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T hemes of talk

e Use geometry (volume forms, hermitian met-
rics) to define inner products on spaces of
polynomials or ‘sections of a line bundle’
over a Kahler manifold (M, w) of dimension
m.

e Each inner product induces a Gaussian mea-
sure on such a space.

e Study statistics of zeros and critical points
of random polynomials (or holomorphic sec-
tions) as the degree N — oo. How do
they depend on the underlying geometry?
Which metrics have ‘minimal complexity’,
i.e. cause the minimal number of critical
points on average.



Principal results

The main results concern large degree asymp-
totics:

1. Zeros and critical points concentrate asymp-
totically as the degree N — oo in regions
of high curvature;

2. The metrics which minimize the expected
number of critical points of a Gaussian ran-
dom ‘section’ of large degree N are those
which minimize the Calabi functional (known
as canonical metrics in complex geometry;
e.g. Calabi-Yau metrics in the case of the
‘canonical bundle’).



Complex Kac-Hammersley polyno-
mials

Consider the random holomorphic polynomial
of one complex variable,

N .
f(z) =) ¢

J=1
where the coefficients c; are independent com-
plex Gaussian random variables of mean zero
and variance one. Complex Gaussian:

E (Cj) = 0= E(Cjck:)7 E(Cj(_lk) — 53]{:

T his defines a Gaussian measure vx 4¢ ON 77](\,1):

dyrac(f) = e~ 1e* /24



Expected distribution of zeros

T he distribution of zeros of a polynomial of de-
gree N is the probability measure on C defined

by

z:f(2)=0
where 4, is the Dirac delta-function at z.

Definition: The expected distribution of ze-
ros of random polynomials of degree N with
measure P is the probability measure K pZ on
C defined by

Erzpd) = Loty ¥ e@Wr),



How are zeros of complex Kac poly-
nomials distributed?

Complex zeros concentrate in small annuli around
the unit circle S1. In the limit as the degree
N — oo, the zeros asymptotically concentrate
exactly on St

Theorem 1 (Kac-Hammersley-Shepp-Vanderbei)
The expected distribution of zeros of polyno-
mials of degree N in the Kac ensemble has the
asymptotics:

where  (dq1,) = % Jq1 o(et?) de.

The real zeros concentrate at the intersection
points of SINR = {+1}.



Gaussian measure and inner prod-
uct

It was the (implicit) choice of inner product
that produced this concentration of zeros on
St

The inner product underlying the Kac Gaus-
sian measure on 7?](\,1) is defined by the basis
{z7} being orthonormal. Thus, they were or-
thonormalized on S1. Aninner product induces
an orthonormal basis {S;} and associated as-
sociated Gaussian measure d~:

d

S = Z Cij,
j=1

where {c;} are independent complex normal
random variables.

Orthonormalizing on S1 made zeros concen-
trate on St.



Gaussian random polynomials adapted
to domains and weights

We now orthonormalize polynomials on the in-
terior €2 or boundary 02 of any simply con-
nected, bounded domain 2 C C. Introduce a
weight e~ NY and a probability measure dv on
€2 and define

(f, 9 = /Q F(2)g(2) e NPy,

Let ’yg@ — the Gaussian measure induced by

How do zeros of random polynomials adapted
to 2 concentrate?



Equilibrium distribution of zeros

Denote the expectation relative to the ensem-
ble (Pn, 7o) by Elo.

Theorem 2

Ejo(ZY) =vq + O (1/N) |

where vq is the equilibrium measure of QQ with
respect to .

The equilibrium measure of a compact set K
IS the unique probability measure dvyx which
minimizes the energy

Bu) =~ [ [ 10g|z=wldu(=) du(w)+ | pdn.

Thus, zeros behave like electric charges in the
potential ¢.



Warm-Up for line bundles: SU(2)
polynomials

T here exists an inner product in which the ex-
pected distribution of zeros is ‘uniform’ on CP!
w.r.t. to the usual Fubini-Study area form wgg.

We define an inner product on 7?]<\,1) which de-
pends on N:

: 1
(27, 2") Ny = =0k

N\ 77
()
Thus, a random SU(2) polynomial has the form
N
f=Tjaen Aay/(5) 2

Proposition 3 In the SU(2) ensemble, E(Zy) =
wrg, the Fubini-Study area form on CP!.
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SU(2) and holomorphic line bundles

The SU(2) inner products may be written in
the form
dz \dz

Nal eV 10g(1+]z?) ,
[ #@)gG)e V1o At )

The factor e~ N109(1+12*) gefines a Hermitian

metric on O(N), and its curvature form is w =
dzN\dz
(1+]z[2)="

This gives a geometric interpretation of the
inner product

(£ Dae = | feE) e N Pav .

We should regard f,g as sections of the Nth

power of a line bundle with Hermitian metric
—No
e .
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Gaussian random holomorphic sec-
tions of line bundles

We now consider more general Hermitian met-
rics h = e~% on O(1) — CP! and area forms on
CPLl. In fact, everything we do generalizes to
any Riemann surface M of any genus.

The Hermitian metric h on O(1) induces Her-
mitian metrics hYY = e~ V¥ on the powers O(N),
a volume form dV, and an inner product

(s1.500n = [ s1(2)sa(@)e NV (2).

We let {S;} denote an orthonormal basis of
the space HO(M, LY) of holomorphic sections
of LV,

Then define the Gaussian measure v,y ONn s €
HO(M, LN) by

S — ZCij, <Sj, Sk> — 5jk
J

with E(C]) =0= E(Cjck)7 E(C]@) = 5]k
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Statistics of critical points

From now on we focus on critical points

Vs(z) =0,

where V is a metric connection.

Critical points of Gaussian random functions
come up in may areas of physics—

e as peak points of signals (S.O. Rice, 1945);

e as vacua in compactifications of string/M
theory on Calabi-Yau manifolds with flux
(Giddings-Kachru-Polchinski, Gukov-Vafa-
Witten);

e as extremal black holes (Strominger, Ferrara-
Gibbons-Kallosh) , peak points of galaxy
distributions (Szalay et al, Zeldovich), etc.
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Critical points with respect to a
metric connection

Definition: Let (L,h) — M be a Hermitian
holomorphic line bundle over a complex mani-
fold M, and let V = V,;, be its Chern connec-
tion.

A critical point of a holomorphic section s &
HO(M, L) is defined to be a point z € M where
Vs(z) = 0.

In a local frame e critical point equation for
s = fe reads:

Of (w) + f(w)dp(w) =0,

where |le(2)|];, = e~ %.

The critical point equation is only C*° and not
holomorphic since ¢ is not holomorphic.
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Statistics of critical points

The distribution of critical points of s € HO(M, L)
with respect to h (or Vy,) is the measure on M

(1) ch.= Y s

z: Vps(z)=0

Definition: The (expected) distribution E~C"
of critical points of s € HO(M, L) w.r.t. V; and
v, IS the measure on M defined by

> w(z)| dv(s).

(BCl ) = |
| 2:Vs(2)=0

HO(M,L)

The expected number of critical points is de-
fined by

Nerit(h,y) = [ #Crit(s, h)dy(s).
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Problems of interest

1. Calculate EVC!?. How are critical points
distributed? How are they correlated. As
the degree N — oo, how is CQN concen-
trated around the equilibrium measure?

2. How large is N<"t(h ~)? How does the ex-
pected number of critical points depend on
the metric?

3. The ‘best’ metrics are the ones which min-
imize this quantity. Which are they?
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How the curvature affects the ex-
pected number of critical points

et us consider the simplest case:

Theorem 4 The expected number of critical
points of a random section sy € HO(CPL, O(N))
(with respect to the Gaussian measure ygpg on
HO(CPY, O(N)) induced from the Fubini-Study
metrics on O(N) and CP1) is

5N2-8N+4 5 14 8 4

“N—-—4 >N
3N —2 3 o T2o7

Of course, relative to the flat connection d/dz
the number is N—1. Thus, the positive curva-
ture of the Fubini-Study hermitian metric and
connection causes sections to oscillate much
more than the flat connection. There are %

new local maxima and % new saddles.
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Asymptotic expansion for the ex-
pected number of critical points as
N — oo

Theorem 5 (Douglas, Shiffman,Zelditch) Let
(L,h) — M be a positive hermitian line bun-
dle over any Kahler manifold of any dimen-
sion. Let N"Y(hNY) denote the expected num-
ber of critical points of random s € HO(M, L)
with respect to the Hermitian Gaussian mea-
sure. Then Ar<fit > o s.th.

N(RN) = (Z5rSit ¢ (L)™) N™
+([as pAVis) N1

+[Com [y p?dViy + top] N2 4 O(N™3) .

Here, p is the scalar curvature of wy, the cur-
vature of h.

St ¢ (L)™ is larger than for a flat connection.
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Is the expected number of critical
points a topological invariant?

The first two terms are topological invariants
of a positive line bundle, i.e. independent of
the metric! (Both are Chern numbers of L).
But the non-topological part of the third term

Cim [ pPaVN™2
m M'O Q

iIs a non-topological invariant, as long as C,, #
0. It is a multiple of the Calabi functional.
It was proved by Douglas-Shiffman-Zelditch in
m =dim M <5 that (), # 0 and by B. Baugher
in all dimensions (2008 PhD thesis).

(These calculations are based on the Tian-
Yau-Zelditch (and Catlin) expansion of the Szegd
kernel and on Zhiqgin Lu’s calculation of the co-
efficients in that expansion. )
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Calabi extremal metrics are asymp-
totic minimizers

A Calabi extremal metric is a minimizer of the
functional [,; p°dV where p = scalar curvature
of the Kahler form w.

Theorem 6 Douglas-Shiffman-Zelditch (2006 )-
Baugher (2008) Calabi extremal metrics (asymp-
totically minimize) the metric invariant given
by NC"t(HN), the expected number of critical
points of a random s € HO(M, LY).

For instance, Fubini-Study metrics are extremal
metrics on CP™, so on average holomorphic
sections have fewer critical points with respect
to FS metrics than any other metric on CP™.

20



Hints at methods

The proofs are based on:

e A general Kac-Rice formula for the expected
number of critical points.

e An Itzykson-Zuber type re-working of this
formula;

e For large N, an asymptotic analysis of the
two point function M, y(z, w) = Efth(s(w)m),
i.e. the Bergman kernel for the Hermitian
line bundle LY.
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General formula for density critical
points

We denote by Sym(m, C) the space of complex
m X m symmetric matrices. In well-chosen local
coordinates z = (z1,...,2m), in a local frame
e, we have:

Theorem 1 There exist positive-definite Her-
mitian matrices

A(z) :Cm — C™ |

A(z) : Sym(m,C) @ C — Sym(m,C) @ C, s.th.

i _ 1
K () = det A(z) det A(z) < Je Jsym(m,c)
H  20(2) (NG Y H ), H oo /
|det<f@(z) = >|e < ) dH' da .
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Formulae for A(z) and A(z)

A(z) and A(z) depend only on V and on the
SzegoO kernel, i.e. orthogonal projection

Ns:L?(M,L) — S C H°(M, L),

for S and for the inner product. Let Fg(z,w) be
the local expression for Mg(z,w) in the frame
er. Then A =C — B*A~1B, where

A= (6—2FS(Z,’U))|z:w> 5

82j8’lf)j/

3 9
— (azjagq,awj,)FS|z=W) ((a—szS|Z=w)]v

= 84 F 82 F -

82
8wq,8wj,F5 |z=w FS(Z,Z)

1<j<m,1<j<qg<m,1<j <q¢d<m.

C =

In the above, A,B,C are m xm, m X n,n X n
matrices, respectively, where n = %(m2 + m +
2).

23



