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Recap: Quantum chaos of eigenfunctions

Let {ϕj} be an orthonormal basis of eigenfunctions

∆ϕj = λ2
j ϕj , 〈ϕj , ϕk〉 = δjk

of the Laplacian on a (mainly compact) Riemannian manifold
(M, g). Suppose:
The geodesic flow G t : S∗g M → S∗g M is ergodic, or Anosov or some
other notion of “chaotic”.

Problem How are eigenfunctions distributed in ‘phase space’ S∗g M
(the unit cosphere bundle w.r.t. g) as λj →∞?



Semi-classical notation

It is often clearer to put ~ = λ−1
j and denote the eigenfunctions by

ϕj or just ϕ~. The eigenvalue problem is

~2∆ϕ~ = ϕ~.



Phase space distribution of eigenfunctions

It is measured by the matrix elements

ρj(A) = 〈Aϕj , ϕj〉

where A ∈ Ψ0(M) is a pseudo-differential operator of order zero.
These talks are about the limits of ρj(A) as λj →∞ ⇐⇒ ~→ 0.
The weak limits of the ρj are invariant measures for the geodesic
flow g t : S∗M → S∗M. What are the possible limit measures ν0

(quantum limits).



Outline of talk II

I Entropy lower bounds for quantum limit measures
(Anantharaman-Nonnenmacher) in the Anosov case.

I (If time permits) Applications of 〈Aϕj , ϕj〉 to nodal (zero)
sets;

I Other important topics: variance sums, Lp norms of
eigenfunctions (cf. Lecture Notes)
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Riemannian manifolds with Anosov geodesic flow

A geodesic flow g t is called Anosov on on S∗g M if the tangent
bundle TS∗g M splits into g t invariant sub-bundles
Eu(ρ)⊕ E s(ρ)⊕ R XH(ρ) where Eu is the unstable subspace and
E s the stable subspace. They satisfy: ∃λ > 0 s.th.

||dg tv || ≤ Ce−λt ||v ||, ∀v ∈ E s , t ≥ 0,

||dg tv || ≤ Ceλt ||v ||, ∀v ∈ Eu, t ≤ 0.
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Facts about Anosov flows

The sub-bundles are integrable and give stable, resp. unstable
foliations W s ,W u. The leaves through x are denoted by
W s(x),W u(x).

Thus, the geodesic flow contracts everything exponentially fast
along the stable leaves and expands everything exponentially fast
along the unstable leaves.

Anosov geodesic flows are ergodic.
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Compact hyperbolic manifolds

For most of this talk, we assume (M, g) = Hn/Γ is a compact
hyperbolic surface (constant curvature −1). This simplifies all the
formulae but does not simplify the proofs.



Lower bound on entropy of quantum limits

Anantharaman and Anantharaman-Nonnenmacher have proved two
types of lower bounds on entropies of quantum limits:

I A lower bound on the topological entropy of the support of
the quantum limit;

I A lower bound on the KS (Kolmogorov-Sinai) entropy of the
quantum limit;

I G. Rivière has recently proved a sharp conjectured lower
bound for negatively curved surfaces.



Definition of KS entropy hµ
It is easiest to define local entropy of an invariant measure µ for
g t : Define the (Bowen) metric

dT (ρ, ρ′) = max
−T/2≤t≤T/2

d(g tρ, g tρ′), ρ, ρ′ ∈ S∗M.

Let BT (ρ, r) be the Bowen ball of radius r around ρ wrt dT .

Define the local entropy on an invariant measure µ for f by

hµ(ρ) = lim
δ→0

lim sup
T→∞

− logµ(BT (ρ, δ))

T
.

Brin-Katok: the limit exists and

hKS(µ) =

∫
S∗M

hµ(ρ)dµ(ρ).
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Bowen balls and geodesic tubes for compact hyperbolic
surfaces

In this Anosov case, the Bowen ball BT (ρ, ε0) is the tubular
neighborhood of radius ε0e−T/2 around the geodesic segment
[g−ε0(ρ), g ε0(ρ)]. In the transverse direction to the orbit of ρ, it is
a ball (or cube) of radius ε0e−T/2 in the W u −W s directions.
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Entropy computations

1. hKS(µγ) = 0 (periodic orbit measure: Indeed, µγ(BT (ρ, ε)) = ε
for all T if ρ ∈ γ: the measure does not see transverse balls, along
segments along γ. So, − 1

T logµγ(BT (ρ, ε)) = − log ε
T → 0 as

T →∞ for ρ ∈ γ. Recall that hKS(µγ) =
∫
γ hµγ (ρ)ds(ρ).

2. Liouville measure µL: For a compact hyperbolic manifold of
dimension d , hKS(µL) = d − 1. Indeed, for any ρ,
µL(BT (ρ, ε)) = εe−(d−1)T (the volume of the transverse cube to
the orbit through ρ. )
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Topological entropy of an invariant set

Let F ⊂ Σ = {1, . . . , `}Z be a shift-invariant subset. Then, by
definition,

htop(F ) ≤ λ ⇐⇒ ∀δ > 0, ∃C > 0

F can be covered by at most Cen(λ+δ)

cylinders of length n, ∀n.

E.g. htop(γ) = 0 (it can be covered by one cylinder set of length n

for all n).
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Anantharaman htop bound

Theorem
Let ν0 be a quantum limit measure. Then

I hKS(ν0) > 0; In fact, a positive proportion of the ergodic
components of ν0 must have entropy arbitrarily close to Λ

2 .

I htop(supp ν0) ≥ Λ
2 (Λ = d − 1 in constant curvature −1.)

I.e. suppν0 cannot be covered by Cen( Λ
2

(1−δ)) cylinder sets of
length n.

Corollary
ν0 cannot be a finite union of periodic orbit measures.
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Anantharaman-Nonnenmacher KS entropy bound in
constant curvature

Theorem
Let ν0 be a semiclassical measure associated to the eigenfunctions
of the Laplacian on a compact hyperbolic manifold M. Then

hKS(µ) ≥ d − 1

2
. (1)

They proved a similar result in the general Anosov case. They
conjectured a sharp lower bound which has recently been proved
by G. Rivière in dimension two.



Lindenstrauss-Soundararajan

Theorem
Let X = Γ\H2 be a compact arithmetic hyperbolic surface, or
a finite area arithmetic hyperbolic surface defined by a
congruence subgroup. Let {ϕj} be an orthonormal basis of
Hecke eigenfunctions (they are cuspidal L2 eigenfunctions in
the finite area case). Then this Hecke basis is QUE, i.e. its
only quantum limit is Liouville.

Luo, Sarnak and Jakobson proved QUE for Eisenstein series in
this case.
The proof is based on the special symmetries of joint
eigenfunctions of the ring of Hecke operators on an arithmetic
surface like Γ = SL(2,Z). It does not use the relation between
geodesic flow and the wave group.
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Back to Anantharaman’s lower bound on htop(suppν0)

We will sketch the proof of Anantharman’s lower bound when
F = γ is a closed (hyperbolic) orbit for the geodesic flow, and
(M, g) is a compact hyperbolic manifold.

Thus, htop(γ) = 0.

We want to prove that ν0(γ) < 1 for any quantum limit ν0.



Symbolic coding and sequence space Σ = {1, . . . , `}Z

Fix a partition {Mk} of M and a corresponding partition T ∗Mk of
T ∗M. Let Pαk

be the characteristic function of T ∗Mk .

Let Σ = {1, . . . , `}Z where ` is the number of elements of the
partition P0).
Symbolic coding map: v ∈ S∗M → I (v) = (αk) ∈ Σ so that
gnv ∈ Pαj for all n ∈ Z.

The time one map g 1 conjugates to the shift σ((αj)) = ((αj+1))
on admissible sequences, i.e. sequences in the image of the coding
map. But we mainly use Σ for quantum constructions.
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Cylinder sets

A cylinder set [α0, . . . , αn−1] of length n is the subset of Σ of
sequences with the given segment in the (0, . . . , n − 1) positions.

[α0, . . . , αn] = {β ∈ Σ : βj = αj , j = 0, . . . , n − 1}.

The set of such cylinder sets of length n is denoted Σn.



Classical measure of cylinder sets

An invariant measure ν0 for g t on S∗M corresponds to a
shift-invariant measure on Σ.

µ0([α0, . . . , αn]) = ν0(Pα0 ∩ g−1Pα1 ∩ · · · ∩ g−n+1Pαn−1).

The measure ν0(Pα0 ∩ g−1Pα1 ∩ · · · ∩ g−n+1Pαn−1) is the
probability wrt ν0 that an orbit successively visits Pα0 ,Pα1 , · · · .

The entropy measures the exponential decay rate of these
probabilities for large times.

Such a cylinder set is something like a small Bowen ball.
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KS entropy of an invariant measure µ
Given a partition

P = (P1, . . . ,Pk)

of S∗g M, define the Shannon entropy of the partition by

h(µ,P) =
∑k

j=1 µ(Pj) logµ(Pj).

Under iterates of the time one map g of the geodesic flow, the
partition is refined to

Pn
α = {Pα0 ∩ g−1Pα1 ∩ · · · ∩ g−n+1Pαn−1}.

One defines hn(µ,P) to be the Shannon entropy of this partition
and then defines

hKS(µ,P) = lim
n→∞

1

n
hn(µ,P).

Then hKS(µ) = supP hKS(µ,P).
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Quantized cylinder set operators

On the quantum level, one quantizes the partition to define a
smooth quantum partition of unity P̂k by smoothing out the
characteristic functions of Mk .

Given a cylinder set [α0, . . . , αn−1], define the quantum cylinder
set operator on L2(M)

P̂α = P̂αn−1(n − 1)P̂αn−2(n − 2) · · · P̂α0 , (2)

where
P̂(k) = U∗k P̂Uk . (3)

Here, U = e i
√

∆ is the propagator at unit time (or in the
semi-classical framework, U = e i~∆/2).



New Idea I: Quantum measures of cylinder sets

Definition: Let ϕ~ be an eigenfunction of ∆. Define the
associated quantum “measure” of cylinder sets
C = [α0, . . . , αn−1] ∈ Σn by

µ~([α0, . . . , αn−1]) = 〈P̂αn−1(n − 1) · · · P̂α0(0)ϕ~, ϕ~〉. (4)

µ~([α0, . . . , αn−1]) is the probability amplitude that the quantum
particle in state ϕ~ the phase space visits the regions
Pα0 ,Pα1 , . . . ,Pαn−1 at times 0, 1, . . . , n − 1.
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Quantum measures are shift invariant

One has

µ~([α0, . . . , αn−1]) = µ~(σ−1[α0, . . . , αn−1]).

Proof: This means

〈U−(n−2)Pαn−1Un−2 · · ·UPα0U−1ϕ~, ϕ~〉

= 〈U−(n−1)Pαn−1Un−1 · · ·UPα0ϕ~, ϕ~〉

which follows because ρh(A) = 〈Aϕ~, ϕ~〉 is an invariant state.



More on quantum measures of cylinder sets

The quantum measures are not “classical dynamical”. They are
not measures and they are not being defined in terms of symbols
or sets in S∗M.
One “quantizes” the cylinder set C = [α0, . . . , αn−1] as the
operator

Ĉ = U−(n−1)P̂αn−1UP̂αn−2 · · ·UPα0 (5)

Then

[α0, . . . , αn−1]→ µ~([α0, . . . , αn−1]) = 〈Ĉϕ~, ϕ~〉 (6)

is a linear functional µ~ on the span of the cylinder functions on Σ.

Big Problem: µ~ are not positive measures since Ĉ~ is not a
positive operator.
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Classical vs quantum cylinders

It is important to note that

Ĉ = U−(n−1)P̂αn−1UP̂αn−2 · · ·UPα0 (7)

is NOT the quantization of (the characteristic function of)

Pα0 ∩ g−1Pα1 ∩ · · · ∩ g−n+1Pαn−1 .

Quantization is not a homomorphism.



New Idea II: Dispersive hyperbolic estimate in constant
curvature

Theorem
(Anantharaman) Let C be a cylinder set of length n. Then

|µ~(C)| ≤ Cβ(~−1e−n)d/2

uniformly for n ≤ β | log ~|

for any β.

Note that the estimate is only good if n ≥ | log ~|.
Similar (but more complicated) estimate exists for any Anosov
geodesic flow. This is one of Anantharaman’s key technical
contributions. No analogue estimate exists at present for Bowen
balls.
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Theorem for F = γ, (M , g) hyperbolic

For each n, γ may be covered by one n-cylinder

Wn(γ) = {[α−n/2, . . . , α0, . . . , αn/2]},

namely the one specified by the indices of the cells Pα that γ
passes through starting from some fixed x0 ∈ γ. Fix n.



A novel time average for N ≥ ϑ| log ~|,

Let us temporarily pretend that µ~ is also a positive measure.
Then we would have

|µ~(Wn)| = | 1

N − n

N−n−1∑
k=0

µ~(σ−kWn)|

=

∣∣∣∣∣µ~

(
1

N − n

N−n−1∑
k=0

1σ−kWn

)∣∣∣∣∣
≤

∑
C∈ΣN(Wn,τ)

µ~(C) + τ
∑

C /∈ΣN(Wn,τ)

µ~(C)

= µ~(ΣN(Wn, τ)) + τµ~(ΣN(Wn, τ)c)

≤ (1− τ) (1− ϑ)) + τ < 1.

(ΣN(Wn, τ) on next page; uses main estimate)



ΣN(Wn, τ)

Define ΣN(Wn, τ) to be the set of N- cylinders [α0, . . . , αN−1]
such that

#{j ∈ [0,N − n] : [αj , . . . , αj+n−1] ∈Wn}
N − n + 1

≥ τ.

They correspond to orbits that spend a proportion ≥ τ of their
time in Wn (i.e. e−n/2 close to γ.)

By the ergodic theorem, the orbits Liouville almost all v ∈ S∗M
spend a time proportion in Wn equal to the Liouville measure of
Wn ∼ e−n(d−1). So ΣN(Wn, τ) has small Liouville measure.
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such that

#{j ∈ [0,N − n] : [αj , . . . , αj+n−1] ∈Wn}
N − n + 1

≥ τ.

They correspond to orbits that spend a proportion ≥ τ of their
time in Wn (i.e. e−n/2 close to γ.)

By the ergodic theorem, the orbits Liouville almost all v ∈ S∗M
spend a time proportion in Wn equal to the Liouville measure of
Wn ∼ e−n(d−1). So ΣN(Wn, τ) has small Liouville measure.



End of heuristic proof

Since Wn is fixed, the weak convergence µ~ → µ0 implies,

|µ0(Wn)| ≤ (1− τ) (1− ϑ)) + τ < 1. (8)

Since γ ⊂Wn, the same estimate applies to γ. So µ0(γ) < 1.
µ0 is the transfer to Σ of ν0, so this ends the heuristic proof.



Applications of QE to nodal sets of eigenfunctions

These talks have been devoted to finding limits of the states
ρj(A) = 〈Aϕj , ϕj〉. Such states are fundamental in quantum
mechanics.
But they are not so standard in classical PDE or geometric
analysis. One application is to determining the structure as
λj →∞ of the zero set

Zϕj = {x ∈ M : ϕj(x) = 0}.

of eigenfunctions.
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Distribution of nodal hypersurfaces

By the distribution of zeros we mean how they wind around on the
manifold. If U ⊂ M is a nice open set, we want to determine the
total hypersurface volume Hn−1(Zϕj ∩ U) as λj →∞, or more
generally the integral of f ∈ C (M) over the nodal set,

〈[Zϕj ], f 〉 =

∫
Zϕj

f (x)dHn−1. (9)

Problem: How does 1
λj
〈[Zϕj ], f 〉 behave as λj →∞.

Random wave model predicts ∼
∫
M fdVg .
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Chladni diagrams: Integrable case



Volumes of nodal hypersurfaces

Even for f ≡ 1 there is no asymptotic formula in the ergodic case.
The best result to date on volumes of nodal hypersurfaces on
general real analytic Riemannian manifolds is:

Theorem
(Donnelly-Fefferman, Inv. Math. 1988) Suppose that (M, g) is
real analytic. Then

c1λ ≤ Hn−1(Zϕλ) ≤ C2λ.

Yau conjectured this result for C∞ metrics in 1982; it is still open
in the non-analytic case.



Complex nodal hypersurfaces

Eigenfunctions of eigenvalue λ2 are the analogues on manifolds of
polynomials of degree λ. It is simpler to study complex zeros of
analytic continuations of polynomials to Cm.
Similarly, it is easier to determine the distribution law of complex
nodal hypersurfaces

ZϕC
j

= {ζ ∈ MC : ϕC
j (ζ) = 0},

where ϕC
j is the analytic continuation of ϕj to the complexification

MC of M. The metric induces a natural Kaehler form ωg = ∂∂̄ρ
on MC (Guillemin, Lempert-Szoke).
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Complex nodal sets in the ergodic case

Theorem
(Z, ’07) Assume (M, g) is real analytic and that the geodesic flow
of (M, g) is ergodic. Let ZϕC

λj

be tne complex zero set in MC of

ϕC
λ . Then for almost all λj , and all f

1

λj

∫
Z
ϕC
λj

f ωn−1
g → i

π

∫
MC

f ∂∂
√
ρ ∧ ωn−1

g

(Also results of Hezari (’08) in the Schrödinger case and Toth-Z
(’09) in the boundary case.)
As usual in quantum ergodicity, we may have to delete a possible
subsequence of exceptional eigenvalues.



QE and Poincaré-Lelong

Main ideas of proof:

1. The delta function on the complex nodal set is given by
[Zj ] = ∂∂̄ log |ϕC

j |2. (First use of complexification)

2. In MC, the (properly normalized) |ϕC
j |2 are quantum ergodic if

the geodesic flow is ergodic.

3. In the complex domain, log |ϕC
j |2 converges strongly if the

(properly normalized) |ϕC
j |2 converges weakly. (Second use of

complexification).

4. Use ergodicity of g t to determine these weak limits.



Final thoughts

Although much progress has been been made recently, there is a
long way to go before we understand:

I Whether any (M, g) are QUE. E.g. compact hyperbolic
surfaces. In view of cat maps, we need to use properties of
∆-eigenfunctions that are not properties of “quantum cap
map” eigenfunctions. E.g. boundary values of eigenfunctions
on the ideal boundary (automorphic distributions)

I Multiplicities of eigenvalues–all but hopeless to improve
O(λ

n−1

log λ ) bound (sharp in cat map setting.)

I The extent to which eigenfunctions of chaotic systems
resemble random waves (e.g. in norms, nodal domains, critical
point sets).



Limit distribution of zeros is singular along zero section

I The Kaehler structure (Guillemin, Lempert-Szoke) on the
cotangent bundle is ∂∂ρ. But the limit current is ∂∂

√
ρ. The

latter is singular along M = {ξ = 0}; its highest exterior
power is the delta-function on the real M.

I One might be able to use the singularity to determine the
limit distribution of the real zero sets.

I One hopes to use the same techniques to count critical points
of eigenfunction and determine their distribution law.


