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Abstract

We give asymptotic formulas for the multiplicities of weights and irreducible summands in

high-tensor powers V#N
l of an irreducible representation Vl of a compact connected Lie

group G: The weights are allowed to depend on N; and we obtain several regimes of pointwise

asymptotics, ranging from a central limit region to a large deviations region. We use a complex

steepest descent method that applies to general asymptotic counting problems for lattice paths

with steps in a convex polytope.

r 2004 Published by Elsevier Inc.
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0. Introduction

This article is concerned with the interplay between combinatorics of lattice paths
with steps in a convex polytope and asymptotics of weight multiplicities (and

multiplicities of irreducible representations) in high tensor powers V#N
l of

irreducible representations Vl of a compact connected Lie group G: Our main
results give asymptotic formulae for

* multiplicities mNðl; nÞ of weights n in V#N
l ;
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* multiplicities aNðl; nÞ of irreducible representations Vn with highest weight n in

V#N
l :

* multiplicities of lattice paths with steps in a convex lattice polytope P from 0 to an
N-dependent lattice point aANP:

Asymptotic analysis of multiplicities in high tensor powers are of interest because
the known formulae for multiplicities of weights and irreducibles in tensor products
(Steinberg’s formula, Racah formula, Littlewood–Richardson rule and others
[FH,BD]) rapidly become complicated as the number of factors increases.

Our analysis of multiplicities is based on the simple and well-know fact [S] that the

multiplicities of lattice paths can be obtained as Fourier coefficients of powers kðwÞN

of a complex exponential sum of the form

kðwÞ ¼
X
bAP

cðbÞe/b;wS; wACn ð1Þ

with positive coefficients cðbÞ; where P is a convex lattice polytope. One can obtain

the precise asymptotics of the Fourier coefficients of kðwÞN by a complex stationary
phase (or steepest descent) argument. It is necessary to deform the contour of the
Fourier integral to pick up the relevant complex critical points and to study the
geometry of the complexified phase, which is closely related to the moment map for a
toric variety. In fact, it was the analysis of this latter problem in [TSZ1,SZ] which led
to the present article.

When P is the convex hull of a Weyl orbit of the weight l; the Fourier coefficients
are weights of V#N

l : When P ¼ pS with the simplex S and a positive integer p; and

cðbÞ ¼ ðp
bÞ ðjbjppÞ; then the Fourier coefficients are, of course, multinomial

coefficients of the form ðNp
g Þ with jgjpNp: Thus, lattice path multiplicities in general

behave much like multinomial coefficients, whose asymptotics (obtained form
Stirling’s formula) have been studied since Boltzmann in probability theory and
statistical mechanics (cf. [E,F]). In view of the rather basic nature of the lattice path
counting problem and its applications, it might seem surprising that a pointwise
asymptotic analysis has not been carried out before (at least, to our knowledge). The
closest prior result appears to be Biane’s central limit asymptotics for multiplicities
of irreducibles in tensor products [B], which does not make use of the connection to
lattice path counting.

To state our results, we need some notation. We fix a maximal torus TCG and
denote by g and t the corresponding Lie algebras. Their duals are denoted by g� and
t�: We fix an open Weyl chamber C in t�; and denote the set of dominant weights by

I�- %C where I� is the lattice of integral forms in t�: For lAI�- %C; we denote by Vl

the irreducible representation of G with the highest weight l; and denote its character
by wVl

or more simply by wl: We further denote by QðlÞCt� the convex hull of the

orbit of l under the action of the Weyl group W : The multiplicity of a weight m in Vl

is denoted by m1ðl; mÞ: We set Ml ¼ fm;m1ðl;mÞa0gCQðlÞ:
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It is well known that the weights (and highest weights of irreducibles) occurring in

V#N
l all lie within QðNlÞ: Our aim is to obtain pointwise asymptotic formulae for

the multiplicities for all possible weights. As will be seen, the asymptotics fall into
several regimes. We begin with some simple results on the bulk properties of weight
asymptotics and progress to our main results giving individual asymptotic formulae.

The simplest problem is to determine the asymptotic distribution of multiplicities

of weights in V#N
l : Let us define a probability measure on QðlÞ as follows:

dml;N :¼ 1

dim V#N
l

X
nAQðNlÞ

mNðl; nÞdN�1n: ð2Þ

This measure charges each possible weight n of V#N
l with its relative multiplicity

mN ðl;nÞ
dim V#N

l
and then dilates the weight back to QðlÞ: As N-N; the dilated weights

become denser in QðlÞ and we may ask how they become distributed. In particular,
which are the most probable weights?

Theorem 1. Assume that l is a dominant weight in the open Weyl chamber. Then, we

have

ml;N-dQ�ðlÞ

weakly as N-N; where dQ�ðlÞ is the Dirac measure at the (Euclidean) center of mass

Q�ðlÞ of the polytope QðlÞ given by

Q�ðlÞ ¼ 1

dim Vl

X
nAMl

m1ðl; nÞn: ð3Þ

This is an elementary result because

wV#N
l

¼ wN
Vl

) dml;N ¼ D 1
N

dml �? � dml; ð4Þ

where dml ¼ dml;1 and where D 1
N

is the dilation operator by 1
N
on the dual Cartan

subalgebra t�: Hence, the sequence of measures fdml;Ng satisfies the central limit

theorem and the (Laplace) large deviations principle. In the central limit theorem, we

translate the center of mass to 0 and dilate by ðD ffiffiffi
N

p : X �{x/
ffiffiffiffiffi
N

p
xAX �Þ so that the

support spreads out to all of X �:

Theorem 2. Assume that the dominant weight l is in the open Weyl chamber. We

define the measure dmlN by

dmlN :¼ 1

dim V#N
l

X
nAQðNlÞ

mNðl; nÞd 1ffiffiffi
N

p ðn�NQ�ðlÞÞ; ð5Þ
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which is considered as a measure on the subspace X � in t� spanned by the simple roots.

Then, as a measure on X �; dmlN satisfies the following formula:

w- lim
N-N

dmlN ¼ e�/A�1
l x; xS=2

ð2pÞm ffiffiffiffiffiffiffiffiffiffiffiffiffi
det Al

p ; ð6Þ

where m ¼ dim X �; and the positive definite linear transform Al : X-X � is defined by

Al ¼
1

dim Vl

X
mAMl

m1ðl; mÞm#m� Q�ðlÞ#Q�ðlÞ: ð7Þ

For more precise description for the matrix Al; see (17), (18) and Theorem 2.8.
When G is semisimple, then X � ¼ t�; and the center of mass Q�ðlÞ is the origin

(Lemma 2.5). Hence, in this case, dmlN ¼ ðD ffiffiffi
N

p Þ�dml;N :

Next, we consider the large deviations principle. Let us recall the definitions: Let
mN ðN ¼ 1; 2;yÞ be a sequence of probability measures on a closed set ECRn: Let
I : E-½0;N� be a lower semicontinuous function. Then, the sequence mN is said to
satisfy the large deviation principle with the rate function I (and with the speed N) if
the following conditions are satisfied:

(a) The level set I�1½0; c� is compact for every cAR:
(b) For each closed set F in E;

lim sup
N-N

1

N
log mNðFÞp� inf

xAF
IðxÞ:

(c) For each open set U in E;

lim inf
N-N

1

N
log mNðUÞX� inf

xAU
IðxÞ:

The following is a consequence of Cramér’s theorem [DZ, Theorems 2.2.3, 2.2.30]:

Theorem 3. Assume that G is semisimple. Then, the sequence fdml;Ng of measures on

QðlÞ satisfies a large deviations principle with speed N and rate function:

IlðxÞ ¼ sup
tAt

/t; xS� log
wlðt=ð2piÞÞ
dim Vl

� �� �
; xAt�; ð8Þ

where wlðt=ð2piÞÞ ¼
P

nAMl
m1ðl; nÞe/n;tS denotes the character of Vl extended on

t#C:
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The assumption that G is semisimple is not necessary. However, in general case,
the definition of the rate function is slightly modified. See Section 2 for details.

Before stating our more refined results on weights, we note that there exist
analogous laws of large numbers, central limit theorems and large deviations
principles for multiplicities of irreducibles. In place of dml;N ; we now weight

mAQðNlÞ by the multiplicity of the irreducible representation Vm in V#N
l : We thus

define

dMl;N :¼ 1

BNðlÞ
X

nAQðNlÞ
aNðl; nÞdN�1n; BNðlÞ ¼

X
n

aNðl; nÞ
 !

: ð9Þ

The measures dMl;N are measures on the closed positive Weyl chamber %C: They also

satisfies the Laplace large deviations principle, but the proof is not quite as simple as
for dml;N : The measures dMl;N and dml;N are related by an alternating sum over the

Weyl group (see Proposition 2.4 and Lemma 2.7).

dMl;NðmÞ ¼
ðdim VlÞN

BNðlÞ
X

wAW

sgnðwÞdml;Nðmþ r� wrÞ: ð10Þ

We can thus deduce the upper-bound half (b) in the definition of the large
deviation principle for the measure dMl;N from that for dml;N : It follows from

Theorem 3 that:

Corollary 4. Assume that G is semisimple. The sequence fdMl;Ng of measures on QðlÞ
satisfies the upper-bound in a large deviations principle with speed N and rate function

IlðxÞ given by (8).

The lower bound will follow from our pointwise asymptotics. We should note the
large deviations principle with the rate function (8) has already been proved by
Duffield [D] for dMl;N by a different method.

These results give the bulk properties of the measures dml;N ; dMl;N in that they

give the exponents of the measures of N-independent closed/open sets. Our main
results give apparently optimal refinements, in which we give pointwise asymptotics
for multiplicities of (N-dependent) weights. As mentioned above, they are based on
the combinatorics of lattice paths rather than on large deviations theory, which does
not seem capable of seeing the finer details of the asymptotics.

To introduce our results, we recall one of the first and most basic results of a
similar kind, namely Boltzmann’s analysis of the asymptotics of multinomial
coefficients (see [E] for historical background and the relation to the present
problem):

mN : fk ¼ ðk1;y; kmÞANm : jkj :¼ k1 þ?þ kmpNg-Rþ;

mNðkÞ ¼
N

k

� �
¼ N!

ðN � jkjÞ!k1!?km!
:

8><>:
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Let us consider the case m ¼ 1 of binomial coefficients. It is easy to see that the

binomial coefficient bNðkÞ ¼ ðN
k
Þ peaks at the center k ¼ N

2
and by Stirling’s formula

r!B
ffiffiffiffiffiffi
2p

p
rrþ1

2e�r; bNðN
2 ÞBN�1=22N : We measure distance from the center by dNðkÞ ¼

k � N
2 : We then have (see [F, Chapter 7] for the first two lines):

bNðkÞB

ðCLÞCN�1=22Ne�
2dN ðkÞ2

N if dNðkÞ ¼ oðN
2
3Þ

ðMDÞCN�1=22Ne
�2dN ðkÞ2

N
�Nf

2dN ðkÞ
N

� �
if dNðkÞ ¼ oðNÞ;

with f ðxÞ ¼
PN
n¼2

x2n

ð2nÞð2n � 1Þ

ðSDÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pNað1� aÞ

p a�aNð1� aÞ�ð1�aÞN ; kBaN; ao1;

ðREÞC0N
k0 ; k ¼ k0; N � k0;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
where we note that the function f ðxÞ has more simple form:

f ðxÞ þ x2

2
¼ 1

2
½ð1þ xÞlogð1þ xÞ þ ð1� xÞlog ð1� xÞ�:

We refer to the first region as the central limit region (CL), where the asymptotics

are normal (i.e. have the form N�1=22NfðdN ðkÞffiffiffi
N

p Þ; where f is the Gaussian). The

exponential growth is fixed at log 2 as long as dNðkÞ ¼ Oð
ffiffiffiffiffi
N

p
Þ: In the next region

(MD) of moderate deviations, the exponent is decreased by the function f : In the

next regime (SD) of strong deviations, the growth exponent is a log 1
a
þ ð1�

aÞlog 1
1�a

olog 2: In the final boundary (RE) region of rare events, the exponent

vanishes and the growth rate is algebraic.
In a somewhat similar way, multiplicities peak at weights near the center of gravity

Q�ðlÞ of QðNlÞ; have a common exponential rate for weights in a ball of radius

Oð
ffiffiffiffiffi
N

p
Þ around the center of mass, and then the exponential rate declines as the

weight moves from a moderate to a strong deviations region towards the boundary
of QðNlÞ: At the boundary point Nl of QðNlÞ; the multiplicity equals one.

0.1. Statements of results on weight multiplicities

To state our results precisely, we will need further notation. Let X �Ct� denote the
subspace spanned by the simple roots, and let X ¼ ðX �Þ� be its dual space. Using an
inner product which is invariant under the action of the Weyl group, the space X is
identified with the subspace of t spanned by the inverse roots. As is shown in Section
2, the polytope QðlÞ � l is contained in X �: In the following, the interior of QðlÞ
means the interior of QðlÞ in the affine subspace X � þ l: Let r denote half the sum of
the positive roots. Let L� be the lattice of weights in X �: Since all the roots is in L�;
the lattice L� is of maximal rank in X �: Let L� be the root lattice in X �; i.e., L� is the
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linear span of all the roots over Z; which satisfies L�CL�: The both lattices L� and
L� are of maximal rank. Their duals are denoted by L and L respectively. Then we
have LCL; and hence the quotient PðGÞ :¼ L=L is a finite abelian group.

0.1.1. Central limit region

Our first result concerns the ‘central limit region’ of weights which are within a ball

of radius Oð
ffiffiffiffiffi
N

p
Þ around the center of mass in Theorem 1. For the sake of simplicity

we will assume that G is semisimple. In this case, we have X � ¼ t�; and we can use
the (negative) Killing form for the inner product invariant under the action of the
Weyl group.

Theorem 5. Assume that G is semisimple. Fix a dominant weight l in the open Weyl

chamber C: Let nN be a sequence of weights such that jnN j ¼ OðN1=2Þ: Assume that

mNðl; nNÞa0 for every sufficiently large N: Then, we have

mNðl; nNÞ ¼ ð2pNÞ�m=2jPðGÞjðdim VlÞN e�/A�1
l nN ;nNS=ð2NÞffiffiffiffiffiffiffiffiffiffiffiffiffi
det Al

p þ OðN�1=2Þ
 !

; ð11Þ

where jPðGÞj is the order of the finite group PðGÞ ¼ L=L; m ¼ dim t is the rank of G

and the positive definite linear transform Al : t-t� is given by

Al ¼
1

dim Vl

X
mAMl

m1ðl; mÞm#m: ð12Þ

We note that in this regime, the exponent of growth of multiplicities is the constant
log dim Vl: The assumption that mNðl; nNÞa0 for every sufficiently large N can be
replaced by that mN0

ðl; nNÞa0 for some N0 if 0 is a weight in Vl: In Section 2, we

prove a stronger result, Theorem 2.8, which extends the central limit regime to
weights nNANQðlÞ of the form

nN ¼ NQ�ðlÞ þ dNðnNÞ; jdNðnNÞj ¼ oðNsÞ ð13Þ

with 0psp2=3: Here, as in the case of binomial coefficients, dNðnNÞ represents the
distance to the center of gravity of QðlÞ:

0.1.2. Large deviations region

We now consider the moderate and strong deviations regimes. As suggested by the
behavior of multinomial coefficients, the exponent must decrease as we move away
from the center of gravity of QðNlÞ: A key role in the exponent correction will be
played by the map

ml : X-QðlÞ; mlðxÞ :¼
1P

mAMl
m1ðl; mÞe/m;xS

X
mAMl

m1ðl; mÞe/m;xSm: ð14Þ
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This map is a homeomorphism from X to the interior of QðlÞ (see e.g. [Fu]), and

resembles the moment map of a toric variety, restricted to the real torus in ðC�Þm:We

define a function dl on the interior QðlÞo of the polytope QðlÞ by

dlðxÞ ¼ log
X
mAMl

m1ðl; mÞe/m�x;tlðxÞS

 !
; ð15Þ

where tl ¼ m�1
l : QðlÞo-X : It is clear that dlðnÞ40 for nAQðlÞo-Ml: When G is

semisimple, the function dl is related to the rate function Il given by (8) by the
formula

dlðxÞ ¼ logðdim VlÞ � IlðxÞ; xAQðlÞo: ð16Þ

For nAQðlÞo; we further define the linear map A0
lðnÞ : t-t� by

A0
lðnÞ ¼

X
mAMl

m1ðl; mÞe/m;tlðnÞSP
m0AMl

m1ðl; m0Þe/m0;tlðnÞS
m#m� n#n: ð17Þ

In general, the linear transform A0
lðnÞ defined above has a zero eigenvalue. However,

its restriction to the subspace X ; which is denoted by

AlðnÞ :¼ A0
lðnÞjX ð18Þ

is shown to be positive definite as a linear map from X-X �:
First, we consider the ‘strong deviations’ regime where the weight in question has

the form n ¼ Nn0 þ f :

Theorem 6. Let lAC-I� be a dominant weight, and let n0AMl be a weight of Vl

which lies in the interior QðlÞo
of the polytope QðlÞ: We fix a weight f in the root

lattice L�: Then, we have the following asymptotic formula:

mNðl;Nn0 þ f Þ ¼ ð2pNÞ�m=2 jPðGÞjeNdlðn0Þ�/f ;tlðn0ÞSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Alðn0Þ

p ð1þ OðN�1ÞÞ;

where m is the number of the simple roots, jPðGÞj is the order of the finite group

PðGÞ ¼ L=L; and tlðn0Þ ¼ m�1
l ðn0ÞAX :

Next, we consider a general weight n: We have just handled the case where
dNðnÞBNn0; so now we assume that jdNðnÞj ¼ oðNÞ; i.e. the weight lies in the
moderate deviations region. All of the objects in the previous result continue to make
sense in this regime, but now depend on N:

Theorem 7. Let lAC-I� be a dominant weight, and let nNANQðlÞ be a weight of the

form
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nN ¼ Nx þ dNðnNÞ; jdNðnNÞj ¼ oðNÞ;

where jdNðnNÞj denotes the norm of the vector dNðnNÞ with respect to the fixed W -

invariant inner product on t�; and where xAQðlÞo
is not necessarily a weight.

Assume that mNðl; nNÞa0 for every sufficiently large N: Then, in the notation

above, we have:

mNðl; nNÞ ¼ ð2pNÞ�m=2 jPðGÞjeNdlðnN=NÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det AlðnN=NÞ

p ð1þ OðN�1ÞÞ:

Furthermore, we have the following formula:

lim
N-N

1

N
log mNðl; nNÞ ¼ dlðxÞ:

Note that, in Theorem 7, the point nN=N is in the interior QðlÞo of the polytope
QðlÞ for sufficiently large N; since the vector dNðnNÞ is assumed to be of order oðNÞ:
Theorem 7 is regarded as an ‘‘interpolation’’ between the central limit region and the
region of moderate deviation discussed in the beginning of this section. In fact, one
can deduce Theorem 5 from Theorem 7. See Theorem 10 and Proposition 1.7 in
Section 1.

0.2. Statement of results on irreducible multiplicities

As we will discuss below, the multiplicities of irreducibles in V#N
l can be expressed

as an alternating sum of weight multiplicities. Thus, it would be natural to expect
that one might obtain asymptotics of irreducible multiplicities from our theorems on
weight multiplicities stated above. Before stating our result, we should mention the
following result, due to Biane [B], which gives the asymptotics of irreducible
multiplicities in the central limit region. To our knowledge, this is the only prior
result on asymptotics on pointwise multiplicities in high tensor products.

Theorem 8 (Biane [B, Théorème 2.2]). Assume that G is semisimple. For every

positive integer N; let NMl be the set of weights of the form n1 þ?þ nN with njAMl:

Then, for meNMl; aNðl; mÞ ¼ 0: For, mANMl with jmjpC
ffiffiffiffiffi
N

p
; we have

aNðl; mÞ ¼
jPðGÞjðdim VlÞNðdim VmÞ

Q
aAFþ

/A�1
l a; rSffiffiffiffiffiffiffiffiffiffiffiffiffi

det Al
p

ð2pÞm=2
Nðdim GÞ=2

� ðe�/A�1
l ðmþrÞ;mþrS=ð2NÞ þ OðN�1=2ÞÞ;

where the matrix A is defined in (12), m is the rank of G and the inner product /�; �S is

the Killing form.
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To be more precise, in [B] G is the Lie group with Lie algebra g (which is assumed
to be simple in [B]) such that the integral lattice of a maximal torus is identified with
the dual of the lattice I�l generated by Ml: His quadratic form q is the same as our

Al: Thus, for example, the term kðEÞ=Volqðt=Q̌Þ in [B] is equal to our jPðGÞj=
ffiffiffiffiffiffiffiffiffiffi
detA

p

when E ¼ Vl:
The two theorems can be formally related by expressing the multiplicity aNðl; mÞ

as an alternating sum of the weight multiplicities (see Proposition 2.4). By (11) one
has

mNðl; mþ r� wrÞ ¼ jPðGÞjðdim VlÞN

ð2pNÞm=2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
det Al

p ðcw;Nðl; mÞ þ OðN�1=2ÞÞ;

cw;Nðl; mÞ ¼ e�/A�1
l ðmþr�wrÞ;ðmþr�wrÞS=ð2NÞ:

Since the matrix Al is W -invariant if the Lie algebra is simple, it follows that the

quadratic form /A�1
l n; nS is a multiple of the Killing form by some positive

constant. Thus, we have

X
wAW

sgnðwÞcw;Nðl; mÞ ¼
ðdim VmÞ

Q
aAFþ

/A�1
l a; mS

Nd
ð1þ OðN�1ÞÞ;

where d is the number of the positive roots. Therefore the alternating sum above
agrees with the leading term of Biane’s formula, since dim G ¼ m þ 2d: However, to
prove Theorem 8 in this way, one would need to prove that the remainder similarly

cancels to order N�d when summed over the Weyl group, and that would be harder
than the (relatively simple) direct proof of Biane.

Although the alternating sum approach to the irreducible multiplicities does not
seem to be optimal in the central limit region as explained above, we can deduce an
asymptotic formula for the irreducible multiplicities from Theorem 6 in the region of
the strong deviations under some assumptions on the dominant weight.

Theorem 9. Let Vl be an irreducible representation of G with the highest weight lAC:

Let nAMl- %C be a dominant weight which occurs in Vl as a weight and is assumed to

lie in the interior of the polytope QðlÞ: Then we have the following asymptotic formula

for the multiplicity aNðl;NnÞ:

aNðl;NnÞ ¼ ð2pNÞ�m=2
eNdlðnÞ jPðGÞjDðtlðnÞ=ð2piÞÞe�/r;tlðnÞSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det AlðnÞ
p þ OðN�1Þ

 !
; ð19Þ

where m is the number of simple roots, jGlj is the order of the finite group Gl ¼ Ll=L:
The positive constant dlðnÞ40; the vector tlðnÞAX and the real positive matrix AlðnÞ
are given in (15), in the text after (15) and (18), and D is the Weyl denominator

extended to the complexification tC:
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Remarks.

* The constant dlðnÞ and the matrix AlðnÞ are determined by the irreducible
representation Vl itself. In particular, they can be computed by the logarithmic
differential of the character of the irreducible representation Vl:

* The constant dlðnÞ is positive under the assumptions in Theorems 6, 7 and 9.
Hence, the multiplicities aNðl; nÞ have an exponential growth with respect to N in
the regions under consideration.

* It follows from Theorem 9 that the term DðtlðnÞ=2piÞ in (19) is non-negative for
such a n as in Theorem 9. We prove this fact directly for G ¼ Uð2Þ in Section 3. As
the example in Section 3 suggests, if the dominant weight n is in a wall of a Weyl
chamber, then the leading term in (19) might vanish.

0.2.1. Rare events

It should be possible to obtain further results on rare events reminiscent of the
Poisson limit law for the multinomial distribution. Recall that the binomial
distribution with parameter p tends to a Poisson distribution if p-0 as N-N with
p=N-C: Because our results allow for general coefficient weights c on S; we believe
there are analogous results on multiplicities of weights near the boundary of QðNlÞ:
However, for the sake of brevity we do not carry out the analysis of this case.

0.2.2. Joint asymptotics

The asymptotics of tensor products V#N
l as N-N may be regarded as a

thermodynamic limit. As recalled in Section 4.2, the asymptotics as the highest
weight l-N is a semiclassical limit studied by Heckman, Guillemin–Sternberg and
others. By combining the methods of this paper and those of Heckman et al., one

could probably obtain joint asymptotics as N-N; l-N of multiplicities of V#N
l :

This again is motivated by the complexity of multiplicity formulae when either N or
l is large.

0.2.3. Log concavity

Our results give some evidence for the log concavity conjectures of Okounkov [O].
In the case of unitary groups UðkÞ; the multiplicty of Vm in Vl#Vg is given by the

Littlewood–Richardson coefficient m
m
lg: Okounkov has conjectured that these

multiplicities are log-concave in ðl; g; mÞ; and more generally that the representation
valued function V : l-Vl is log-concave with respect to the natural ordering and
tensor multiplication. Here, concavity is defined as follows: Let F : A-O be a
function from an abelian semi-group (e.g. dominant weights) to an ordered abelian
semi-group (e.g. representations). Then F is concave if

ðp þ qÞFðCÞXpFðAÞ þ qFðBÞ

for any A;B;CAA satisfying
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ðp þ qÞC ¼ pA þ qB; p; qAN:

Our results indicate that at least the multiplicities of Vm in V#N
l are asymptotically

log concave. Indeed, since a rate function is convex, it follows that the exponent
dlðxÞ in (16) is concave as a function of x: Regarding the l aspect, Okounkov notes
that dim Vl is a concave function of l (by the Weyl dimension formula). So it is
plausible that dlðxÞ is asymptotically log-concave in ðl; xÞ:

0.3. Statement of results on lattice path multiplicities

As mentioned above, our results on multiplicities of weights and irreducibles are
special cases of results on asymptotic counting of lattice paths with steps in a convex
lattice polytope. Relations between lattice paths and representations have been
studied for some time, and one is proved by Grabiner–Magyar [GM]. We include a
proof of an adequate relation for our purposes in Proposition 2.4 (see also
Proposition 2.3 for the case of weights). General and conceptually clear relations can
be derived from the path discussed in Littelmann’s expository article [Lit]. We add
some further comments in Section 4.

Let us now recall what the combinatorics of lattice paths is about: Given a set
SCNm of allowed steps, an S-lattice path of length N from 0 to b is a sequence

ðv1;y; vNÞASN such that v1 þ?þ vN ¼ b: We define the multiplicity (or partition)
function of the lattice path problem by

PNðgÞ ¼ #fðv1;y; vNÞASN : v1 þ?þ vN ¼ gg: ð20Þ

The set of possible endpoints of an S-path of length N forms a set PS;N ; and we may

ask how the numbers PNðgÞ are distributed as g varies over PS;N :
It is useful (and requires no more work) to consider a somewhat more general

problem: Let X be a real vector space and let and LCX be a lattice. Also, let X � and
L� be their duals. Let SCL� (#SX2) be a finite set which satisfies the following
condition:

The set fb� b0; b; b0ASg spans X �:

Let P be the convex hull of the finite set S: Let LðSÞ� be the lattice in X � spanned by

fb� b0; b; b0ASg over Z; and let LðSÞ be its dual lattice. By the above assumptions,
we have LCLðSÞ; and the quotient PðSÞ :¼ LðSÞ=L is a finite group. For a strictly
positive function c on S; we define the weighted multiplicity of lattice paths P c

N of

length N with weight c and the set of the allowed steps S by

P c
NðgÞ ¼

X
b1;y;bNAS; g¼b1þ?þbN

cðb1Þ?cðbNÞ; gAðNPÞ-L�: ð21Þ

If c � 1; then P c
NðgÞ ¼ PNðgÞ:
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If we take S ¼ pS-Nm; where S is the standard simplex and p is a positive integer,

and if we take the weight function cðbÞ ¼ p!
b!ðp�jbjÞ! ¼ ðp

bÞ; the corresponding weighted

multiplicity function P c
NðgÞ is given by P c

NðgÞ ¼ ðNp
g Þ; and in general one may regard

P c
N as a generalized multinomial coefficient. In Proposition 2.3, we prove that weight

multiplicities can be equated with weighted multiplicities of certain lattice paths,
specifically

mNðl; mÞ ¼ P cl
N ðm� NlÞ; ð22Þ

where P cl
N is a certain weighted lattice path partition function.In Proposition 2.4, we

further prove that

aNðl; mÞ ¼
X

wAW

sgnðwÞP cl
N ðm� Nlþ r� wrÞ: ð23Þ

We now state our results on multiplicities of lattice paths, following the same
outline as for weight multiplicities. As in the case of group representations, the
simplest question to consider is the weak limit of the measure

dmS;N :¼ 1

ð#SÞN

X
bAPS;N

PNðbÞdb
N

: ð24Þ

It is well-known and easy to prove (see Proposition 1.1) that

dmS;N-dm�
S
; where m�

S ¼ 1

#S

X
bAS

b ð25Þ

is the center of mass of the set S: In the more general case of weighted lattice paths,
the center of mass m�

SAP o is given by

m�
S ¼ 1

VðSÞ
X
bAS

cðbÞb; VðSÞ ¼
X
bAS

cðbÞ: ð26Þ

We then consider the asymptotic distribution of multiplicities of lattice paths in
regions around the center point.

These refined results involve the ‘moments maps’,

mP : X-P o; mPðtÞ ¼
X
bAS

cðbÞe/b;tSP
b0AS cðb0Þe/b;tS

b: ð27Þ

For xAP o; the interior of the polytope P; we define the function dcðS; xÞ

dcðS; xÞ ¼ log
X
bAS

cðbÞe/b�x;tPðxÞS

 !
; ð28Þ

and the positive definite linear map AcðS; xÞ : X-X � by

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

T. Tate, S. Zelditch / Journal of Functional Analysis ] (]]]]) ]]]–]]] 13

YJFAN : 4322



UNCORRECTED P
ROOF

AcðS; xÞ ¼
X
bAS

cðbÞe/b;tPðxÞSP
b0AS cðb0Þe/b0;tPðxÞS

 !
b#b� x#x; A ¼ AcðS;m�

SÞ; ð29Þ

where the diffeomorphism tP : P o-X is the inverse of the ‘moment map’ mP:

Remarks. It should be noted that the constant dcðS; aÞ defined in (28) depends on the
choice of the weight function c: In fact, this constant can be negative if we choose the
weight function c small enough. However, if c takes positive integer values, then it
turns out that the constant dcðS; aÞ is positive. See Remark after the proof of
Theorem 11 in Section 1.

0.3.1. Central limit region

Our first result on lattice paths concerns the central limit region where gN ¼
Nm�

S þ dNðgNÞ; where dNðgNÞ ¼ OðNsÞ for a variety of so1:

Theorem 10. Let 0pso1: Let gN be a sequence of lattice points such that P c
NðgNÞa0

for every sufficiently large N; and assume also that gN has the form

gN ¼ Nm�
S þ dNðgNÞ; dNðgNÞ ¼ OðNsÞ: ð30Þ

Then we have

P c
NðgNÞ ¼ ð2pNÞ�m=2 jPðSÞjeNdcðS;

gN

N
Þffiffiffiffiffiffiffiffiffiffiffi

det A
p ð1þ OðN�ð1�sÞÞÞ: ð31Þ

Furthermore, if 0psp2=3 and dNðgNÞ ¼ oðNsÞ; we have

P c
NðgNÞ ¼ ð2pNÞ�m=2 jPðSÞjVðSÞN

e�/A�1dN ðgN Þ;dN ðgN Þ=ð2NÞSffiffiffiffiffiffiffiffiffiffiffi
det A

p ð1þ eNÞ; ð32Þ

where

eN ¼ OðN�ð1�sÞÞ for 0psp1=2;

oðN3s�2Þ for 1=2osp2=3:

(

0.3.2. Large deviations region

We now assume that dN is of order N:

Theorem 11. Let a be a lattice point in S which is assumed to lie in the interior of the

polytope P: Then, for every fALðSÞ�; we have

P c
NðNaþ f Þ ¼ ð2pNÞ�m=2 jPðSÞje�/f ;tPðaÞSþNdcðS;aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det AcðS; aÞ
p ð1þ OðN�1ÞÞ; ð33Þ
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where jPðSÞj denotes the order of the finite group PðSÞ ¼ LðSÞ=L: The exponent

dcðS; aÞ is positive if cðaÞX1:

Our analysis starts from the fact that

PNðgÞ ¼ wSðuÞN jug ;

where wSðuÞN jug denotes the coefficient of the monomial ug in the Nth power of the

admissible step character,

wSðuÞ ¼
X
aAS

ua: ð34Þ

We apply a steepest descent argument to an integral representation of P c
NðgÞ (see (39)

in Section 1). Our basic reference for the stationary phase for complex phase
functions is [Hö].

0.4. Organization

We first prove the results on lattice paths, Theorems 10 and 11, in Section 1. We
then deduce the main results on multiplicities, Theorems 5–9, in Section 2. In that
section, we also review the relation between multiplicities of weights and lattice
paths. In Section 3, we illustrate the results for some representations of UðmÞ with
m ¼ 2: In Section 4, we make some final comments on the connections between
lattice paths and weight multiplicities and on the symplectic model for tensor
product multiplicities.

1. Asymptotics of the number of Lattice paths

Let X be a finite-dimensional real vector space of dimension m; and let L be a
lattice in X : Let X � and L� be, respectively, the dual vector space of X and the dual
lattice of L: Let SCL� be a finite set such that #SX2; and set

DðSÞ :¼ fb� b0AL�;b; b0ASg: ð35Þ

We assume that

spanRDðSÞ ¼ X �: ð36Þ

Let P ¼ PS be the convex hull of S; which is an integral polytope in X �: Let

c : S-R40

be a strictly positive function on S: Our aim in this section is to investigate the
asymptotics of the number of the lattice paths P c

NðgÞ for the lattice point g in various
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regions (central limit region, regions of moderate and strong deviations discussed in
the Introduction) as N-N:

We introduce the weighted character (or the weighted S-character) with the weight
function c defined by

kðwÞ :¼
X
bAS

cðbÞe/b;wS; wAXC :¼ X#C; ð37Þ

which is considered as a function on XC ¼ X#C: Here, and in what follows, a

functional fAX � is considered as a C-linear functional on XC: We fix a primitive
basis for the lattice L; which is also considered as a fixed basis for X : Note that, for
tAX ; the function j/kðtþ ijÞ is a smooth function on the torus Tm :¼ X=ð2pLÞ;
since we have assumed SCL�: The fixed basis in L defines a Lebesgue measure on X ;

and hence on XC; normalized so that VolðTmÞ ¼ ð2pÞm: We also fix an inner product
on X which has the fixed basis for L as an orthonormal basis, and we denote by jjj
the norm of jAX with respect to this inner product.

It is clear that the Nth power of the function kðwÞ is given by

kðwÞN ¼
X

gAðNPÞ-L�

P c
NðgÞe/g;wS: ð38Þ

Therefore, the lattice paths counting function P c
N has the following integral

expression:

P c
NðgÞ ¼

1

ð2pÞm

Z
Tm

e�i/g;jSkðijÞN
dj: ð39Þ

To begin with, we shall consider the simplest case, that is, consider the problem
how the numbers of lattice paths with endpoints varying in NP-L� distributes. This
would be expressed as the weak limit of the measure defined by the following:

mS;N :¼ 1

VðSÞN

X
gANP-L�

P c
NðgÞdg=N ; VðSÞ :¼ kð0Þ ¼

X
bAS

cðbÞ: ð40Þ

Noting that Pc
1ðgÞ ¼ cðgÞðgASÞ; we have

VðSÞN ¼
X

gANP-L�
P c

NðgÞ;

which shows that the measure mS;N is a probability measure. The following

proposition will be used to prove Theorem 1 in the next section.

Proposition 1.1. The probability measure mS;N tends weakly to the Dirac measure dm�
S

at the point m�
SAP given in (26).

Proof. It suffices to show that the Fourier transform (characteristic function)dmS;NmS;NðjÞ of the probability measure mS;N converges to the Fourier transform of the
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Dirac measure dm�
S
at the point m�

S for every jAX : The Fourier transform of dm�
S
is

given by j/e�i/m�
S
;jS: By (39), the Fourier transform of mS;N is given by

dmS;NmS;NðjÞ ¼
kð�ij=NÞ

VðSÞ

� 	N

; jAX :

Thus we need to show that dmS;NmS;NðjÞ-e�i/m�
S
;jS as N-N: Since dmS;NmS;Nð0Þ ¼ 1; we can

choose a compact neighborhood U of the origin in X such that a branch of the

logarithm log dmS;NmS;NðjÞ exists for jAU : For any jAX we take N large enough so that

j=NAU : Then, a Taylor expansion at the origin gives

eN logdmS;NmS;N ðj=NÞ ¼ e�i/m�
S
;jSþN�1RN ðjÞ;

where RNðjÞ is bounded on compact sets uniformly in N: Therefore, we havedmS;NmS;NðjÞ-e�i/m�
S
;jS as N-N: &

Our next result is a central limit theorem for the sequence of probability measures.

Proposition 1.2. We define the measure dmN by

dmN :¼ ðD ffiffiffi
N

p Þ�ðjSÞ�dmS;N ¼ 1

VðSÞN

X
gAðNPÞ-L�

P c
NðgÞd 1ffiffiffi

N
p ðg�Nm�

S
Þ; ð41Þ

where D ffiffiffi
N

p : X �-X � denotes the dilation D ffiffiffi
N

p ðxÞ ¼
ffiffiffiffiffi
N

p
x and jS : X �-X � denotes

the translation jSðxÞ ¼ x � m�
S by the center of mass m�

S: Then, we have

w- lim
N-N

dmN ¼ e�/A�1x;xS=2

ð2pÞm=2
ffiffiffiffiffiffiffiffiffiffiffi
det A

p dx: ð42Þ

where the positive definite symmetric matrix A ¼ AcðS;m�
SÞ is defined in (29).

Proof. We use the central limit theorem [Hö, Theorem 7.6.7] for the measure dm :
¼ ðjSÞ�dmS;1: Note that we need the translation jS becauseZ

X �
x dmS;1ðxÞ ¼ m�

S;

which is, in general, not the origin. Then, we dilate the measure dm to get dmN defined
in (41). Clearly, the probability measure dm satisfies the following properties.Z

jxj2 dmoþN;

Z
x dm ¼ 0; A ¼ ðAjkÞ; Ajk ¼

Z
xjxk dm;

where we identify X � with Rm with respect to the fixed basis. As in the proof of the
following Proposition 1.3, if E denotes the infinite product space of P; dr denotes the
infinite product measure of dmS;1 and Xj : E-P denotes the projection for the jth
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component, then it is easy to show that

ðD1=NÞ�
XN

j¼1

Xj

 !
�

dr ¼ ðD1=NÞ�ðdmS;1 �? � dmS;1Þ ¼ dmS;N ;

and hence we have

dmN ¼ ðD1=
ffiffiffi
N

p Þ�ðdm �? � dmÞ;

which is precisely the measures described in [Hö]. (Note that, in [Hö], the pull-back
of distribution (measure) is used instead of push-forward.) Therefore, the assertion
follows from directly from Theorem 7.6.7 in [Hö]. &

Further, we note the large deviations principle for the measures mS;N :

Proposition 1.3. The sequence of measures fmS;Ng satisfies the large deviation

principle with the rate function given by

ISðxÞ ¼ sup
tAX

f/t; xS� logðkðtÞ=VðSÞÞg: ð43Þ

Proof. We apply Cramér’s theorem [DZ, Theorem 2.2.30]. We shall recall the
setting-up for the Cramér’s theorem. Let Xj ðj ¼ 1; 2;yÞ be a sequence of

independent identically distributed m-dimensional random vectors on a probability
space with X1 distributed according to the probability measure m on Rm: Let mN be

the distribution (probability measure) for the empirical means SN :¼ 1
N

PN
j¼1 Xj :

Then, Cramer’s theorem states that the sequence of measures fmNg satisfies the LDP
with the rate function

IðxÞ ¼ sup
tARm

f/t; xS� LðtÞg; LðtÞ ¼ log Eðe/t;X1SÞ

if LðtÞoN for every tARm: In our case, We take the probability space E :¼ P �?
(infinite product of the polytope P), and the probability measure mS �? on E: The
random variable Xj is the projection onto the jth factor. Then, it is easy to see that

LðtÞ ¼ logðkðtÞ=VðSÞÞ; and the push-forward of the measure mS �? by the

empirical mean SN ¼ 1
N

PN
j¼1Xj is nothing but mS;N : Therefore, the assertion is a

direct consequence of Cramér’s theorem stated above. &

Proposition 1.1 suggests that the number of lattice paths would have a ‘peak’ at
the center of mass (although, in general, the center of mass might not be in the lattice
L�). Thus, it is natural to ask that how the lattice paths counting function P c

NðgÞ
behave with the distance between g and the center of mass getting large. But, when N

becomes large, the possible end points of the S-lattice paths is in the polytope NP;
and the center of mass of NP is Nm�

S where m�
S is the center of mass of P defined in
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(26). Thus it is natural to consider the behavior of P c
NðgÞ when the distance between g

and Nm�
S varies.

Our next aim in this section is to prove Theorems 10 and 11 which corresponds
respectively the the case where g is in the central limit region (and the region of
moderate deviations) and the region of the strong deviations.

1.1. Proof of Theorem 11

First we shall prove Theorem 11. To prove Theorem 11, we need to prepare
notation.

Let exp : X-Tm :¼ X=ð2pLÞ be the exponential map, i.e., the canonical
projection. Since the set of differences DðSÞ defined in (35) spans X �; it spans a

lattice, LðSÞ�; in X � of maximal rank over Z:

LðSÞ� ¼ spanZ DðSÞCL�; ð44Þ

and its dual lattice in X is denoted by LðSÞ:We have LðSÞ�CL�; and hence LCLðSÞ:
Both of the lattices is of maximal rank. Thus, the quotient group PðSÞ :¼ LðSÞ=L is
a finite group.

The finite group PðSÞ is naturally identified with the kernel of the surjective
homomorphism

pS : Tm-TðSÞ :¼ X=ð2pLðSÞÞ; pSðexpjÞ ¼ expSðjÞ; ð45Þ

where expS : X-TðSÞ denotes the canonical projection.

Remarks. If we begin with a polytope P; the function c above should be a non-
negative function on P-L�: In this case, the corresponding finite set S should be the
support of the function c: Thus, the support S of the function c is assumed to satisfy
(36). If the set DðSÞ defined in (35) spans the lattice L� over Z; then the
corresponding torus TðSÞ coincides with the original torus Tm; and hence PðSÞ ¼
f1g:

Lemma 1.4. For any fixed vector tAX ; we denote ktðexp jÞ :¼ kðtþ ijÞ; which is

considered as a function on Tm; where the function k on XC is given in (37). Then we

have jktðexp jÞjpkðtÞ: The equality holds exactly on the kernel of the homomorphism

pS : Tm-TðSÞ:

ftATm; jktðtÞj ¼ kðtÞg ¼ ker pSDPðSÞ:

In particular, the set in the left hand side is finite.

Proof. The inequality jktðexp jÞjpkðtÞ follows from the Cauchy–Schwarz inequal-
ity. It is easy to see that the condition jktðexp jÞj ¼ kðtÞ on jAX is equivalent to the
following:
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/b� b0;jSA2pZ; b; b0AS:

Since LðSÞ� ¼ spanZDðSÞ; this condition is equivalent to say that jA2pLðSÞ: This
completes the proof. &

Note that the function kðwÞ ¼ kðtþ ijÞ is holomorphic in w ¼ tþ ijAXC; and is
2pL-periodic with respect to the variable jAX : Therefore, we can deform the
contour of the integral in (39), and hence, by setting g ¼ Naþ f in (39), we can write

P c
NðNaþ f Þ ¼ e�/f ;jS

ð2pÞm ½kðtÞe�/a;tS�N
Z
Tm

e�iN/a;jS kðtþ ijÞ
kðtÞ

� 	N

e�i/f ;jS dj; ð46Þ

where tAX is arbitrary. (Note that kðtÞ40 for tAX :) To choose a suitable tAX ; we

need to find the point where the function kðtÞe�/a;tS attains its minimum. To
describe the critical points of this function, we define a map mP : XDRm-P o by

mPðtÞ :¼ @t log kðtÞ ¼ 1P
bAS cðbÞe/b;tS

X
bAS

cðbÞe/b;tSb: ð47Þ

The map mP defined above is an analogue of the moment map for a Hamiltonian
torus action on toric manifolds. Thus we call the map mP the moment map. Since the
set DðSÞ of differences of vectors in the finite set S spans the whole space X � (over
R), the elements in S are not contained simultaneously in any affine hyperplane in
X �: It is well-known [Fu, p. 83] that the moment map mP defines a (real analytic)
diffeomorphism between the vector space X and the interior P o of the polytope P:

We denote the inverse of the moment map mP by tP ¼ tPðxÞ : P o-X : Then, for
every aAP o; we have mPðtPðaÞÞ ¼ aAP o:

We note that the center of mass m�
S is the value of the moment map at the origin:

mPð0Þ ¼ m�
S; tPðm�

SÞ ¼ 0: The differential of the moment map mP : X-P o defines the

following linear transform AðtÞ : X-X �:

AðtÞ :¼
X
bAS

cðbÞe/t;bS

kðtÞ b#b� mPðtÞ#mPðtÞ; tAX ; A :¼ Að0Þ:

Lemma 1.5. We set

faðtÞ :¼ log kðtÞ �/a; tS; tAX ; ð48Þ

so that efaðtÞ ¼ kðtÞe�/a;tS: Then the Hessian of the function fa; which is given by AðtÞ;
is a positive definite for every tAX : The vector tPðaÞ is the unique critical point of the

function fa: In fact, we have
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faðtÞXfaðtPðaÞÞ; tAX

with equality holds only at t ¼ tPðaÞ:

Proof. It is straightforward to show that

@f ðtÞ ¼ mPðtÞ � a; AðtÞ ¼ @2f ðtÞ: ð49Þ

Although one can prove the positivity of the map AðtÞ for every tAX by exactly the
same argument as in [SZ], we give a proof of it for completeness. For each bAS; we

set mbðtÞ :¼ cðbÞe/b;tS=kðtÞ so that
P

bAS mbðtÞ ¼ 1: We define a probability

measure ntS on X � supported on S; depending on tAX ; by dntS ¼
P

bAS mbðtÞdb;
where db denotes the Dirac measure at b: Then, for any vector xAX ; we have

/AðtÞx; xS ¼
Z

X �
gxðvÞ2 dntSðvÞ �

Z
X �

gxðvÞ dntSðvÞ




 



2X0;

where gx is a linear function on X � defined by gxðvÞ ¼ /v; xS; vAX �; xAXDRm:
The equality in the above holds if and only if gx is constant on S: In such a case, the
function gx is zero on DðSÞ; since gx is linear. Thus, by assumption (36), gx is zero on
X �; and which implies x ¼ 0: This shows that AðtÞ is positive definite for any tAX :

By (49), the vector tPðaÞ is the unique critical point of the function fa; since the
map mP : X-P o is a diffeomorphism. A Taylor expansion at t ¼ tPðaÞ for the
function fa gives

faðtÞ ¼ faðtPðaÞÞ þ
Z 1

0

ð1� tÞ/AðtPðaÞ þ tðt� tPðaÞÞÞðt� tPðaÞÞ; t� tPðaÞS dt:

Since AðtÞ is positive definite, the last integral is non-negative, and equals zero if and
only if t ¼ tPðaÞ: This completes the proof. &

It should be noted that the constant dcðS; aÞ and the matrix AcðS; aÞ defined by
(28), (29) in Theorem 11 can be written as

AcðS; aÞ ¼ AðtPðaÞÞ; ð50Þ

dcðS; aÞ ¼ faðtPðaÞÞ: ð51Þ

Hence the matrix AcðS; aÞ is real symmetric and positive definite. It should be noted
that the function dcðS; xÞ on P o defined in (28) satisfies

dcðS;xÞ ¼ logðVðSÞÞ � ISðxÞ; xAP o; ð52Þ

where the function IS is the rate function defined by (43).
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We choose the vector tAX in (46) as t ¼ tPðaÞ: Recall that, by Lemma 1.4, the
absolute value of the integrand in (46) equals one precisely on the set ker pSCTm;
where pS : Tm-TðSÞ is a homomorphism. The set ker pS is a subgroup in Tm and
isomorphic to PðSÞ ¼ LðSÞ=L; which is a finite group. For each gAker pSDPðSÞ;
we take a representative jgAX so that g ¼ exp jg: Let VgCUg be open

neighborhoods of the vector jgAX such that Ug-ker pS ¼ fgg and VgCUg; and

a branch of the logarithm

log
kðtPðaÞ þ ijÞ

kðtPðaÞÞ

� �
exists on each of Ug: We choose a constant c40 so that

jkðtPðaÞ þ ijÞ=kðtPðaÞÞjpe�c for exp jATm
[

gAker pS

Vg

-
:

Let wg be a smooth function on X supported in the open set Ug and equals one near

Vg: Then we can write integral (46) in the following form:

P c
NðNaþ f Þ ¼ eNdcðS;aÞ�/f ;tPðaÞS

ð2pÞm

�
X

gAker pS

Z
Tm

eNFa;gðjÞwgðjÞe�i/f ;jS djþ Oðe�NcÞ
 !

; ð53Þ

where the phase function Fa;gðjÞ is given by

Fa;gðjÞ ¼ log
kðtPðaÞ þ ijÞ

kðtPðaÞÞ

� �
� i/a;jS:

By definition, the vectors jg are in 2pLðSÞ: This implies that /b� b0;jgS is 2p
times an integer for any b; b0AS: Therefore, the complex number

hðgÞ :¼ ei/b;jgSAUð1Þ; bAS; gAker pS ð54Þ

does not depend on the choice of bAS and jgAexp�1ðgÞCX : Furthermore, we have

kðtþ ijgÞ ¼ hðgÞkðtÞ; ð@jkÞðtþ ijgÞ ¼ ihðgÞð@kÞðtÞ; tAX : ð55Þ

Lemma 1.6. For each gAker pSDPðSÞ; we set

Cg :¼ fjAUg;RFa;gðjÞ ¼ 0; @jFa;gðjÞ ¼ 0g:

Then we have Cg ¼ fjgg: Furthermore, we have
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eNFa;gðjgÞ ¼ hðgÞN
e�iN/a;jgS; HessðFa;gÞðjgÞ ¼ �AcðS; aÞ:

Proof. That the real part of the phase function Fa;g is less than or equal to zero

follows from the Cauchy–Schwarz inequality, since we have the obvious identity

RFa;gðjÞ ¼ log
jkðtPðaÞ þ ijÞj

kðtPðaÞÞ

� �
:

By the above identity and Lemma 1.4, RFa;gðjÞ ¼ 0 for jAUg if and only j ¼ jg:

Thus the critical set Cg is empty or consists of the point jg: By (55), we have

ð@jFa;gÞðjgÞ ¼ i
ð@kÞðtPðaÞ þ ijgÞ

kðtPðaÞÞ
� a

� 	
¼ i½mPðtPðaÞÞ � a� ¼ 0;

which shows Cg ¼ fjgg: The rest of the assertion can be proved by a similar

calculation by using identity (55). &

Completion of proof of Theorem 11: Let aAS and fALðSÞ�: We set

Ig :¼
Z
Tm

eNFa;gðjÞwgðjÞe�i/f ;jS dj:

so that, by (53), the lattice paths counting function P c
NðNaþ f Þ is written as

P c
NðNaþ f Þ ¼ eNdcðS;aÞ�/f ;tPðaÞS

ð2pÞm

X
gAker pS

Ig þ Oðe�cNÞ
 !

for some constant c40: To obtain an asymptotic estimate for the integral Ig; we shall

use the method of stationary phase with a complex phase function. In fact, by
Lemma 1.6 and Theorem 7.7.5 in [Hö], we have

Ig ¼ N

2p

� ��m=2
eNFa;gðjgÞ�i/f ;jgSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det AcðS; aÞ
p ð1þ OðN�1ÞÞ: ð56Þ

Since fALðSÞ� and jgA2pLðSÞ; /f ;jgS is 2p times an integer. Furthermore, we

have assumed that aAS: Therefore, by Lemma 1.6 and the definition of hðgÞAUð1Þ;
we have

eNFa;gðjgÞ�i/f ;jgS ¼ hðgÞN
e�i/Naþf ;jgS ¼ 1;

which shows the asymptotic formula 33. As for the constant dcðS; aÞ; by taking the

exponential edcðS;aÞ; it is easy to prove that dcðS; aÞ40 if cðaÞX1:

Remarks. The constant dcðS; aÞ can be negative. To be precise, we set c ¼
maxbAS cðbÞ; and f ¼ 0: Then P c

NðNaÞpcNP1
NðNaÞ; where P1

NðNaÞ is the number
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of (non-weighted) lattice paths

PNðNaÞ ¼ xfðb1;y; bNÞASN ;Na ¼ b1 þ?þ bNg:

Thus if coe�d1ðS;aÞ; then P c
NðNaÞ decays exponentially. This proves that if

cðbÞoe�d1ðS;aÞ; then we have dcðS; aÞo0:

1.2. Proof of Theorem 10

Next, we shall prove Theorem 10. The same method as in the proof of Theorem 11
will show the following

Proposition 1.7. Let x be a point in the interior P o of the polytope P; and let gN ¼
Nx þ dNðgNÞ be a sequence of lattice points in L� with dNðgNÞ ¼ oðNÞ: Assume that

P c
NðgNÞa0 for every sufficiently large N: Then, we have

P c
NðgNÞ ¼ ð2pNÞ�m=2 jPðSÞjeNdcðS;gN=NÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det AcðS; gN=NÞÞ
p ð1þ OðN�1ÞÞ: ð57Þ

In particular, we have

lim
N-N

1

N
log P c

NðgNÞ ¼ dcðS; xÞ: ð58Þ

Proof. The proof is almost the same as the proof of Theorem 11, so we give its proof
briefly. In the following, we shall write g for the sequence gN for simplicity of
notation. As in (53), we can write

P c
NðgÞ ¼

eNdcðS;g=NÞ

ð2pÞm

X
gAker pS

Z
Tm

eNCN;gðjÞwgðjÞ djþ Oðe�NcÞ
 !

for some constant c40; where with the phase function CN;g is given by

CN;gðjÞ ¼ log
kðtPðg=NÞ þ ijÞ

kðtPðg=NÞÞ

� 	
� i/g=N;jS:

Here, it should be noted that dcðS; g=NÞ ¼ log kðtPðg=NÞÞ �/g=N; tPðg=NÞS: The
phase function Cg;N satisfies RCg;Np1; and the point jg is the only critical point

with RCg;Np1 on the support of wg: The Hessian of Cg;N at jg is �AðtPðg=NÞÞ ¼
�AcðS; g=NÞ: Although the phaseCg;N depends on N; it is directly shown that its C4-

norm on the support of the cut-off function wg is bounded in N: Since dNðgNÞ ¼ oðNÞ
and tP is continuous on the interior P o; we have g=N-xAP o as N-N and hence
AðtPðg=NÞÞ-AðtPðxÞÞ as N-N: This shows that the norm of AðtPðg=NÞÞ is
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bounded from below uniformly in N: We have assumed that P c
NðgÞa0 for every

sufficiently large N; and hence there exists b1;y; bNAS such that g ¼ b1 þ?þ bN :
Thus, we have

eNCg;N ðjgÞ ¼ hðgÞN
e�i/g;jgS ¼ hðgÞN

e
�i
PN

j¼1
/bj ;jgS ¼ 1

for any gAker pS for every sufficiently large N: Therefore, Eq. (57) follows from
Theorem 7.7.5 in [Hö]. Next, we note that dcðS; g=NÞ-dcðS; xÞ and
AcðS; gN=NÞ-AcðS; xÞ as N-N: Therefore, by taking the logarithm of (57), we
obtain (58). &

Completion of proof of Theorem 10: First, note that we have set A ¼ Að0Þ: We use

Proposition 1.7 with x ¼ m�
S: We have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det AðtÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
det A

p
ð1þ OðjtjÞÞ near t ¼ 0:

Noting g=N � m�
S ¼ N�1dNðgÞ ¼ OðN�ð1�sÞÞ and tPðm�

SÞ ¼ 0; we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det AðtPðg=NÞÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
det A

p
ð1þ OðN�ð1�sÞÞÞ:

This combined with Proposition 1.7 shows the first assertion in Theorem 10. Next,
we consider the exponent dcðS; g=NÞ: Since AðtÞ ¼ ð@mPÞðtÞ is bounded from below

and since tP ¼ m�1
P ; we have

tPðxÞ ¼ tPðxÞ � tPðm�
SÞ ¼ A�1ðx � m�

SÞ þ Oðjx � m�
Sj

2Þ

near x ¼ m�
S: A Taylor expansion for the function fg=NðtÞ :¼ log kðtÞ �/g=N; tS at

t ¼ 0 gives

fg=NðtÞ ¼ logðVðSÞÞ � N�1/dNðgÞ; tSþ/At; tS=2þ Oðjtj3Þ:

These two inequalities with the fact that dcðS; g=NÞ ¼ fg=NðtPðg=NÞÞ show that

NdcðS; g=NÞ ¼ N logðVðSÞÞ �/A�1dNðgÞ; dNðgÞS=ð2NÞ þ OðN�2jdNðgÞj3Þ:

From this, it is clear that, if dNðgÞ ¼ oðNsÞ with 0psp2=3; then OðN�2jdNðgÞj3Þ ¼
oðN3s�2Þ with 3s � 2p0; which completes the proof.

Example. Let us examine Theorems 11 and 10 for the case where S ¼ pS-Zm with
the standard simplex SCRm and a positive integer p: We choose the weight function
cðbÞ ¼ ðp

bÞ; bAS: We take L ¼ ZmCX ¼ Rm: Then, the finite group PðSÞ is trivial.
For any vector x ¼ ðx1;y; xmÞARm with nonnegative coefficients xjX0; we set jxj ¼Pm

j¼1 xj: The weighted lattice paths counting function P c
N is given by

P c
NðgÞ ¼

Np

g

� �
¼ ðNpÞ!

ðNp � jgjÞ!g1!?gm!
; gANpS-Zm:

The S-character k; the moment map mP and its inverse tP are given by
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kðtÞ ¼ ð1þ jetjÞp; mPðtÞ ¼
pet

1þ jetj; tPðxÞ ¼ log
x

p � jxj

� �
; xAP o; tARm;

where, for example, we write log x ¼ ðlog x1;y; log xmÞ: It is easy to see that the
function dcðS; xÞ is given by

dcðS; xÞ ¼ log
pp

xxðp � jxjÞp�jxj

 !
; xApSo;

where xx ¼ xx1

1 ?xxm
m : Thus, Proposition 1.7 tells us that, for g ¼ Nx þ oðNÞ with

xApSo;

lim
N-N

1

N
log

Np

g

� �
¼ log

pp

xxðp � jxjÞp�jxj

 !
;

which can easily be deduced from Stirling’s formula. As for the matrix AcðS; xÞ; we
have the following simple lemma.

Lemma 1.8. For xApSo; the matrix AcðS; xÞ; its determinant and its inverse are given

by

AcðS; xÞ ¼ xjdij �
1

p
xixj

� �
ij

; det AcðS; xÞ ¼ ðp � jxjÞx1?xm

p
;

AcðS; xÞ�1 ¼ dij

xj

þ 1

p � jxj

� �
ij

: ð59Þ

Proof. By applying the operators xi@xi
and xj@xj

to the formula jxjk ¼
P

jbj¼k
k!
b! x

b

with jxj ¼
P

xj; we have

X
jbj¼k

k!

b!
xbbibj ¼ kxijxjk�1dij þ kðk � 1Þjxjk�2

xixj:

A direct computation shows that the coefficients aijðxÞ of the matrix AcðS; xÞ is given
by

aijðxÞ ¼
X
jbjpp

p

b

� �
ðp � jxjÞp�jbj

pp
xbbibj � xixj:

The first part in Eq. (59) follows from these two formulas. We set Dmðx1;y; xmÞ :
¼ det AcðS; xÞ with x ¼ ðx1;y; xmÞ: Then, a simple computation shows that
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Dmðx1;y; xmÞ
x1?xm

¼ Dm�1ðx2;y; xmÞ
x2?xm

� 1

p
x1:

Thus, the second part in (59) follows from the induction on m: The formula for the
inverse matrix is easily verified by a direct computation. &

Thus, by Theorem 11, we have

P c
NðNaÞBð2pNÞ�m=2 pNpþ1=2

aNaþ1=2ðp � jajÞNðp�jajÞþ1=2
;

where 1=2 ¼ ð1=2;y; 1=2ÞARm: By Lemma 1.8, we have m�
S ¼ ð p

1þm
;y; p

1þm
Þ and

VðSÞ ¼ ð1þ mÞp: Therefore, by Theorem 10, we obtain

P c
NðgÞ ¼

Np

g

� �
Bð2pNpÞ�m=2ðm þ 1ÞNpþðmþ1Þ=2

e
�mþ1
2Np

ðjjg�Nm�
S
jj2þjg�Nm�

S
j2Þ
;

where jjxjj2 ¼
P

x2
j for a vector xARm: These formulas can be deduced from

Stirling’s formula.

2. Application to multiplicities of group representations

In this section, we shall prove Theorems 1 and 5–9 as applications of Theorems 10
and 11. As in the introduction, let G be a compact connected Lie group, and we fix a
maximal torus T in G: For any irreducible representation Vl of G with highest

weight l; the multiplicity of a weight n in the Nth tensor power V#N
l is denoted by

mNðl; nÞ: Similarly, the multiplicity of an irreducible summand Vn in V#N
l with the

highest weight n is denoted by aNðl; nÞ:

2.1. Relation between number of lattice paths and multiplicities

First of all, we shall explain the relations between the weighted number of lattice
paths discussed in Section 1 and the multiplicities mN and aN in group
representations. The main results are Propositions 2.3 and 2.4. In this subsection,
we prepare lemmas and propositions.

Let g and t be the Lie algebras of G and T ; respectively. We fix an inner product
/�; �S on g invariant under the adjoint action, which determines an inner product on
t invariant under the Weyl group W : In case where G is semisimple, we use the
negative Killing form as a fixed inner product. We sometimes identify the spaces g

and t with their duals g� and t�; respectively, by the fixed inner product. Let ICt be

the integral lattice, i.e., I ¼ exp�1ð1Þ; and let I�Ct� be its dual lattice, i.e., the lattice
of weights. We fix an (open) dual Weyl chamber C in t�: Let F and Fþ denote,
respectively, the sets of the roots and the positive roots, respectively. Let BCFþ be
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the set of the simple roots, so that fAC if and only if /f ; aS40 for all aAB: Let X �

be the linear span of the simple roots in t�; and let X ¼ X �� be its dual space. The
vector space X is regarded as a subspace in t by using the fixed inner product. Since
the simple roots are linearly independent, they form a basis of the vector space X �:
Thus we have dim X � ¼ #B ¼: m: The subspace XCt is spanned by the inverse

roots a� :¼ 2k�1ðaÞ=/a; aS; where k : t-t� is an isomorphism induced by the fixed
W -invariant inner product /�; �S: We also note that all the roots is in X �:

Each dominant weight lA %C-I� corresponds to an irreducible unitary representa-
tion Vl: We define the finite set MlCI� by the support of the multiplicity function:

Ml :¼ fmAI�;m1ðl; mÞa0g;

where m1ðl; mÞ denotes the multiplicity of the weight m in Vl: Note that the convex
hull QðlÞ of the W -orbit of l coincides with the convex hull of Ml: The dimension of
the polytope QðlÞ might be less than that of t: However, as we shall see soon, the
polytope QðlÞ is contained in the affine subspace X � þ l in t�: Thus, the interior

QðlÞo of QðlÞ means, in the following, the interior of QðlÞ considered as a polytope
in the above affine subspace. If G is semisimple, then clearly X � ¼ t�; and hence we
can use the polytope QðlÞ as the polytope P in Section 1. However, in general, the
finite set MlCI� of all the weights in Vl is not in the subspace X �: Thus, we have to
modify it. Namely, we set

Sl ¼ fm� l; mAMlg:

Lemma 2.1. We set DðSlÞ ¼ fb� b0; b; b0ASlg: If lAC-I�; then we have

spanR DðSlÞ ¼ X �;

where the subspace X �Ct� is, as above, the linear span of the simple roots.

Remarks. It should be noted that we denote by C the open Weyl chamber. If lA %C is
contained in a wall, the linear span spanRDðSlÞ will be a proper subspace of X �: In
fact, in the case where G ¼ Uð2Þ; the Weyl group is the symmetric group of order
2! ¼ 2; and the Weyl chamber is a half-plane in a two-dimensional vector space.
Thus, if l is in the wall, which is the unique wall defined by the orthogonal
complement of the (unique) positive root, then it is stable under the Weyl group
action. Thus, the corresponding set Ml consists of the single point l; and the linear
span spanR DðSlÞ is the trivial subspace f0g:

Proof. We first note that the difference l� n between the dominant weight l and any
weight mAMl is a linear combination of the simple roots with non-negative
coefficients (see [BD]). Thus we have spanR DðSlÞCX �: Next, let a be any simple
roots. Then, one has lða�Þ ¼ l� sal; where saAW is reflection with respect to the
wall ker aCtDt�: Since l is assumed to lie in the interior of the Weyl chamber,
lða�Þa0: Thus, one has aAspanR DðSlÞ for any simple root a; which implies
X � ¼ spanR DðSlÞ: &
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We consider the lattice L� ¼ X �-I� of weights in X � as a fixed lattice in X �; as in
Section 1. In Section 1, the lattice LðSÞ� spanned by DðSÞ played a role. In our case,

the lattice LðSlÞ� spanned by DðSlÞ does not depend on l for generic l as follows.

Lemma 2.2. Let L�CX � be the lattice spanned by the roots over Z: Assume that the

dominant weight l is in the open Weyl chamber C: Then we have

LðSlÞ� :¼ spanZðDðSlÞÞ ¼ L�:

Proof. It is well known that the difference m� m0 of any two weights m; m0 in Ml is in

the root lattice L�: Thus, we have LðSlÞ�CL�: This holds for arbitrary dominant

weight lA %C: Now, we assume that lAC: This implies that the integer lða�Þ is strictly
positive for every simple root a: It is also well-known that the string of weights of the
form

l; l� a; y; sal ¼ l� lða�Þa

is contained in Ml: In particular, we have l� aAMl: This shows that aALðSlÞ� for
every simple root a: Since every root can be expressed as a linear combination of the

simple roots with integer coefficients, we have L�CLðSlÞ�; which completes the
proof. &

By Lemma 2.1, the finite set Sl is a subset in L�: Let PlCX � be the convex hull of
the finite set Sl: The relation of the polytopes QðlÞ and Pl is

Pl ¼ QðlÞ � lCX �:

The polytope Pl contains the origin in X � as a vertex. Finally, we define the weight
function cl on Sl by

clðbÞ :¼ m1ðl; mÞ; b ¼ m� lASl;

which is, of course, a strictly positive function on Sl: Thus, we get the data, X �; L�;
Sl; cl exactly as in Section 1. Furthermore, we have the following.

Proposition 2.3. Let P cl
N ðgÞ; gAL� be the lattice paths counting function in L� with the

weight function cl and the set of the allowed steps Sl: Then we have

mNðl; mÞ ¼ P cl
N ðm� NlÞ

for every mANQðlÞ:

Proof. Let wl be the character of Vl; which is considered as a function on t: The
character wl is given explicitly by

wlðjÞ ¼
X
mAMl

m1ðl; mÞe2pi/m;jS; jAt: ð60Þ
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The character of the tensor power V#N
l is the Nth power wN

l of the character wl:
Since the multiplicity mNðl; mÞ is the coefficients of e2pi/m;jS in wN

l ; we have

mNðl; mÞ ¼
X

m1;y;mNAMl; m¼m1þ?þmN

m1ðl; m1Þ?m1ðl; mNÞ:

This shows that mNðl; mÞ ¼ 0 if meNQðlÞ: On the other hand, consider, as in Section
1, the weighted polytope character:

kðwÞ ¼
X
bASl

clðbÞe/b;wS; wAXC: ð61Þ

Then, the lattice paths counting function P cl
N ðgÞ for gAL� is the coefficient of e/g;wS

in kðwÞN : By the definition of the finite set Sl; we can rewrite the function kðijÞ for
jAX as

kðijÞ ¼ e�i/l;jSwlðj=2pÞ; jAX ðCtÞ: ð62Þ

Thus, the coefficient P cl
N ðm� NlÞ of ei/m�Nl;jS in kðijÞN coincides with mNðl; mÞ;

concluding the assertion. &

Next, we discuss the multiplicities of irreducible subrepresentations in the tensor

power V#N
l : Our strategy to prove Theorem 9 is based on the following alternating

sum formula.

Proposition 2.4. We fix a dominant weight lA %C-I�: Let r be half the sum of the

positive roots: r ¼ 1
2

P
aAFþ

a: Then we have

aNðl; mÞ ¼
X

wAW

sgnðwÞmNðl; mþ r� wrÞ

¼
X

wAW

sgnðwÞP cl
N ðm� Nlþ r� wrÞ; mA %C-I�;

where the weighted lattice paths counting function P cl
N with the weight function cl and

the set of the allowed steps Sl in L�:

Proof. The second equality follows from Proposition 2.3. Although the first equality
is a special case of expression ð8Þ in [GM], we give a proof for completeness.

Consider the character wN
l of V#N

l ; which has the following expression:

wN
l ¼

X
mA %C-I�

aNðl; mÞwm; ð63Þ

where wm is the character of an irreducible representation with the highest weight m:
By the Weyl character formula, we have
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Dwm ¼
X

wAW

sgnðwÞe2piwðmþrÞ;

where D is the Weyl denominator D ¼
P

wAW sgnðwÞe2piwr: Multiplying (63) by the

Weyl denominator D; we have

DwN
l ¼

X
mA %C-I�; wAW

sgnðwÞaNðl; mÞe2piwðmþrÞ; ð64Þ

which tells us that the multiplicity aNðl; mÞ for mA %C-I� is the coefficient of e2piðmþrÞ

in DwN
l : But, the character wN

l has the decomposition into the weights for T :

Therefore we also have

DwN
l ¼

X
gAI�; wAW

sgnðwÞmNðl; gÞe2piðgþwrÞ: ð65Þ

In (65), the term e2piðmþrÞ appears for gAI� with g ¼ mþ r� wr for every wAW :

(Note that r� wr is a weight for every wAW :) Therefore, the coefficient of e2piðmþrÞ

in (65) is given by

X
wAW

sgnðwÞmNðl; mþ r� wrÞ;

which proves the assertion. &

Next, we assume that G is semisimple. In this case, we simply use the set Ml for the
finite set S as in Section 1. Furthermore, we have the following

Lemma 2.5. Assume that G is semisimple. Then, for any dominant weight l in the open

Weyl chamber C; the center of mass Q�ðlÞAQðlÞ of the polytope QðlÞ defined by (3) is

the origin.

Proof. Clearly, the center of mass Q�ðlÞ is invariant under the action of the Weyl
group W : Thus, for any simple root a and any element w in W ; we have
/Q�ðlÞ;wa� aS ¼ 0: By taking w ¼ sa; one see that Q�ðlÞ is orthogonal to any

roots. Let xl ¼ k�1Q�ðlÞAt: Then, xl is in kerðaÞ for any root a; which implies that
tl :¼ expðxlÞAT is in the kernel determined by each root a: This implies that tl is in
the center of G (see [BD]). But, the Lie group G is assumed to be semisimple, and
hence the center is finite. Therefore, we have xl ¼ 0; and hence Q�ðlÞ ¼ 0: &
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2.2. Proof of Theorems 1

First of all, we shall prove Theorem 1. By using Proposition 2.3, we have

ml;N ¼ 1

VðSlÞN

X
n�NlANPl

P cl
N ðn� NlÞdn=N ¼ 1

VðSlÞN

X
gANPl

P cl
N ðgÞdg=Nþl; ð66Þ

where the weighted volume of the finite set Sl is given by

VðSlÞ ¼ dim Vl ¼
X

n�lASl

clðn� lÞ; clðn� lÞ ¼ m1ðl; nÞ:

The probability measure mSl;N on X �; discussed in Section 1, is given by

mSl;N ¼ 1

VðSlÞN

X
gANPl

P cl
N ðgÞdg=N ; ð67Þ

which is different from ml;N in the term dg=Nþl and dg=N : Thus, for any compact

supported continuous function f on t�; let fl be the function obtained by translating
f by l: flðxÞ ¼ f ðx þ lÞ: Then, we haveZ

X �
flðxÞ dmSl;N ¼

Z
t�

f ðxÞ dml;N : ð68Þ

The point mSl is equal to Q�ðlÞ � l; where, as in Introduction, the point Q�ðlÞ is

given in (3), and hence, by Proposition 1.1, we have ml;N-dQ�ðlÞ weakly as

N-N: &

2.3. Proof of Theorems 2, 3 and Corollary 4

Next, we shall prove Theorem 3. By Proposition 1.3 and (62), the measures
fmSl;Ng satisfies the large deviation principle with the rate function

ISlðxÞ ¼ sup
tAX

f/x þ l; tS� logðwlðt=2piÞ=ðdim VlÞÞg:

As in (68), we have dml;N ¼ ðflÞ�dmSl;N with flðxÞ ¼ x þ l; namely ml;NðBÞ ¼
mSl;NðB � lÞ: Thus, the measure ml;N satisfies the large deviation principle with the

rate function ISlðx � lÞ ¼ IlðxÞ; where the function IlðxÞ is given in (8), which

proves Theorem 3. Theorem 2 follows from its lattice path version (Proposition 1.2).
(See also the proof of Theorems 6 and 7 below for the description of the matrix Al:)

To prove Corollary 4, we need the following lemmas.

Lemma 2.6. Let CNðlÞC %C be a set of dominant weights defined by

CNðlÞ ¼ fmA %C-I�; aNðl; mÞa0g:
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Then, for a weight nAI�; the alternating sumX
sAW

sgnðsÞmNðl; nþ r� srÞ ¼ 0 ð69Þ

if and only if nþ reWðmþ rÞ for every mACNðlÞ:

Proof. First, note that in (64), the terms wðmþ rÞ with wAW and mA %C are all

distinct since mþ rAC for every mA %C: Thus, in (64), the coefficient of e2piðnþrÞ vanish
if and only if nþ reWðmþ rÞ for every mACNðlÞ: Then, comparing (64) with (65),

the coefficient of e2piðnþrÞ in (65) is given by the alternating sum in (69), proving the
lemma. &

Lemma 2.7. Let r be half the sum of the positive roots. For each wAW ; we define a

map cw;N : t�-t� by cw;NðxÞ ¼ x � ðr� wrÞ=N: Then we have

X
wAW

sgnðwÞðcw;NÞ�dml;N j %C ¼ BNðlÞ
ðdim VlÞN

dMl;N ;

where j %C denotes the restriction to the closed Weyl chamber %C; and BNðlÞ is defined in

(9).

Proof. A direct computation with Lemma 2.6 shows thatX
wAW

sgnðwÞðcw;NÞ�ml;N ¼ 1

ðdim VlÞN

X
nAI�;nþrAW ðCN ðlÞþrÞ

X
wAW

sgnðwÞ

� mNðl; nþ r� wrÞdn=N :

¼ 1

ðdim VlÞN

X
mACN ðlÞ

X
s;wAW

sgnðwÞ

� mNðl; mþ r� s�1wrÞdsðmþrÞ�r
N

;

where, for the second line, the invariance of the multiplicity mNðl; �Þ under the Weyl
group has been used. Now, we restrict the above functional on the closed Weyl

chamber %C: The point sðmþrÞ�r
N

is in %C if and only if sðmþ rÞA %C þ r since %C is a cone.

But, in the sum above, m is a dominant weight. Thus, only s ¼ 1 term is in %C: Thus,
the assertion follows from Proposition 2.4. &

Completion of proof of Corollary 4: First of all, we shall prove upper bound in the
large deviation principle. Note that any mACNðlÞ is of order OðNÞ uniformly, since it
is in the convex polytope NQðlÞ: By the Weyl dimension formula, we have

dim Vm ¼ OðNdÞ; mACNðlÞ;
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with d the number of the positive roots. Then, again the Weyl dimension formula
shows

ðdim VlÞN ¼
X

mACN ðlÞ
aNðl; mÞðdim VmÞ ¼ BNðlÞOðNdÞ:

Let FC %C be a closed set. Then, by Lemma 2.7,

1

N
logðMl;NðFÞÞ ¼ 1

N
log

X
w

sgnðwÞml;NðF þ ðr� wrÞ=NÞ
 !

þ OðN�1log NÞ:

For any positive integer n40; we set

Fn :¼ xA %C; inf
yAF

jx � yjp1=n

� �
;

which is of course a closed set in %C: We choose a constant a40 so that jr� wrjpa

for every wAW : Then, clearly F þ ðr� wrÞ=NCFt for a=Np1=n: Hence, for every
n; we have

1

N
log Ml;NðFÞp 1

N
log ml;NðFnÞ þ OðN�1log NÞ:

Since the measures ml;N satisfies the large deviation principle, we obtain

lim sup
N-N

1

N
log Ml;NðFÞp� inf

xAFn

IlðxÞ;

where the rate function IlðxÞ is given by (8). Now, we claim that

lim
n-N

an ¼ inf
xAF

IlðxÞ; an :¼ inf
xAFn

IlðxÞ; ð70Þ

which will completes the proof, where the existence of the limit in the left-hand side is
shown as follows. The set Fn is decreasing: Fn*Fnþ1; and the sequence fang is non-
decreasing. This sequence is bounded from above by a :¼ infxAF IlðxÞ because F ¼
-np1 Fn: Thus, aN :¼ limn-N an exists. In particular aXaN: The rate function IlðxÞ
is lower-semicontinuous, and is good in the sense that its sublevel set I�1

l ½0; a� is
compact for every a40 (see [DZ]). Thus, the function Il attains its minimum on each
closed set. Let xnAFn be a point such that IlðxnÞ ¼ an: Note that xn is in the compact

set I�1
l ½0; a�; and hence it has a convergent subsequence. We also denote it by xn:

Since F is closed, there exists a point ynAF such that inf
yAF

jy � xnj ¼ jyn � xnjp1=n;

and, as a result, fyng contains a convergent sequence. Therefore, the limit x :¼ lim xn

is in F : By the lower-semicontinuity, we have
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aN ¼ lim
n-N

IlðxnÞXIlðxÞXa ¼ inf
xAF

IlðxÞXaN;

which establishes (70). &

2.4. Proof of Theorems 6 and 7

By Theorem 11 and Proposition 2.3, we have an asymptotic estimate of the

multiplicity mNðl;Nnþ f Þ if n0AQðlÞo and fAL�: To compute the exponent
dclðSl; n0 � lÞ and the linear transform AclðSl; n0 � lÞ from X to X � in Theorem 11,

we note that the moment map (47) for S ¼ Sl is given by

mPl
: X{x-mlðxÞ � lAPl;

where ml is defined in (14). Thus, we have tlðn0Þ ¼ tPlðn0 � lÞ: From this, we have

dclðSl; n0 � lÞ ¼ dlðn0Þ: The positivity of the linear transform AclðSl; n0 � lÞ from X

to X � is proved in Section 1. A direct computation by using definition (29) shows
that

AclðSl; n0 � lÞ ¼
X
mAMl

kmðn0Þðm� lÞ#ðm� lÞ � ðn0 � lÞ#ðn0 � lÞ;

kmðn0Þ :¼
m1ðl; mÞe/m;tlðn0ÞSP

m0AMl
m1ðl; m0Þe/m0;tlðn0ÞS

where, for any fAX �; f#f : X-X � is defined by ðf#f Þx ¼ /x; fSf ; xAX : By
definition ((14)), we have

P
m kmðn0Þm ¼ mlðtlðn0ÞÞ ¼ n0: From this, it is easy to see

that AclðSl; n0 � lÞ coincides with the linear transform A0
lðn0Þ on X : This shows that

Alðn0Þ is positive definite as a linear transform from X to X �; and it is equal to
AclðSl; n0 � lÞ: The positivity of the exponent dlðn0Þ follows from the assumption

that the weight n0 occurs in Vl: This completes the proof of Theorem 6. Similarly,
Theorem 7 is proved by using Proposition 1.7. &

2.5. Proof of Theorem 5

Before proving Theorem 5, we shall state more general result, which corresponds
to Theorem 10.

Theorem 2.8. Let 0psp2=3: Let nANQðlÞ be a weight of the form

n ¼ NQ�ðlÞ þ dNðnÞ; jdNðnÞj ¼ oðNsÞ:

Assume that mNðl; nÞa0 for every sufficiently large N: Then, we have
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mNðl; nÞ ¼ ð2pNÞ�m=2jPðGÞjðdim VlÞNe�/A�1
l dN ðnÞ;dN ðnÞS=ð2NÞffiffiffiffiffiffiffiffiffiffiffiffiffi

det Al
p ð1þ eNÞ;

where

eN ¼ OðN�ð1�sÞÞ for 0psp1=2;

oðN3s�2Þ for 1=2osp2=3;

(

and the positive definite linear transformation Al : X-X � is given by

Al ¼ AlðQ�ðlÞÞ ¼ 1

dim Vl

X
mAMl

m1ðl; mÞm#m� Q�ðlÞ#Q�ðlÞ:

Proof. This follows from Theorem 10 and Proposition 2.3, and the computations for
the exponent and the matrix by the same method as in the proof of Theorem 6. &

Completion of Proof of Theorem 5: Assume that G is semisimple. Then, by Lemma
2.5, Q�ðlÞ ¼ 0: Thus, dNðlÞ is g itself. Hence, Theorem 5 is a direct consequence of
Theorem 2.8.

2.6. Proof of Theorems 9 and 8

For any wAW ; the weight r� wr is in the root lattice L�: Therefore, we can apply
Theorem 6 for f ¼ r� wr and n0 ¼ n:Now, Theorem 9 follows from Proposition 2.4

2.6.1. Proof of Theorem 8

As mentioned in the Introduction, our approach to the irreducible multiplicities
based on Proposition 2.4 does not seem to be the most efficient for the central limit
region. Our steepest descent method easily gives the principal term, but the
remainder estimate becomes tricky since one needs to use cancellations occurring in
the alternating sum over the Weyl group. Hence, we use the method of Biane [B] in
this region. Although it is not new, we include it for the sake of completeness. We
also add some details not in [B].

We begin with:

Lemma 2.9. Assume that G is semisimple. For any fixed dominant weight l and the

positive integer N40; we set

NMl ¼ fm ¼ n1 þ?þ nN ; njAMl; j ¼ 1;y;Ng:

Let m be a dominant weight such that meNMl: Then aNðl; mÞ ¼ 0:

Proof. First of all, we note that if V and W are two representations of G; the weights
in V#W are of the form mþ n where m is a weight in V and n is that in W : If the
dominant weight m is not in NMl; we have mNðl; mÞ ¼ 0 and hence aNðl; mÞ ¼ 0: &
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Proof of Theorem 8. Since G is assumed to be semisimple, we may use the polytope
QðlÞ as P in Section 1 and Ml as the finite set S: Thus, the torus Tm essentially
coincides with the maximal torus T : The finite group PðGÞ is isomorphic to the
kernel of the surjective homomorphism pl : Tm-TðGÞ :¼ X=ð2pLÞ: We also note
that L�CI�lCL�; where L� ¼ I� is the full weight lattice, where I�l is the lattice

spanned by Ml over Z:
By the Weyl integration formula (or by using Propositions 2.3, 2.4 and the integral

formula (39)), we have

aNðl; mÞ ¼
ðdim VlÞN

ð2pÞm

Z
Tm

e�i/mþr;jSKðjÞN
JðjÞ dj; ð71Þ

where we set KðjÞ ¼ wlðj=2pÞ=dim Vl and JðjÞ ¼ Dðj=2pÞ being wl the character

of Vl and D the Weyl denominator DðHÞ ¼
P

wAW sgnðwÞe2pi/wr;HS: As in the proof

of Theorem 11 (Section 1), we use the cut-off function w around the origin so that a
branch of the logarithm log K exists on Supp w: We also use the function wg ¼
wðj� jgÞ; where jgA2pL is a (fixed) representative of gAker plDPðGÞ; i.e., g ¼
exp jgATm plðexp jgÞ ¼ 1: Then, by Lemma 1.4, we have

aNðl; mÞ ¼
ðdim VlÞN

ð2pÞm

X
gAker pl

Z
e�i/mþr;jSKðjÞN

JðjÞwgðjÞ djþ Oðe�cNÞ
 !

for some constant c40: Now, we make a change of variable j/jþ jg for each

integral in the above. Then, we will have the term

e�i/mþr;jgShðgÞN
Jðjþ jgÞ ¼

X
wAW

sgnðwÞ½e�i/mþr;jgShðgÞN
ei/wr;jgS�ei/wr;jS ð72Þ

in the integrand, where hðgÞ ¼ ei/n;jgS for gAker plDPðGÞ which does not depends
on the choice of nAMl: Note r� wrAL� for every wAW : Thus /r� wr;jgS is 2p

times an integer. We assume that mANMl: Then, clearly we have hðgÞN ¼ ei/m;jgS:
Therefore, expression (72) is equal to JðjÞ; and hence we have

aNðl; mÞ ¼
ðdim VlÞN jPðGÞj

ð2pÞm

Z
e�i/mþr;jSKðjÞN

JðjÞwðjÞ djþ Oðe�cNÞ: ð73Þ

By changing the variable j/j=N1=2; we have

aNðl; mÞ ¼
jPðGÞjðdim VlÞN

ð2pÞm
Nm=2

IðNÞ;

IðNÞ :¼
Z

e�i/mþr;jS=N1=2

Kðj=N1=2ÞN
Jðj=N1=2Þwðj=N1=2Þ dj

modulo Oðe�cNÞ: As in [B], we set kðjÞ ¼
Q

a40 /a;jS; which is a polynomial of
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degree d ¼ #Fþ; the number of the positive roots. Then, it is easy to show that

Jðj=N1=2Þ ¼ ð i
N1=2ÞdkðjÞð1þ jjj2d

OðN�1ÞÞ: Since jKðjÞj2 is real, and since the first

derivative of K at the origin is zero (Lemma 2.5), we can choose r40 such that

jKðjÞj2p1� c/Alj;jSpe�c/Alj;jS; jjjor: ð74Þ

Replacing w by a cut-off function whose support is small enough, we haveZ
jKðj=N1=2ÞjN jkðjÞjjjj2dwðj=N1=2Þ dj ¼ Oð1Þ;

and hence

IðNÞ ¼ ði=N1=2Þd
I1ðNÞð1þ Oð1=NÞÞ;

I1ðNÞ ¼
Z

e�i/mþr;jS=N1=2

Kðj=N1=2ÞkðjÞwðj=N1=2Þ:

For simplicity, we set ANðjÞ ¼ e�i/mþr;jS=N1=2
kðjÞ: A Taylor expansion of log K at

the origin gives

Kðj=N1=2ÞN ¼ e�/Alj;jS=2�iTðjÞ=N1=2

eNR4ðj=N1=2Þ; ð75Þ

where R4ðjÞ ¼ Oðjjj4Þ locally uniformly. Concerning this expansion, we write

I1ðNÞ ¼
Z

AðjÞe�/Alj;jS=2�iTðjÞ=N1=2

djþ
X3
j¼1

IjðNÞ; ð76Þ

where we set

I1ðNÞ ¼
Z

AðjÞðKðj=N1=2Þ � e�/Alj;jS=2�iTðjÞ=N1=2Þwðj=N1=4Þ dj;

I2ðNÞ ¼
Z

AðjÞKðj=N1=2ÞNð1� wðj=N1=4ÞÞwðj=N1=2Þ dj;

I3ðNÞ ¼ �
Z

AðjÞe�/Alj;jS=2�iTðjÞ=N1=2ð1� wðj=N1=4ÞÞ dj:

Here we note that wðj=N1=4Þwðj=N1=2Þ ¼ wðj=N1=4Þ for sufficiently large N: For the

integral I1ðNÞ; the integrand vanish for jjj4cN1=4 for some c: Thus, by (75), we

have jeNR4ðj=N1=2Þj ¼ Oð1Þ; and NR4ðj=N1=2Þ ¼ jjj4Oð1=NÞ: Therefore we have

jI1ðNÞj ¼ Oð1=NÞ: For the integral I2ðNÞ; j=N1=2 is bounded. Thus, by (74), we have
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jI2ðNÞjp
Z
jjjXN1=4

e�c/Alj;jS=2jkðjÞj dj ¼ OðNðdþm�1Þ=4e�cN1=2Þ:

Similarly, it is easy to see that I3ðNÞ ¼ OðNðm�2Þ=4e�cN1=2Þ: Finally, we consider the
first integral in (76), which can be written in the formZ

AðjÞe�/Alj;jS=2�iTðjÞ=N1=2

dj ¼
Z

e�i/mþr;jS=N1=2

kðjÞe�/Alj;jS=2 djð1þ Oð1=N1=2ÞÞ:

By using the homogeneity of the polynomial k of degree d; it is easy to see thatZ
e�i/mþr;jS=N1=2

kðjÞe�/Alj;jS=2 dj ¼ idð2pÞm=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
det Al

p kð@Þðe�/A�1
l j;jS=2Þððmþ rÞ=N1=2Þ:

As in [B], by using the fact that the polynomial k is alternating with respect to the W -
action, it is not hard to see that

kð@Þðe�/A�1
l j;jS=2Þ ¼ ð�1ÞdkðA�1

l jÞe�/A�1
l j;jS=2:

Therefore, we have

aNðl; mÞ ¼
jPðGÞjðdim VlÞNkðA�1

l ðmþ rÞÞ
ð2pÞm=2

Ndþm=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det Al

p e�/A�1
l ðmþrÞ;ðmþrÞS=2Nð1þ Oð1=N1=2ÞÞ:

Note that the inner product /A�1
l x; yS is invariant under the action of the Weyl

group. Therefore, by the Weyl dimension formula, we have

kðA�1
l ðmþ rÞÞ ¼ ðdim VmÞ

Y
a40

/A�1
l r; aS;

which concludes the assertion. &

3. Example: G ¼ Uð2Þ

In the previous sections, we have obtained the asymptotics of the multiplicities of

weights and irreducibles in high tensor power V N
l of a fixed irreducible

representation Vl:
The leading term of our asymptotic formula are described by the constant dlðnÞ

and the determinant detAlðnÞ of the matrix AlðnÞ: In general, it seems somewhat
difficult to calculate them explicitly. The most subtle point is the inverse of the
‘‘moment map’’ tlðnÞAX : Furthermore, in Theorem 9, the term of the Weyl
denominator might vanish. The aim of this section is to discuss them for the group
G ¼ Uð2Þ:
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Roughly speaking, for G ¼ Uð2Þ; the corresponding lattice paths model is
Example in Section 1 with the weight function c � 1: (But for general G ¼ Uðm þ 1Þ;
it is not identically 1.)

To begin with, we recall some of facts about representation theory for G ¼
Uðm þ 1Þ: Let TCUðm þ 1Þ ðmX1Þ be the maximal torus of all diagonal matrices in
the unitary group Uðm þ 1Þ: The Lie algebra t of T consists of all diagonal matrices

with pure imaginary entries. We identify t with Rmþ1 by
ðx1;y; xmþ1Þ/2pidiagðx1;y; xmþ1Þ: Let ej ðj ¼ 1;y;m þ 1Þ be the standard basis

for Rmþ1; and let e�j be the dual basis. The Weyl group W is the symmetric group

Smþ1 of order ðm þ 1Þ!: We use the usual Euclidean inner product to identify

tDRmþ1 with its dual. The integer lattice and the lattice of weights are identified with

Zmþ1: We choose the positive open Weyl chamber C given by

C ¼ fg ¼ ðg1;y; gmþ1Þ; g14?4gmþ1g:

The roots of ðG;TÞ are ai;j :¼ e�i � e�j ; iaj; the positive roots; ai;j; ioj; and the simple

roots; aj :¼ aj;jþ1; j ¼ 1;y;m: The subspace X �Ct�DRmþ1 spanned by the simple

roots is identified with

XDX � ¼ ðx1;y; xmþ1ÞCRmþ1;
X

xj ¼ 0
n o

;

which is identified with the Lie algebra of T-SUðm þ 1Þ: Half the sum of the
positive roots r is given by

r :¼ 1

2

X
1piojpmþ1

ai;j ¼
1

2

Xm

j¼1

ðm þ 2� 2jÞe�j : ð77Þ

The alternating sum AðgÞ for the functional gAt� is a function on t given by

AðgÞðjÞ :¼
X

wASmþ1

sgnðwÞe2pi/wg;jS; jAtDRmþ1:

Then the Weyl character formula states that, for a dominant weight lA %C-Zmþ1; the
character wl for the irreducible representation Vl corresponding to l is given by

wlðjÞ ¼
Aðlþ rÞðjÞ

DðjÞ ; jAt;

where D is the Weyl denominator D ¼ AðrÞ: In the case where G ¼ Uðm þ 1Þ; one
can compute the alternating sum AðgÞ from the definition, and, as a result, the
character wl is given by the Schur polynomial szl for the partition

zl ¼ ðl1 � lmþ1;y; lm � lmþ1; 0Þ:

wlðjÞ ¼ ðx1?xmþ1Þlmþ1szlðx1ðjÞ;y; xmþ1ðjÞÞ;
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szl :¼
detðxiðjÞðlj�lmþ1Þþmþ1�jÞ

detðxiðjÞmþ1�jÞ
; xj :¼ e2pie�j ;

where the denominator in the above is Vandermond’s determinant (difference
product):

Dðx1;y; xmÞ :¼
Y

1piojpmþ1

ðxi � xjÞ:

If lmþ1X0; then the above is just the Schur polynomial sl with the partition l:
Now we fix a dominant weight lAC-Zmþ1: For simplicity, we assume that

lmþ1X0 so that the character wl is precisely the Schur polynomial sl:
It is well-known (see [FH]) that the multiplicity m1ðl; mÞ of a partition m (which is

equivalent to say that m is a dominant weight with non-negative entries) is given by
the Kostka number Klm which is the coefficients in the Schur polynomial sl of the

symmetric sum of the monomials corresponding to m: It is also well-known [FH] that
Klma0 if and only if the partition m satisfies

Xi

j¼1

mjp
Xi

j¼1

lj ; i ¼ 1;y;m; ð78Þ

and
Pmþ1

j¼1 mj ¼
Pmþ1

j¼1 lj: (The last condition is necessary, since the weights in Vl is in

the convex hull of the W -orbit of l:)
We note that the relation between our weighted character function k and the

character wl is expressed as

kðtÞ ¼ e�/l;tSwlðt=2piÞ ¼ e�/l;tSslðet1 ;y; etmÞ; t ¼ ðt1;y; tmÞAX ðCtÞ: ð79Þ

Note that, in the above, the character wl is extended to the complexification tC: In
particular, we have

log kðtÞ �/n� l; tS ¼ log slðetÞ �/n; tS; tAX : ð80Þ

Therefore, as in (51), (48), the constant dlðnÞ is given by

dlðnÞ ¼ log slðetlðnÞÞ �/n; tlðnÞS: ð81Þ

Now, consider the case where m ¼ 1: We take l ¼ ðl1; l2ÞAC-Z2; l14l2X0: We
set nl ¼ l1 � l240: Then, the Schur polynomial slðx1; x2Þ in two variables
corresponding to the partition l is given by

slðx1; x2Þ ¼
xl1þ1
1 xl22 � xl21 x

l1þ1
2

x1 � x2
¼
Xnl
j¼0

xl1�j
1 xl2þj

2 : ð82Þ

Therefore, the weights in the irreducible representation Vl are of the form
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nj :¼ l� ja; j ¼ 0;y; nl; ð83Þ

where a is the unique positive (simple) root a ¼ ð1;�1Þ: All these weights have
multiplicity one: m1ðl; njÞ ¼ 1: Therefore, the multiplicity for the high tensor power

V#N
l is given by (see Proposition 2.3)

mNðl; mÞ ¼ #fðj1;y; jNÞ; 0pjkpnl; m ¼ Nl� ðj1 þ?jNÞag:

The polytope Pl is given by

Pl ¼ ftaAX �;�nlptp0g:

Thus, we have the following

Lemma 3.1. For every j ¼ 0;y; nl; nj is a weight in the interior of QðlÞ ¼ Pl þ l if

and only if 1pjpnl � 1: Furthermore, nj is a dominant weight in the interior of QðlÞ if

and only if 1pjpnl
2
:

Next, we shall calculate the moment map mPl
: X-Pl defined in (47).

Lemma 3.2. We identify X � with R through the identification R{t/taAX �: We set

hðtÞ ¼ kðtaÞ: Then the moment map mPl
is given by

mPl
ðtaÞ ¼ f ðtÞa; f ðtÞ ¼ h0ðtÞ

2hðtÞ: ð84Þ

The functions hðtÞ and f ðtÞ are given explicitly by

hðtÞ ¼ e�nlt sinhðnl þ 1Þt
sinh t

¼
Xnl
k¼0

xk; x ¼ e�2t;

f ðtÞ ¼ ðnl þ 1Þ sinhðtÞ coshððnl þ 1ÞtÞ � coshðtÞsinhððnl þ 1ÞtÞ
2 sinhðtÞ sinhððnl þ 1ÞtÞ � nl

2
:

Furthermore, for 0pt if and only if �nl
2
pf ðtÞo0; and f ð0Þ ¼ �nl

2
:

Proof. Since we have h0ðtÞ ¼ /ð@kÞðtaÞ; aS and /a; aS ¼ 2; the differential

ð@kÞðtaÞ is given by ð@kÞðtaÞ ¼ 1
2
h0ðtÞa: The equation (84) follows from this and

the definition of the moment map. The explicit expression for the function hðtÞ
follows from (79) and (82), and that for f ðtÞ is shown by a direct computation. Next,
it is easy to show that, by using the expression for hðtÞ in terms of a polynomial in

x ¼ e�2t; f ð0Þ ¼ nl=2: Also, we have limt-þN f ðtÞ ¼ 0 and limt-�N f ðtÞ ¼ nl:
From this the rest of the assertion follows. &
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Finally, we shall examine that the term of the Weyl denominator in Theorem 9
does not vanish for generic dominant weight in the case where G ¼ Uð2Þ:

Proposition 3.3. Let nj ð1pjpnl=2Þ be a dominant weight defined in (83). We set

tj :¼ tlðnjÞ: tj is the unique non-negative number satisfying f ðtjÞ ¼ �j; where f ðtÞ is

defined by (84). Then the multiplicity aNðl;NnjÞ of VNnj
in V#N

l has the following

asymptotic formula:

aNðl;NnÞ ¼ ð2pNÞ�1=2
e�Nðnl�2jÞ sinhðnl þ 1Þtj

sinh tj

� �N

ðalðjÞ þ OðN�1ÞÞ;

where the positive constant alðjÞ is given by

alðjÞ ¼ 2e�tj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh4tj sinh

2ðnl þ 1Þtj

sinh2ðnl þ 1Þtj � ðnl þ 1Þ2 sinh2tj

s
:

The leading term aj vanishes if and only if nl is even and j ¼ nl=2: In this case, the

dominant weight nj ðj ¼ nl=2Þ is in the unique wall of the Weyl chamber C:

Proof. The non-negativity of the number tj follows form Lemma 3.2 and that nj is a

dominant weight, i.e., 1pjpnl=2: The lattice L� ¼ X �-I� ¼ X �-Z2 is spanned by
the simple root a: Thus we have L ¼ L; and hence the finite group PðUð2ÞÞ is trivial.
Note that the Weyl denominator Dðta=2piÞ is given by

Dðta=2piÞ ¼ 2 sinh t;

which is non-negative for t ¼ tj and zero if and only if t ¼ 0 ¼ tnl=2: By (81), the

positive constant dlðnjÞ is given by

edlðnjÞ ¼ hðtjÞN
e2jtj ¼ e�ðnl�2jÞtj

sinhðnl þ 1Þtj

sinh tj

� �
:

Note that half the sum of the positive roots is given by r ¼ a=2; and hence
/r; tjaS ¼ tj : Recall that the matrix AlðnjÞ is equal to AðtlðnÞÞ where AðtÞ (tAX ) is

the derivative of the moment map mPðtÞ: In our case, AðtÞ is a positive real number
given by

AðtÞ ¼ hðtÞh00ðtÞ � h0ðtÞ2

2hðtÞ2
¼ sinh2ðnl þ 1Þt� ðnl þ 1Þ2 sinh2t

2 sinh2 t sinh2ðnl þ 1Þt
:

(Note that, since /a; aS ¼ 2; a#a is identified with the multiplication by 2:)
Therefore, the assertion follows from Theorem 9. &
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4. Final comments

We close with some remarks on lattice paths and also on the symplectic
interpretation of our problems and results.

4.1. Further relations between multiplicities of irreducibles and lattice paths

A number of relations are known between lattice path counting problems to that

of determining multiplicities of weights in tensor powers V#N
l : We used formulae

(22) and (23) in terms of weighted multiplicities of lattice paths. There are other
formulae which express multiplicities in terms of unweighted but constrained sums.

One is given by Theorem 2 of the paper of Grabiner–Magyar [GM]: Let C be the

Weyl chamber of a reductive complex Lie algebra, V be a finite dimensional

representation, S be the set of weights of V and L be a lattice containing S and r: Then

the number br;rþm;N of walks of N steps from r to rþ m which stay strictly within C

equals the multiplicity of the irreducible with highest weight m in V#N : To use this
formula, one needs to count lattice paths satisfying the constraint, for which the only
known tool seems to be the Gessel–Zeilberger formula [GZ]. The resulting formula
then the right-hand side of the identity in Proposition 2.4, which we have analyzed in
this paper. Many further (and much more general) relations between characters and
multiplicities to sums over special lattice paths are discussed in [Lit].

4.2. Symplectic model

The reader may note a resemblance between the problems studied in this paper
and the well-known problem of finding asymptotics of weight multiplicities in VNl;
where VNl is the irreducible with highest weight Nl (see e.g. [H,GS]). In both cases,
the possible weights lie in QðNlÞ and one may define analogous distribution of
weights of VNl: However, the relation is not very close, since our problem is about
the thermodynamic limit rather than the semiclassical limit. We add a few remarks to
clarify the relations.

We recall the symplectic interpretation of the latter multiplicity problem: the
maximal torus T acts by conjugation on the co-adjoint orbit Ol associated to Vl in a
Hamiltonian fashion, with moment map given by the orthogonal projection
ml : Ol-t� to the Cartan dual subalgebra. The image is given by mlðOlÞ ¼ QðlÞ:
As proved by G. Heckman, multiplicities of weights in VNl become asymptotically
distributed according to the (Duistermaat-Heckman) measure, namely the push-
forward ml�dVoll the symplectic volume measure of Ol under the orthogonal
projection to t� [H,GS].

The limit formula in Theorem 1 also has a symplectic interpretation: To V#N
l

corresponds the symplectic manifold

ON
l :¼ Ol �?� Ol ðN timesÞ:
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Then T acts on ON
l with moment map

mN
l : ON

l -t�; mN
l ðx1;y; xNÞ ¼ mlðx1Þ þ?þ mlðxNÞ: ð85Þ

The image of the moment map is the convex polytope QðNlÞ ¼ NmðOlÞ; and one
may define the Duistermaat-Heckman type measure on QðlÞ by:

dmN
l :¼ D�1

N ðmN
l Þ�ðdVoll �?� dVollÞ ðN timesÞ ð86Þ

on QðlÞ; where DNx ¼ Nx is the dilation operator. Equivalently, this latter measure
is defined by Z

QðlÞ
f ðxÞdmN

l ðxÞ ¼
Z

Ol�?�Ol

f
mlðx1Þ þ?þ mlðxNÞ

N

� �
� dVollðx1Þ �?� dVollðxNÞ: ð87Þ

Thus, dmN
l is the distribution of the sum of the (vector valued) independent random

variables mlðxjÞ; the law of large numbers implies that the limit equals the mean

value of the random variables:

dmN
l -dQ�ðlÞ; weakly as N-N: ð88Þ

This measure represents the thermodynamic limit of the classical spin chain with
phase space Ol at each site, while our problem involves the thermodynamic limit of
the quantum spin chain. The two problems are quite distinct until one lets the weight

l-N along a ray, i.e. considers the joint asymptotics of weights in V#N
Ml : The

Heckman theorem says that if N is fixed and M-N then the quantum problem
converges to the classical one. It would be interesting to investigate the joint
asymptotics as both parameters become large.
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