay condition. i.e., F(∇) = O(w ⁻²) with respect to h and dzdz+dwdw. My goals Refine the condition from "quadratic decay" to "L²", and establish the correspondence between Harmonic bundles on T with wild singularity Instantons on T[∨] × C such that F(∇) is L². (We do not explain this anymore in this talk.) Refine the study by using the twistor viewpoint. Stokes structure naturally appears. We obtain wild harmonic bundle as a graduation of instanton with respect to the Stokes structure.
Let (E, ∇, h) be an instanton on $T^{\vee} \times X$ such that $F(\nabla)$ is L^2 . Let $\overline{\partial}_E$ be the $(0,1)$ -part of ∇ , with which $(E, \overline{\partial}_E)$ is a holomorphic vector bundle on $T^{\vee} \times X$. Lemma $\exists R > 0$ such that $(E, \overline{\partial}_E)_{ T^{\vee} \times \{w\}}$ are semistable of degree 0 for any $w \in X$ with $ w > R$. We may assume that $(E, \overline{\partial}_E)_{ T^{\vee} \times \{w\}}$ are semistable of degree 0 from the beginning. By the relative Fourier-Mukai transform, we obtain a coherent sheaf $FM(E)$ on $T \times X$. The support $\mathscr{Z} \subset T \times X$ is relatively 0-dimensional over X . Proposition \mathscr{Z} is naturally extended to a subvariety $\overline{\mathscr{Z}}$ in $T \times \overline{X}$.	Let $\mathbb{C} \times \overline{X} \longrightarrow T \times \overline{X}$ be the morphism induced by a universal covering $\mathbb{C} \longrightarrow T$. We fix a lift $\widetilde{\mathscr{T}} \subset \mathbb{C} \times \overline{X}$ of \mathscr{T} , and put $\widetilde{\mathfrak{s}} := \iota^* (\widetilde{\mathscr{T}} \cap (\mathbb{C} \times \{\infty\}))$. Lemma $\exists (V^0, \mathbb{D}^0) \in \operatorname{Conn}^0(\overline{X}, \widetilde{\mathfrak{s}})$ such that $\Psi_0^*(V^0, \mathbb{D}^0) = (E, \overline{\partial}_E)$. We obtain the following theorem. Theorem We have an induced harmonic metric h_0 of (V^0, \mathbb{D}^0) , for which $\Psi_0^*(h_0) - h = O(\exp(-C w ^{\delta}))$ for some $C, \delta > 0$. We would like to explain how to obtain a harmonic bundle (V^0, \mathbb{D}^0, h_0) , or
	equivalently T^{\vee} -equivariant instanton $\Psi_0^*(V^0, \mathbb{D}^0, h_0)$, by using the previous consideration on the Stokes structure of objects in $\operatorname{VB}_0^{ss}(\overline{\mathscr{M}}^{\lambda})$.

Deligne-Hitchin space

We recall the construction of Deligne-Hitchin space

- We have the natural family $\mathscr{M} \longrightarrow \mathbb{C}$ such that the fiber $\mathscr{M} \times_{\mathbb{C}} \{\lambda\}$ is \mathscr{M}^{λ} .
- We also have the natural family $\mathscr{M}^{\dagger} \longrightarrow \mathbb{C}$ such that the fiber $\mathscr{M}^{\dagger \mu} = \mathscr{M}^{\dagger} \times_{\mathbb{C}} \{\mu\}$ is the moduli of line bundles with flat μ -connection on T^{\dagger} , where T^{\dagger} denotes the conjugate of T.
- We have the natural holomorphic isomorphism $\mathscr{M} \times_{\mathbb{C}} \mathbb{C}^* \simeq \mathscr{M}^{\dagger} \times_{\mathbb{C}} \mathbb{C}^*$. ($\lambda^{-1} = \mu$.)
- By gluing, we obtain a complex manifold \mathcal{M}_{DH} with a morphism $\mathcal{M}_{DH} \longrightarrow \mathbb{P}^1_{\lambda}$. (The twistor space of the hyperkähler manifold $T^{\vee} \times \mathbb{C}$.)

We recall some basic facts.

- We have a C^{∞} -isomorphism $\mathscr{M}_{DH} \simeq \mathbb{P}^1_{\lambda} \times T^{\vee} \times \mathbb{C}$.
- The twistor lines $C_Q := \mathbb{P}^1_{\lambda} \times \{Q\}$ are complex submanifolds for any $Q \in T^{\vee} \times \mathbb{C}$.
- We have an anti-holomorphic involution $\sigma: \mathscr{M}_{DH} \longrightarrow \mathscr{M}_{DH}$, compatible with $\sigma: \mathbb{P}^1_1 \longrightarrow \mathbb{P}^1_4$ given by $\sigma(\lambda) = -\overline{\lambda}^{-1}$.

 $\begin{array}{l} \textit{Prolongation}\\ \textit{Let}~(\mathcal{E},h,\nabla)~\textit{be an}~L^2\textit{-instanton on}~T^{\vee}\times X.~\textit{Let}~\mathscr{E}~\textit{be the corresponding}\\ \textit{holomorphic vector bundle on}~\mathscr{X}_{DH}.~\textit{For}~\lambda\in\mathbb{P}^1_\lambda\setminus\{\infty\},~\textit{we set}~\mathscr{E}^\lambda:=\mathscr{E}_{(\mathscr{K}^\lambda)}.\end{array}$

Proposition $(\mathscr{E}^{\lambda}, h)$ is acceptable, i.e., the curvature of $(\mathscr{E}^{\lambda}, h)$ is bounded with respect to h and the Poincaré like metric of \mathscr{M}^{λ} .

For each $a \in \mathbb{R}$, we obtain an $\mathcal{O}_{\overline{\mathcal{M}}^{\lambda}}$ -module $\mathscr{P}_a \mathscr{E}^{\lambda}$ such that $\mathscr{P}_a \mathscr{E}_{|\mathscr{X}^{\lambda}}^{\lambda} = \mathscr{E}^{\lambda}$. For each open $U \subset \overline{\mathscr{X}}^{\lambda}$, we set

 $\mathscr{P}_{a}\mathscr{E}^{\lambda}(U) = \left\{ f \in \mathscr{E}^{\lambda}(U \setminus T_{\infty}^{\lambda}) \, \middle| \, |f|_{h} = O(|w|^{-a-\varepsilon}) \text{ locally on } U \, \forall \varepsilon > 0 \right\}$

By the above proposition and a general theory for acceptable bundles, $\mathscr{P}_a \mathscr{E}^{\lambda}$ is locally free $\mathscr{O}_{-\overline{w}^{\lambda}}$ -module.

Proposition $\mathscr{P}_a \mathscr{E}^{\lambda}$ is an object in $\operatorname{VB}_0^{ss}(\overline{\mathscr{X}}^{\lambda}, \mathfrak{s})$.

Twistor description of an instanton

- We have the C^{∞} -map $\Psi_{DH} : \mathscr{M}_{DH} = \mathbb{P}^{1}_{\lambda} \times T^{\vee} \times \mathbb{C} \longrightarrow \mathbb{C}$.
- For $X = \left\{ w \in \mathbb{C} \mid |w| \ge R \right\}$, we set $\mathscr{X}_{DH} := \Psi_{DH}^{-1}(X)$.

Recall the following well known fact.

An instanton on $T^{\vee} \times X$ is equivalent to a holomorphic vector bundle \mathscr{E}_{DH} on \mathscr{X}_{DH} with a holomorphic pairing $P : \mathscr{E}_{DH} \times \sigma^* \mathscr{E}_{DH} \longrightarrow \mathscr{O}_{\mathscr{X}_{DH}}$ satisfying the following for any $Q \in T^{\vee} \times X$.

• $(\mathscr{E}_{DH}, P)|_{\mathcal{C}_Q}$ are polarized pure twistor structure of weight 0, i.e., $\mathscr{E}_{DH,Q} := \mathscr{E}_{DH}|_{\mathcal{C}_Q}$ are isomorphic to $\mathscr{O}_{\mathbb{P}^1}^{\oplus r}$, and P_Q induces a positive definite hermitian metric of $H^0(C_Q, \mathscr{E}_{DH,Q})$.

Taking Gr

We obtain a vector bundle with a meromorphic flat λ -connection on $\Psi_1(\overline{\mathscr{X}}^{\lambda})$

$$(V^{\lambda}, \mathbb{D}^{\lambda}) := \bigoplus_{\alpha \in \widetilde{\mathfrak{s}}} (\mathrm{Gr}_{\alpha}^{\mathscr{F}} \Psi_{1*} \mathscr{P}_a \mathscr{E}^{\lambda}, \mathbb{D}^{\lambda})$$

We obtain a vector bundle $\mathscr{E}_0^{\lambda} := \Psi_1^* (V^{\lambda}, \mathbb{D}^{\lambda})_{|\mathscr{X}^{\lambda}}$ on \mathscr{X}^{λ} .

 $\begin{array}{l} \label{eq:proposition} \begin{array}{l} \bigcup_{\lambda \in \mathbb{P}^1_\lambda \{ \infty \}} \mathscr{E}_0^{\lambda} \mbox{ naturally gives a holomorphic vector bundle } \mathscr{E}_0 \mbox{ on } \\ \mathscr{X}_{DH} \cap \mathscr{M}. \mbox{ (Recall } \mathscr{M}_{DH} = \mathscr{M} \cup \mathscr{M}^{\dagger}. \mbox{)} \end{array}$

• By considering the conjugate, we obtain \mathscr{E}_0^{\dagger} on $\mathscr{X}_{DH} \cap \mathscr{M}^{\dagger}$ over $\mathbb{P}^1_{\lambda} \setminus \{0\}$.

• We have a natural isomorphism $\mathscr{E}_{0|\mathcal{M}\cap\mathcal{M}^{\dagger}\cap\mathcal{X}_{DH}} \simeq \mathscr{E}_{0|\mathcal{M}\cap\mathcal{M}^{\dagger}\cap\mathcal{X}_{DH}}^{\dagger}$.

- By gluing \mathscr{E}_0 and \mathscr{E}_0^{\dagger} , we obtain a holomorphic vector bundle $\mathscr{E}_{0,DH}$ on \mathscr{X}_{DH} .
- We have a naturally induced pairing $P_0 : \mathscr{E}_{0,DH} \times \sigma^* \mathscr{E}_{0,DH} \longrightarrow \mathscr{O}_{\mathscr{X}_{DH}}$.

Theorem After X is shrank appropriately, $(\mathscr{E}_{0,DH},P_0)$ gives an instanton. It is $T^\vee\text{-equivariant.}$