Some exercises

1. Twistor construction. We regard \mathbb{P}^{1} as the union of two affine charts \mathbb{C}_{z} and $\mathbb{C}_{z^{\prime}}$, with $z^{\prime}=1 / z$ on the intersection, and we set $S^{1}=\{\mid z=1\}=\left\{\left|z^{\prime}=1\right|\right\}$. Let $\sigma: \mathbb{P}^{1} \rightarrow \overline{\mathbb{P}}^{1}$ be the anti-holomorphic involution $z \mapsto-1 / \bar{z}$.
(1) Let \mathscr{H} be a holomorphic vector bundle on \mathbb{C}_{z}.

- Show that $\sigma^{*} \overline{\mathscr{H}}$ is a holomorphic vector bundle on $\mathbb{C}_{z^{\prime}}$.
(2) Let $\mathscr{C}: \mathscr{H}_{S^{1}} \otimes_{\mathscr{O}_{S^{1}}} \sigma^{*} \overline{\mathscr{H}}_{\mid S^{1}} \rightarrow \mathscr{O}_{S^{1}}$ be $\mathscr{O}_{S^{1}}$ linear inducing an isomorphism $\mathscr{H}_{\mid S^{1}}^{\vee} \simeq \sigma^{*} \overline{\mathscr{H}}_{\mid S^{1}}$. Then \mathscr{C} defines a holomorphic bundle $\widetilde{\mathscr{H}}$ on \mathbb{P}^{1} by gluing \mathscr{H}^{\vee} and $\sigma^{*} \overline{\mathscr{H}}$ along the previous isomorphism. Assume that \mathscr{H} is equipped with a meromorphic connection ∇ having a pole at $z=0$ only.
- Show that $\sigma^{*} \overline{\mathscr{H}}$ has a meromorphic connection having a pole at $z^{\prime}=0$ only.
- Show that if \mathscr{C} is compatible with the connections, then the connection ∇ on \mathscr{H}^{\vee} and that on $\sigma^{*} \overline{\mathscr{H}}$ are compatible and define a meromorphic connection ∇ on $\widetilde{\mathscr{H}}$ with pole at $0, \infty$ only.
- In such a case, show that \mathscr{C} is uniquely determined from its restriction to the local system $\mathscr{L}=\operatorname{ker} \nabla$, which is a non-degenerate pairing $C: \mathscr{L}_{\mid S^{1}} \otimes_{\mathbb{C}_{S^{1}}}$ $\iota^{-1} \overline{\mathscr{L}}_{\mid S^{1}} \rightarrow \mathbb{C}_{S^{1}}$, where ι is the involution $z \mapsto-z$ (note that, for $z \in S^{1}$, $\sigma(z)=\iota(z))$.

Remark. Given (\mathscr{H}, ∇) and a non-degenerate pairing $C: \mathscr{L}_{\mid S^{1}} \otimes \mathbb{C}_{S^{1}} \iota^{-1} \overline{\mathscr{L}}_{\mid S^{1}} \rightarrow \mathbb{C}_{S^{1}}$ as above, it is difficult to check whether $\widetilde{\mathscr{H}}$ is trivial, or to compute the BirkhoffGrothendieck decomposition of $\widetilde{\mathscr{H}}$, as this reduces to a transcendental question.
(3) Assume that we are given $(\mathscr{H}, \mathscr{C})$ as above. Show that $\widetilde{\mathscr{H}} \simeq \sigma^{*} \overline{\mathscr{H}}$. Conclude that, if $(\mathscr{H}, \mathscr{C})$ is a pure twistor of weight 0 , that is, if $\widetilde{\mathscr{H}}$ is the trivial bundle, then $H:=\Gamma\left(\mathbb{P}^{1}, \widetilde{\mathscr{H}}\right)$ is equipped with a nondegenerate sesquilinear form.
2. Elementary $\mathbb{C}((z))$-vector spaces with connection. Let R be a finite dimensional $\mathbb{C}((z))$-vector space equipped with a connection ∇ having a regular singularity, i.e., there exists a basis of R in which $\nabla=d+A \mathrm{~d} z / z, A$ a constant matrix.
(1) Let $\varphi \in \mathbb{C}((z))$. Show that $\nabla+\mathrm{d} \varphi \mathrm{Id}$ is a connection which only depends on $\varphi \bmod \mathbb{C} \llbracket z \rrbracket$, that is, if $\varphi, \psi \in \mathbb{C}((z))$ are such that $\varphi-\psi \in \mathbb{C} \llbracket z \rrbracket$, then $(R, \nabla+\mathrm{d} \varphi \mathrm{Id}) \simeq$ $(R, \nabla+\mathrm{d} \psi \mathrm{Id})$.
(2) Show that if $\varphi \neq 0$ in $\mathbb{C}((z)) / \mathbb{C} \llbracket z \rrbracket$, then $\operatorname{ker} \nabla=0$. Applying this to End, show the converse to the implication above.
(3) Let u be a new variable, let $\rho \in u \mathbb{C} \llbracket u \rrbracket$ with valuation $v_{u}(\rho)=p \geqslant 1$, and set $z=\rho(u)$. Show that $\mathbb{C}((u))$ is a $\mathbb{C}((z))$-vector space. Let R be a n-dimensional $\mathbb{C}((u))$ vector space. Show that R is a finite dimensional $\mathbb{C}((z))$-vector space and compute its dimension. It is denoted by $\rho_{*} R$.
(4) Assume R has a connection ∇ (w.r.t. to u). Show that $\nabla_{\partial_{z}}:=\rho^{\prime}(u)^{-1} \nabla_{\partial_{u}}$ defines a derivation of R as a $\mathbb{C}((z))$-vector space. Then $\left(R, \nabla_{\partial_{z}}\right)$ is denoted $\rho_{+}\left(R, \nabla_{\partial_{u}}\right)$.
(5) Let S be a m-dimensional $\mathbb{C}((z))$-vector space with a connection ∇ (w.r.t. z) and set $\rho^{*} S=\mathbb{C}((u)) \otimes_{\mathbb{C}((z))} S$. Show that the formula $\nabla_{\partial_{u}}(1 \otimes s)=\rho^{\prime}(u) \otimes \nabla_{\partial_{z}} s$ defines a connection on $\rho^{*} S$ (w.r.t. u). It is denoted $\rho^{+}(S, \nabla)$.
(6) Let $\lambda \in u \mathbb{C} \llbracket u \rrbracket$ with $v_{u}(\lambda)=1$. Compute $\lambda^{+}(S, \mathrm{~d}+\mathrm{d} \psi \operatorname{Id}+A \mathrm{~d} z / z)$ and $\lambda_{+}(R, \mathrm{~d}+\mathrm{d} \varphi \operatorname{Id}+A \mathrm{~d} u / u), \varphi \in \mathbb{C}((u)), \psi \in \mathbb{C}((z))$ and A a constant matrix.
(7) Let (R, ∇) and $\left(R^{\prime}, \nabla^{\prime}\right)$ be two $\mathbb{C}((u))$-vector spaces with regular connection, and let $\lambda \in u \mathbb{C} \llbracket u \rrbracket$ with $v_{u}(\lambda)=1$. Show that $\lambda_{+}(R, \nabla+\mathrm{d} \varphi \mathrm{Id}) \simeq\left(R^{\prime}, \nabla^{\prime}+\mathrm{d} \psi \mathrm{Id}\right)$ iff $\psi \circ \lambda \equiv \varphi \bmod \mathbb{C} \llbracket u \rrbracket$ and $(R, \nabla) \simeq\left(R^{\prime}, \nabla^{\prime}\right)$. (Hint: use the series $\rho(u)$ such that $\lambda \circ \rho=1$ and show that $\lambda_{+}=\rho^{+}$.)

