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Themes of talk

• Use geometry (volume forms, hermitian met-
rics) to define inner products on spaces of
polynomials or ‘sections of a line bundle’
over a Kähler manifold (M, ω) of dimension
m.

• Each inner product induces a Gaussian mea-
sure on such a space.

• Study statistics of zeros and critical points
of random polynomials (or holomorphic sec-
tions) as the degree N → ∞. How do
they depend on the underlying geometry?
Which metrics have ‘minimal complexity’,
i.e. cause the minimal number of critical
points on average.
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Principal results

The main results concern large degree asymp-

totics:

1. Zeros and critical points concentrate asymp-

totically as the degree N → ∞ in regions

of high curvature;

2. The metrics which minimize the expected

number of critical points of a Gaussian ran-

dom ‘section’ of large degree N are those

which minimize the Calabi functional (known

as canonical metrics in complex geometry;

e.g. Calabi-Yau metrics in the case of the

‘canonical bundle’).
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Complex Kac-Hammersley polyno-
mials

Consider the random holomorphic polynomial

of one complex variable,

f(z) =
N∑

j=1

cjz
j

where the coefficients cj are independent com-

plex Gaussian random variables of mean zero

and variance one. Complex Gaussian:

E (cj) = 0 = E(cjck), E(cjc̄k) = δjk.

This defines a Gaussian measure γKAC on P(1)
N :

dγKAC(f) = e−|c|2/2dc.
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Expected distribution of zeros

The distribution of zeros of a polynomial of de-

gree N is the probability measure on C defined

by

Zf =
1

N

∑
z:f(z)=0

δz,

where δz is the Dirac delta-function at z.

Definition: The expected distribution of ze-

ros of random polynomials of degree N with

measure P is the probability measure E PZf on

C defined by

〈E P Zf, ϕ〉 =
∫
P(1)

N

{ 1

N

∑
z:f(z)=0

ϕ(z)}dP(f),

for ϕ ∈ Cc(C).
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How are zeros of complex Kac poly-
nomials distributed?

Complex zeros concentrate in small annuli around

the unit circle S1. In the limit as the degree

N → ∞, the zeros asymptotically concentrate

exactly on S1:

Theorem 1 (Kac-Hammersley-Shepp-Vanderbei)

The expected distribution of zeros of polyno-

mials of degree N in the Kac ensemble has the

asymptotics:

EN
KAC(ZN

f ) → δS1 as N → ∞ ,

where (δS1, ϕ) := 1
2π

∫
S1 ϕ(eiθ) dθ.

The real zeros concentrate at the intersection

points of S1 ∩ R = {±1}.
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Gaussian measure and inner prod-
uct

It was the (implicit) choice of inner product

that produced this concentration of zeros on

S1.

The inner product underlying the Kac Gaus-

sian measure on P(1)
N is defined by the basis

{zj} being orthonormal. Thus, they were or-

thonormalized on S1. An inner product induces

an orthonormal basis {Sj} and associated as-

sociated Gaussian measure dγ:

S =
d∑

j=1

cjSj,

where {cj} are independent complex normal

random variables.

Orthonormalizing on S1 made zeros concen-

trate on S1.
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Gaussian random polynomials adapted
to domains and weights

We now orthonormalize polynomials on the in-

terior Ω or boundary ∂Ω of any simply con-

nected, bounded domain Ω ⊂ C. Introduce a

weight e−Nϕ and a probability measure dν on

Ω and define

〈f, ḡ〉Ω,ϕ :=
∫
Ω

f(z)g(z) e−Nϕ(z)dν .

Let γN
Ω,ϕ = the Gaussian measure induced by

〈f, ḡ〉Ω,ϕ on P(1)
N .

How do zeros of random polynomials adapted

to Ω concentrate?
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Equilibrium distribution of zeros

Denote the expectation relative to the ensem-

ble (PN, γN
∂Ω) by EN

∂Ω.

Theorem 2

EN
∂Ω(ZN

f ) = νΩ + O (1/N) ,

where νΩ is the equilibrium measure of Ω̄ with

respect to ϕ.

The equilibrium measure of a compact set K

is the unique probability measure dνK which

minimizes the energy

E(μ) = −
∫
K

∫
K

log |z−w| dμ(z) dμ(w)+
∫
K

ϕdμ.

Thus, zeros behave like electric charges in the

potential ϕ.
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Warm-Up for line bundles: SU(2)
polynomials

There exists an inner product in which the ex-

pected distribution of zeros is ‘uniform’ on CP1

w.r.t. to the usual Fubini-Study area form ωFS.

We define an inner product on P(1)
N which de-

pends on N :

〈zj, zk〉N =
1(
N
j

)δjk.

Thus, a random SU(2) polynomial has the form

f =
∑

|α|≤N λα

√(
N
α

)
zα,

E(λα) = 0, E(λαλβ) = δαβ.

Proposition 3 In the SU(2) ensemble, E (Zf) =

ωFS, the Fubini-Study area form on CP1.
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SU(2) and holomorphic line bundles

The SU(2) inner products may be written in

the form∫
C

f(z)g(z)e−N log(1+|z|2) dz ∧ dz̄

(1 + |z|2)2 .

The factor e−N log(1+|z|2) defines a Hermitian

metric on O(N), and its curvature form is ω =
dz∧dz̄

(1+|z|2)2.

This gives a geometric interpretation of the

inner product

〈f, ḡ〉Ω,ϕ :=
∫
Ω

f(z)g(z) e−Nϕ(z)dν .

We should regard f, g as sections of the Nth

power of a line bundle with Hermitian metric

e−Nϕ.
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Gaussian random holomorphic sec-
tions of line bundles

We now consider more general Hermitian met-
rics h = e−ϕ on O(1) → CP1 and area forms on
CP1. In fact, everything we do generalizes to
any Riemann surface M of any genus.

The Hermitian metric h on O(1) induces Her-
mitian metrics hN = e−Nϕ on the powers O(N),
a volume form dV , and an inner product

〈s1, s2〉N =
∫
M

s1(z)s2(z)e
−NϕdV (z).

We let {Sj} denote an orthonormal basis of
the space H0(M, LN) of holomorphic sections
of LN .

Then define the Gaussian measure γhN on s ∈
H0(M, LN) by

s =
∑
j

cjSj, 〈Sj, Sk〉 = δjk

with E(cj) = 0 = E(cjck), E(cjck) = δjk.
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Statistics of critical points

From now on we focus on critical points

∇s(z) = 0,

where ∇ is a metric connection.

Critical points of Gaussian random functions
come up in may areas of physics–

• as peak points of signals (S.O. Rice, 1945);

• as vacua in compactifications of string/M
theory on Calabi-Yau manifolds with flux
(Giddings-Kachru-Polchinski, Gukov-Vafa-
Witten);

• as extremal black holes (Strominger, Ferrara-
Gibbons-Kallosh) , peak points of galaxy
distributions (Szalay et al, Zeldovich), etc.
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Critical points with respect to a
metric connection

Definition: Let (L, h) → M be a Hermitian

holomorphic line bundle over a complex mani-

fold M , and let ∇ = ∇h be its Chern connec-

tion.

A critical point of a holomorphic section s ∈
H0(M, L) is defined to be a point z ∈ M where

∇s(z) = 0.

In a local frame e critical point equation for

s = fe reads:

∂f(w) + f(w)∂ϕ(w) = 0,

where ||e(z)||h = e−ϕ.

The critical point equation is only C∞ and not

holomorphic since ϕ is not holomorphic.
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Statistics of critical points

The distribution of critical points of s ∈ H0(M, L)

with respect to h (or ∇h) is the measure on M

(1) Ch
s :=

∑
z: ∇hs(z)=0

δz.

Definition: The (expected) distribution E γCh
s

of critical points of s ∈ H0(M, L) w.r.t. ∇h and

γh is the measure on M defined by

〈E γCh
s , ϕ〉 :=

∫
H0(M,L)

⎡
⎢⎣ ∑

z:∇hs(z)=0

ϕ(z)

⎤
⎥⎦ dγ(s).

The expected number of critical points is de-

fined by

N crit(h, γ) =
∫
S #Crit(s, h)dγ(s).
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Problems of interest

1. Calculate E γCh
s . How are critical points

distributed? How are they correlated. As

the degree N → ∞, how is ChN

s concen-

trated around the equilibrium measure?

2. How large is N crit(h, γ)? How does the ex-

pected number of critical points depend on

the metric?

3. The ‘best’ metrics are the ones which min-

imize this quantity. Which are they?
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How the curvature affects the ex-
pected number of critical points

Let us consider the simplest case:

Theorem 4 The expected number of critical

points of a random section sN ∈ H0(CP1,O(N))

(with respect to the Gaussian measure γFS on

H0(CP1,O(N)) induced from the Fubini-Study

metrics on O(N) and CP1) is

5N2 − 8N + 4

3N − 2
=

5

3
N − 14

9
+

8

27
N−1 · · · .

Of course, relative to the flat connection d/dz

the number is N −1. Thus, the positive curva-

ture of the Fubini-Study hermitian metric and

connection causes sections to oscillate much

more than the flat connection. There are N
3

new local maxima and N
3 new saddles.
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Asymptotic expansion for the ex-
pected number of critical points as
N → ∞

Theorem 5 (Douglas, Shiffman,Zelditch) Let

(L, h) → M be a positive hermitian line bun-

dle over any Kähler manifold of any dimen-

sion. Let N crit(hN) denote the expected num-

ber of critical points of random s ∈ H0(M, LN)

with respect to the Hermitian Gaussian mea-

sure. Then ∃Γcrit
m > 0 s.th.

N (hN) = (πm

m!Γ
crit
m c1(L)m)Nm

+(
∫
M ρdVω)Nm−1

+[Cm
∫
M ρ2dVΩ + top]Nm−2 + O(Nm−3) .

Here, ρ is the scalar curvature of ωh, the cur-

vature of h.

Γcrit
m c1(L)m is larger than for a flat connection.
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Is the expected number of critical
points a topological invariant?

The first two terms are topological invariants

of a positive line bundle, i.e. independent of

the metric! (Both are Chern numbers of L).

But the non-topological part of the third term

Cm

∫
M

ρ2dVΩNm−2

is a non-topological invariant, as long as Cm 
=
0. It is a multiple of the Calabi functional.

It was proved by Douglas-Shiffman-Zelditch in

m = dimM ≤ 5 that Cm 
= 0 and by B. Baugher

in all dimensions (2008 PhD thesis).

(These calculations are based on the Tian-

Yau-Zelditch (and Catlin) expansion of the Szegö

kernel and on Zhiqin Lu’s calculation of the co-

efficients in that expansion. )
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Calabi extremal metrics are asymp-
totic minimizers

A Calabi extremal metric is a minimizer of the

functional
∫
M ρ2dV where ρ = scalar curvature

of the Kähler form ω.

Theorem 6 Douglas-Shiffman-Zelditch (2006)-

Baugher (2008) Calabi extremal metrics (asymp-

totically minimize) the metric invariant given

by N crit(HN), the expected number of critical

points of a random s ∈ H0(M, LN).

For instance, Fubini-Study metrics are extremal

metrics on CPm, so on average holomorphic

sections have fewer critical points with respect

to FS metrics than any other metric on CPm.
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Hints at methods

The proofs are based on:

• A general Kac-Rice formula for the expected

number of critical points.

• An Itzykson-Zuber type re-working of this

formula;

• For large N , an asymptotic analysis of the

two point function ΠhN(z, w) = E γ
hN (s(w)s(w)),

i.e. the Bergman kernel for the Hermitian

line bundle LN .
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General formula for density critical
points

We denote by Sym(m, C) the space of complex

m×m symmetric matrices. In well-chosen local

coordinates z = (z1, . . . , zm), in a local frame

e, we have:

Theorem 1 There exist positive-definite Her-

mitian matrices

A(z) : Cm → Cm ,

Λ(z) : Sym(m, C) ⊕ C → Sym(m, C) ⊕ C , s.th.

Kcrit(z) = 1
detA(z) detΛ(z) ×

∫
C

∫
Sym(m,C)

|det

(
H ′ xΘ(z)

x̄ Θ̄(z) H̄ ′
)
| e−〈Λ(z)−1(H ′⊕x), H ′⊕x〉 dH ′ dx .
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Formulae for A(z) and Λ(z)

A(z) and Λ(z) depend only on ∇ and on the

Szegö kernel, i.e. orthogonal projection

ΠS : L2(M, L) → S ⊂ H0(M, L),

for S and for the inner product. Let FS(z, w) be

the local expression for ΠS(z, w) in the frame

eL. Then Λ = C − B∗A−1B, where

A =
(

∂2

∂zj∂w̄j′
FS(z, w)|z=w

)
,

B =
[(

∂3

∂zj∂w̄q′∂w̄j′
)FS|z=w

) (
( ∂
∂zj

FS|z=w

)]
,

C =

⎡
⎢⎢⎣
(

∂4

∂zq∂zj∂w̄q′∂w̄j′
FS|z=w

) (
∂2

∂zj∂zq
FS
)

(
∂2

∂w̄q′∂w̄j′
FS
)
|z=w FS(z, z)

⎤
⎥⎥⎦ ,

1 ≤ j ≤ m ,1 ≤ j ≤ q ≤ m ,1 ≤ j′ ≤ q′ ≤ m .

In the above, A, B, C are m × m, m × n, n × n

matrices, respectively, where n = 1
2(m

2 + m +

2).
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