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Introduction and motivations

I Given a star-product ?~ on a symplectic manifold M, the
star-exponential of H : M → R is defined by the series:

Exp?~(
tH

i~
) =

∑
n≥0

1

n!
(

t

i~
)nH?~n

(Here ~ is not a formal parameter but a positive real number.)

I It was introduced in [BFFLS 1978] as a tool to study the spectrum
of observables without referring to an underlying Hilbert space.

I If ~ is a formal parameter, the star-exponential does not have any
obvious meaning in the deformation quantization algebra
C∞(M)[[~]]. It would rather belong to C∞(M)[[~, ~−1]].

I But (C∞(M)[[~, ~−1]], ?~) is not an algebra.

I With P. Schapira, by using techniques from micolocal analysis, we
have constructed an algebra of deformation quantization on the
cotangent bundle of a complex manifold, containing the
star-exponentials.



Example (Harmonic oscillator (BFFLS Ann. Phys. 1978))

T ∗R = R2 with Moyal product ?M . Hamiltonian: H(x , ξ) = 1
2 (ξ2 + x2)

Exp?M (
tH

i~
) =

1

cos(t/2)
exp

( (x2 + ξ2)

i~
tan(t/2)

)
for |t| < π. The convergence is in D′(R2). It is a periodic distribution
in t.

1

cos(t/2)
exp

( (x2 + ξ2)

i~
tan(t/2)

)
=
∑
n≥0

exp(−i(n +
1

2
)t)πn(x , ξ)

where

πn(x , ξ) = 2(−1)n exp(− (x2 + ξ2)

~
)Ln(

2(x2 + ξ2)

~
),

where the Ln’s are the Laguerre polynomials.

H ?M πn = ~(n + 1/2)πn πn ?M πn′ = δnn′πn.



Example (Feynman Path Integral (GD LMP 1990))

I Normal star-product:

(f ?N g)(z̄ , z) = fg +
∑
n≥1

~n

n!

∂nf

∂zn

∂ng

z̄n
.

I In the holomorphic representation of the CCR [a, a†] = ~
(af )(z̄) = ~f ′(z̄) (a†f )(z̄) = z̄ f (z̄)
the FPI takes the form (Faddeev, Les Houches, 1975):

∫ ∏
s

d ξ̄sdξs
2πi~

exp
[1

2
(z̄ξt + z ξ̄0)− 1

~

∫ t

0

ds
1

2
(ξ̄s ξ̇s − ˙̄ξsξs) + H(ξ̄s , ξs)

]
integration is over paths s 7→ (ξ̄s , ξs) restricted to boundary
conditions ξ̄t = z̄ and ξ0 = z .

I Heuristically:

′′Exp?N (
tH

i~
)(z̄ , z) = exp(−1

~
z̄z) FPI (t,H)(z̄ , z)′′



The sheaf of microdifferential operators ET ∗X
I Let X be a complex manifold.
I At the beginning of the 70’s, Sato-Kashiwara-Kawai (and Louis

Boutet de Monvel) have constructed the sheaf of microdifferential
operators ET∗X .

I ET∗X is a C×-conic filtered sheaf of rings.
I Locally: U ⊂ T ∗X , (x , ξ) ∈ U, a section P ∈ ET∗X (U) is described

by its total symbol:

σtot(P)(x ; ξ) =
∑

−∞<j≤m

pj(x ; ξ), m ∈ Z, pj ∈ Γ(U;OT∗X (j)).

I σtot(P) satisfies growth conditions (canonical estimates):{
for any compact subset K of U there exist positive constants
C , ε such that sup

(x ;ξ)∈K
|pj(x ; ξ)| ≤ Cε−j(−j)! for all j < 0.

I If Q is an operator of total symbol σtot(Q), then the total symbol of
the product P ◦ Q is given by the Leibniz product.

σtot(P ◦ Q) =
∑
α∈Nn

1

α!
∂αξ σtot(P)∂αx σtot(Q).



The sheaf of microdifferential operators ET ∗X

I Filtered by the order of operators: ET∗X = ∪m∈ZET∗X (m)

I The associated graded sheaf of rings

gr ET∗X '
⊕
j∈Z
OT∗X (j).

I Consider a homogeneous symplectic transformation

ϕ : T ∗X ⊃ U ∼−−→ V ⊂ T ∗Y .

Then ϕ may be locally quantized as an isomorphism of filtered
sheaves of rings

Φ: ϕ∗ET∗X |U ∼−−→ ET∗Y |V .

Remark: This isomorphism exists locally and is not unique.



The field k

Set k̂ = C[[~, ~−1]. An element a ∈ k̂ of order m ∈ Z is a formal series:

a =
∑

−∞<j≤m

aj~−j , aj ∈ C.

One defines k as the subfield of k̂ of series satisfying

there exist C , ε > 0 with |aj | ≤ Cε−j(−j)! for all j < 0.



The sheaf WT ∗X

I If one forgets about the homogeneity of T ∗X , there exists a no more
conic filtered sheaf of k-algebras WT∗X .

I It is a special case of a more general construction (algebroid stacks)
of deformation quantization of a complex symplectic manifold.
[Kontsevich (LMP 2001) for the formal case, Polesello-Schapira
(IMRN 2004) for the analytic case in the spirit of the construction
by Kashiwara (1996) of the quantization for complex contact
manifolds.]

I Introduce a new parameter ~ to replace homogeneity.

I The formal version of WT∗X is similar to deformation quantization
in the C∞ setting.



The sheaf WT ∗X

I Locally WT∗X is described as follows.
U ⊂ T ∗X , a section P ∈ WT∗X (U) has a total symbol

σtot(P)(x ; ξ) =
∑

−∞<j≤m

pj(x ; ξ)~−j , m ∈ Z, pj ∈ OT∗X (U),

{
for any compact subset K of U there exist constants C , ε > 0
such that sup

(x ;ξ)∈K
|pj(x , ξ)| ≤ Cε−j(−j)! for all j < 0.

I Its associated graded ring is

grWT∗X ' OT∗X [~, ~−1].

I The product is given by the Leibniz product:

σtot(P) ? σtot(Q) :=
∑
α∈Nn

~|α|

α!
∂αξ σtot(P) · ∂αx σtot(Q).



The sheaf WT ∗X

I A symplectic transformation

ϕ : T ∗X ⊃ U ∼−−→ V ⊂ T ∗Y .

as in the case of ET∗X , ϕ can be locally quantized as an
isomorphism of filtered sheaves of rings

Φ: ϕ∗WT∗X |U ∼−−→WT∗Y |V .

Again, this isomorphism exists locally and is not unique.



From ET ∗X to WT ∗X

The sheaves ET∗X and WT∗X are linked as follows.
Let t ∈ C be the coordinate and define

ET∗(X×C),t̂ = {P ∈ ET∗(X×C); [P, ∂t ] = 0}.

Set

T ∗τ 6=0(X × C) = {(x , t; ξ, τ); τ 6= 0}

and consider the map

ρ : T ∗τ 6=0(X × C) −→ T ∗X , ρ(x , t; ξ, τ) = (x ; ξ/τ).

The ring WT∗X on T ∗X is given by

WT∗X := ρ∗(ET∗(X×C),t̂ |T∗τ 6=0(X×C)).

(One should think of τ as being ~−1.)



Outline

commutative noncommutative

Os,~
X  Ws

T∗X (resolvent)

Laplace ↓ ↓

Ot,~
X  W t

T∗X (exponential)

I 1
s−H ∈ W

s
T∗X

I exp( tH
~ ) ∈ W t

T∗X

I ∂
∂t Φ(t) = 1

~HΦ(t), Φ(0) = 1



The sheaf Os,~
X

Definition (O~
X )

We denote by O~
X the filtered sheaf of k-algebras whose sections of

order m on an open set U ⊂ X are series

f (x , ~) =
∑

−∞<j≤m

fj(x)~−j , fj ∈ OX (U),

satisfying:{
for any compact subset K of U there exist positive
constants C , ε such that sup

K
|fj | ≤ Cε−j(−j)! for all j < 0.

Let Cs denote C with coordinate s. Let a : Cs × X → X be the
projection. The sheaf Os,~

X is defined as the derived proper direct image:

Definition

Os,~
X := R1a!O~

Cs×X



The sheaf Os,~
X – The convolution algebra H1

c (C;OC)

I For a compact subset K of C, we identify the vector space
H1

K (C;OC) with the quotient space Γ(C \ K ;OC)/Γ(C;OC) and, if
f ∈ Γ(C \ K ;OC), we still denote by f its image in H1

K (C;OC) or in
H1

c (C;OC).

I Let K and L be compact subsets of C, let f ∈ Γ(C \ K ;OC) and
g ∈ Γ(C \ L;OC).

I The convolution product f ∗c g is given by

(f ∗c g)(z) =
1

2iπ

∫
γ

f (z − w)g(w)dw (1)

where γ is a counter clockwise oriented circle which contains L and
|z | is chosen big enough so that z + K is outside of the disc
bounded by γ.

I (H1
c (C;OC), ∗c) is an abelian algebra.

I
1

zn+1
∗c

1

zm+1
=

(n + m)!

n!m!

1

zn+m+1
.



The sheaf Os,~
X

I For U open, relatively compact in X , sections of order m defined on
a neighborhood of Ū, are described by:

f (s, x , ~) =
∑
j≤m

fj(s, x)~−j ,

I fj(s, x) is holomorphic on (Cs \K0)×U, K0 compact independent of
j .

I ∀K ⊂ (Cs \ K0)× U, we have canonical estimates.

I Os,~
X is a sheaf of filtered k-modules.

I Extend the convolution product to Os,~
X as follows. For two sections

f (s, x , ~) =
∑
−∞<j≤m fj(s, x)~−j and

g(s, x , ~) =
∑
−∞<j≤m′ gj(s, x)~−j of Os,~

X , set:{
f (s, x , ~) ∗c g(s, x , ~) =

∑
−∞<j≤m+m′ hj(s, x)~−j ,

hk(s, x) =
∑

i+j=k
1

2iπ

∫
γ

fi (s − w , x)gj(w , x)dw .
(2)

Theorem

The sheaf Os,~
X has a structure of a filtered abelian k-algebra.



The sheaf Ot,~
X

I Locally, sections of order m are described by:

U ⊂ X , f (t, x , ~) =
∑
j∈Z

fj(t, x)~−j , fj ∈ Γ(U,OCt×X |t=0
)

I ∀K ⊂ U, ∃η > 0:

I fj(t, x) is holomorphic around {|t| ≤ η} × K

I ∃C , ε > 0, sup
x∈K ,|t|≤η

|fj(t, x)| ≤ Cε−j(−j)! for all j < 0.

I ∃M,R > 0, sup
x∈K
|fj(t, x)| ≤ M R j−m

(j−m)!
|t|j−m, ∀|t| ≤ η ∀j ≥ m.



The sheaf Ot,~
X

Facts:

I ~−1 : Ot,~
X (m) ∼−−→ Ot,~

X (m + 1).

I If f ∈ Ot,~
X (m) and g ∈ Ot,~

X (m′), then fg ∈ Ot,~
X (m + m′).

Theorem

Ot,~
X is a sheaf of abelian filtered k-algebras.

I The sheaf Ot,~
X does not admit a formal counterpart.



Laplace transform
I The sheaves Ot,~

X and Os,~
X are related by a kind of Laplace

transform.

I On an open set U of X , consider a section:

f (s, x , ~) ∈ Γ((Cs \ K )× U;O~
Cs×X ).

i.e.
f (s, x , ~) =

∑
−∞<j≤m

fj(s, x)~−j ,

I Define the Laplace transform L(f ) of f by

L(f )(t, x , ~) =
1

2iπ

∫
γ

f (s, x , ~) exp(st~−1) ds,

where γ is a counter clockwise oriented circle centered at 0 with
radius R � 0.

I

L(s−n−1) = ~−ntn/n!, L(
1

s − 1
) = exp(t~−1).



Theorem

The Laplace transform induces a k-linear isomorphism of filtered
k-algebras

L : Os,~
X
∼−−→ Ot,~

X .

I Note: A formal version Ôs,~
X of Os,~

X does exist, but the Laplace
transform cannot be applied to that formal version.

I Take a sequence {cj}j≤0 in C and consider the section f of Ôs,~
X :

f (s, ~) =
∑
j≤0

cj
(s − 1)

~−j .

I Then, formally, the Laplace transform of f is given by

L(f )(t, ~) =
∑
j≤0

∑
n≥0

cj
tn

n!
~−n−j ,

I The coefficient of ~0 is
∑

n≥0 c−n
tn

n! , which does not converge
around t = 0 in general.



The sheaf W s
T ∗X

Denote by s the coordinate on Cs . Let WCs×T∗X be the subsheaf of
WT∗(C×X ) consisting of sections not depending on ∂s :

WCs×T∗X = {P ∈ WT∗(Cs×X ) | [P, s] = 0}.

As for Os,~
X , the sheaf Ws

T∗X is defined as a proper direct image of
WCs×T∗X by the projection a : Cs × X → X :

Definition

The sheaf of k-modules Ws
T∗X on T ∗X is given by

Ws
T∗X := R1a! WCs×T∗X .



The sheaf W s
T ∗X

Theorem

(i) The sheaf Ws
T∗X is naturally endowed with a structure of a filtered

k-algebra and grWs
T∗X ' R1a!OCs×T∗X [~, ~−1].

(ii) Consider two complex manifolds X and Y , two open subsets
UX ⊂ T ∗X and UY ⊂ T ∗Y and a symplectic isomorphism
ψ : UX

∼−−→ UY . Then, locally, ψ may be quantized as an
isomorphism of filtered k-algebras Ψ: Ws

T∗X
∼−−→Ws

T∗Y such that
the isomorphism induced on the graded algebras coincides with the
isomorphism R1a!OCs×T∗X [~, ~−1] ∼−−→ R1a!OCs×T∗Y [~, ~−1]
induced by ψ.

(iii) Assume X is affine. There is an isomorphism of filtered sheaves of
k-modules (not of algebras), called the “total symbol” morphism:

σtot : Ws
T∗X

∼−−→ Os,~
T∗X . (3)

The total symbol of a product is given by the Leibniz formula with
a convolution product in the s variable.



The sheaf W s
T ∗X

I Assume X affine. For each Stein open subset W of T ∗X and each
relatively compact open subset U bW , sections of order m are
described by:

σtot(P)(s, x ; ξ, ~) =
∑

−∞<j≤m

pj(s, x ; ξ)~−j

I pj ∈ Γ((Cs \ K0)× U,OCs×T∗X )

I pj satisfies canonical estimates on K ⊂ (Cs \ K0)× U.

I The symbolic calculus is given by:

σtot(P ◦ Q) =
∑
α∈Nn

~|α|

α!
∂αξ σtot(P) ∗c ∂αx σtot(Q).



The sheaf W t
T ∗X

I W t
T∗X is a filtered sheaf of k-algebras (algebra of exponentials).

I Locally, a section P of order m of W t
T∗X on a Stein open subset V

of T ∗X and an open subset U b V , σtot(P) is written as a series:
σtot(P)(t, x ; ξ, ~) =

∑
j∈Z pj(t, x ; ξ)~−j

I ∀K ⊂ U ⊂ T ∗X , ∃η > 0:

I pj(t, x ; ξ) is holomorphic around {|t| ≤ η} × K

I ∃C , ε > 0, sup
(x ;ξ)∈K ,|t|≤η

|pj(t, x ; ξ)| ≤ Cε−j(−j)! for all j < 0.

I ∃M,R > 0, sup
(x ;ξ)∈K

|pj(t, x ; ξ)| ≤ M R j−m

(j−m)!
|t|j−m, ∀|t| ≤ η ∀j ≥ m.

I Symbolic calculus: usual Leibniz product.

I W t
T∗X contains WT∗X as a subalgebra.



Exponential elements

I Consider a section P of WT∗X (0) on an open subset U of T ∗X .

I For each compact subset K of U, there exists R > 0 such that the
section s − P of Ws

T∗X defined on Cs × U is invertible on
(Cs \ D(0,R))× K , (D(0,R) closed disc of radius R.)

I
1

s − P
defines an element of Γ(U;Ws

T∗X ).

I Expand
1

s − P
as
∑

n≥0

Pn

sn+1
and apply Laplace transform.

I Denote by exp(t~−1P) the image by L of 1
s−P .



Exponential elements

Theorem

For P ∈ WT∗X (0) (order 0), there is a section exp(t~−1P) ∈ W t
T∗X such

that, (when X is affine):

σtot(exp(t~−1P)) =
∑
n≥0

(t~−1σtot(P))?n

n!
,

where the star-product f ?n means the product given by the Leibniz
formula.


	The sheaf of microdifferential operators ET*X

