Some exercises

1. Twistor construction. We regard \mathbb{P}^1 as the union of two affine charts \mathbb{C}_z and $\mathbb{C}_{z'}$, with z' = 1/z on the intersection, and we set $S^1 = \{|z = 1\} = \{|z' = 1|\}$. Let $\sigma : \mathbb{P}^1 \to \overline{\mathbb{P}}^1$ be the anti-holomorphic involution $z \mapsto -1/\overline{z}$.

(1) Let \mathscr{H} be a holomorphic vector bundle on \mathbb{C}_{z} .

• Show that $\sigma^* \overline{\mathscr{H}}$ is a holomorphic vector bundle on $\mathbb{C}_{z'}$.

(2) Let $\mathscr{C} : \mathscr{H}_{|S^1} \otimes_{\mathscr{O}_{S^1}} \sigma^* \overline{\mathscr{H}}_{|S^1} \to \mathscr{O}_{S^1}$ be \mathscr{O}_{S^1} -linear inducing an isomorphism $\mathscr{H}_{|S^1}^{\vee} \simeq \sigma^* \overline{\mathscr{H}}_{|S^1}$. Then \mathscr{C} defines a holomorphic bundle $\widetilde{\mathscr{H}}$ on \mathbb{P}^1 by gluing \mathscr{H}^{\vee} and $\sigma^* \overline{\mathscr{H}}$ along the previous isomorphism. Assume that \mathscr{H} is equipped with a meromorphic connection ∇ having a pole at z = 0 only.

• Show that $\sigma^* \overline{\mathscr{H}}$ has a meromorphic connection having a pole at z' = 0 only.

• Show that if \mathscr{C} is compatible with the connections, then the connection ∇ on \mathscr{H}^{\vee} and that on $\sigma^*\overline{\mathscr{H}}$ are compatible and define a meromorphic connection ∇ on $\widetilde{\mathscr{H}}$ with pole at $0, \infty$ only.

• In such a case, show that \mathscr{C} is uniquely determined from its restriction to the local system $\mathscr{L} = \ker \nabla$, which is a non-degenerate pairing $C : \mathscr{L}_{|S^1} \otimes_{\mathbb{C}_{S^1}} \iota^{-1}\overline{\mathscr{L}}_{|S^1} \to \mathbb{C}_{S^1}$, where ι is the involution $z \mapsto -z$ (note that, for $z \in S^1$, $\sigma(z) = \iota(z)$).

Remark. Given (\mathscr{H}, ∇) and a non-degenerate pairing $C : \mathscr{L}_{|S^1} \otimes_{\mathbb{C}_{S^1}} \iota^{-1} \overline{\mathscr{L}}_{|S^1} \to \mathbb{C}_{S^1}$ as above, it is difficult to check whether $\widetilde{\mathscr{H}}$ is trivial, or to compute the Birkhoff-Grothendieck decomposition of $\widetilde{\mathscr{H}}$, as this reduces to a transcendental question.

(3) Assume that we are given $(\mathcal{H}, \mathcal{C})$ as above. Show that $\widetilde{\mathcal{H}} \simeq \sigma^* \widetilde{\mathcal{H}}$. Conclude that, if $(\mathcal{H}, \mathcal{C})$ is a *pure twistor of weight* 0, that is, if $\widetilde{\mathcal{H}}$ is the trivial bundle, then $H := \Gamma(\mathbb{P}^1, \widetilde{\mathcal{H}})$ is equipped with a nondegenerate sequilinear form.

2. Elementary $\mathbb{C}((z))$ -vector spaces with connection. Let R be a finite dimensional $\mathbb{C}((z))$ -vector space equipped with a connection ∇ having a *regular singularity*, i.e., there exists a basis of R in which $\nabla = d + Adz/z$, A a constant matrix.

(1) Let $\varphi \in \mathbb{C}((z))$. Show that $\nabla + d\varphi \operatorname{Id}$ is a connection which only depends on $\varphi \mod \mathbb{C}[\![z]\!]$, that is, if $\varphi, \psi \in \mathbb{C}((z))$ are such that $\varphi - \psi \in \mathbb{C}[\![z]\!]$, then $(R, \nabla + d\varphi \operatorname{Id}) \simeq (R, \nabla + d\psi \operatorname{Id})$.

(2) Show that if $\varphi \neq 0$ in $\mathbb{C}((z))/\mathbb{C}[\![z]\!]$, then ker $\nabla = 0$. Applying this to End, show the converse to the implication above.

(3) Let u be a new variable, let $\rho \in u\mathbb{C}\llbracket u \rrbracket$ with valuation $v_u(\rho) = p \ge 1$, and set $z = \rho(u)$. Show that $\mathbb{C}((u))$ is a $\mathbb{C}((z))$ -vector space. Let R be a n-dimensional $\mathbb{C}((u))$ -vector space. Show that R is a finite dimensional $\mathbb{C}((z))$ -vector space and compute its dimension. It is denoted by $\rho_* R$.

(4) Assume R has a connection ∇ (w.r.t. to u). Show that $\nabla_{\partial_z} := \rho'(u)^{-1} \nabla_{\partial_u}$ defines a derivation of R as a $\mathbb{C}((z))$ -vector space. Then (R, ∇_{∂_z}) is denoted $\rho_+(R, \nabla_{\partial_u})$.

(5) Let S be a m-dimensional $\mathbb{C}((z))$ -vector space with a connection ∇ (w.r.t. z) and set $\rho^*S = \mathbb{C}((u)) \otimes_{\mathbb{C}((z))} S$. Show that the formula $\nabla_{\partial_u}(1 \otimes s) = \rho'(u) \otimes \nabla_{\partial_z} s$ defines a connection on ρ^*S (w.r.t. u). It is denoted $\rho^+(S, \nabla)$.

(6) Let $\lambda \in u\mathbb{C}\llbracket u \rrbracket$ with $v_u(\lambda) = 1$. Compute $\lambda^+(S, d + d\psi \operatorname{Id} + Adz/z)$ and $\lambda_+(R, d + d\varphi \operatorname{Id} + Adu/u), \varphi \in \mathbb{C}((u)), \psi \in \mathbb{C}((z))$ and A a constant matrix.

(7) Let (R, ∇) and (R', ∇') be two $\mathbb{C}((u))$ -vector spaces with regular connection, and let $\lambda \in u\mathbb{C}[\![u]\!]$ with $v_u(\lambda) = 1$. Show that $\lambda_+(R, \nabla + d\varphi \operatorname{Id}) \simeq (R', \nabla' + d\psi \operatorname{Id})$ iff $\psi \circ \lambda \equiv \varphi \mod \mathbb{C}[\![u]\!]$ and $(R, \nabla) \simeq (R', \nabla')$. (Hint: use the series $\rho(u)$ such that $\lambda \circ \rho = 1$ and show that $\lambda_+ = \rho^+$.)