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Billiards and Vibrations of drums

There are two games one can play on bounded, smooth plane domain Ω ⊂ R2:

Billiards: hit a billiard ball and watch its trajectory over a long time as it
bounces off the boundary ∂Ω.

Vibrate the drumhead Ω: observe the modes of vibration as the frequency
tends to infinity. Where is the mode largest? Where smallest? Spill sand on
the vibrating drum and watch the nodal pattern.

It is far from obvious, and hard to prove, but there are strong – and subtle–
relations between the pattern of billiard trajectories and the patterns of nodal lines
or “largest points” for high frequency vibrations.

The relations between billiards and vibrations is the subject of Global Harmonic
Analysis. In general, one plays both games on any Riemannian manifold, with or
without boundary.
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Geometric/wave optics and classical/quantum mechanics

To play billiards on a bounded domain Ω ⊂ R2, hit the ball at a point p ∈ Ω in a
direction ξ. It follows a straight line until it hits the boundary, then reflects by the
law of equal angles.

The equation for the ‘mode’ of a vibrating drum is the eigenvalue problem,

∆ϕ = −λ2ϕ.

At time t, the vibrating drumhead has height

uλ(x , t) = (cos tλ) ϕλ(x).

As the frequency of vibration λ→∞ the structure of the eigenfunctions ϕ reflects
the billiard trajectories. The relation between billiards and modes of vibration is the
relation between geometric/wave optics or to classical/quantum mechanics.
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Chaotic billiards: one billiard ball

We mainly consider ‘ergodic billards’ where almost all billiard trajectories become
uniformly dense both in position and in direction.
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Swarm of billiards ( Videos due to Semyon Dyatlov)

The ‘chaos’ is more easily visualized if we consider many billiard trajectories which
start off close in position and direction.
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Nodal lines to visualize vibrations of drums

To visualize a ∆-eigenfunction (mode of vibration) we look at its nodal line (zero
set). The sand accumulates where the drum does not vibrate. How does the

number of nodal domains grow with the frequency of vibration?
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Billiards versus shapes and sizes of eigenfunctions

Nodal lines are just one feature of the “topography of eigenfunctions”, i.e. the
shape and size of |ϕλ(x)|2. The nodal set is the minimum set of |ϕλ(x)|2. One
would equally (or more) like to know its nearly maximum set. We always assume∫
|ϕλ|2 = 1.

It is not at all obvious that the shape and size of ϕλ has any relation to billiards as
λ→∞. Relations between the two are the subject of “global harmonic analysis’
(global means global in the domain and in time).

The same problems occur on any Riemannian manifold (M, g), with or without
boundary. We only illustrate them on billiard tables. In general, billiard trajectories
= geodesics.
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Propagation of singularities of solutions of the wave equation

The relation between geodesics and waves is illustrated by the propagators
U(t, x , y) for simply connected spaces of constant curvature:

Rn: U(t, x , y) = (it) (t2 − |x − y |2)
− n+1

2
+ .

Sn: U(t, ω, ω′) = i sin t(cos t − cos r(ω, ω′))
− n+1

2
+ .

Hn: U(t, z ,w) = i sin t (cosh t − cosh r(z ,w))
− n+1

2
+
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Harmonic analysis

We introduce Harmonic Analysis with the exponential functions ek(x) = e2πi〈k,x〉

on the flat torus T = Rn/Zn (with k ∈ Zn). The idea is to express any function (or
distribution) as a linear combination of the exponentials,

f (x) ∼
∑
k∈Zn

ake2πi〈k,x〉, (1)

and to relate properties of f to the dual properties of the Fourier coefficients ak.
The key property of the exponentials e2πi〈k,x〉 is that they form an orthonormal
basis of eigenfunctions of the Laplacian ∆ =

∑n
j=1

∂2

∂x2
j

of the flat (Euclidean)

metric.
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Flat eigenfunctions on a flat torus

The exponentials have special properties that are heavily exploited in studying
Fourier series. First, they are joint eigenfunctions of the ∂

∂xj
.

Second, they are uniformly bounded,

|e2πi〈k,x〉| ≤ 1.

Thus, the joint eigenfunctions e2πi〈k,x〉 are very flat. This flatness reflect the
dynamics of the geodesic flow of the flat torus T. Geodesics on a flat torus are
projections to Rn/Zn of straight lines on Rn.1

1Theorem (Toth-Z): if joint eigenfunctions of a completely integrable system are uniformly
bounded in the eigenvalue, then (M, g) is a flat torus
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Harmonic analysis on a Riemannian manifold

The flat Laplacian generalizes to any complete Riemannian manifold (M, g) as

∆g =
1
√

g

n∑
i ,j=1

∂

∂xi
g ij√g

∂

∂xj
,

where gij = g( ∂
∂xi
, ∂
∂xj

), [g ij ] is the inverse matrix to [gij ] and g = det[gij ]. When

M is compact, there is an orthornormal basis {ϕj} of eigenfunctions,

∆gϕj = −λ2
j ϕj ,

∫
M
ϕiϕjdVg = δij (2)

with 0 = λ0 < λ1 ≤ λ2 ≤ · · · ↑ ∞ repeated according to their multiplicities. When
M has a non-empty boundary ∂M, one imposes boundary conditions such as
Dirichlet Bu = u|∂M or Neumann Bu = ∂νu|∂M .
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Local versus Global harmonic analysis

There are two “schools of thought” on eigenfunctions and nodal sets:

Local methods study solutions of ∆ϕ = −λ2ϕ on small balls of radius ε
λ , i.e. ε

wavelengths. The local analyst rescales the ball B ε
λ

(p)→ B1(p) so that the
rescaled ϕ behaves like a harmonic function. E.g. sin nx → sin εx .

Global methods rewrite the eigenvalue problem in terms of the solution
operator (or propagator) of the wave equation,

U(t)ϕ := e it
√
−∆ϕ = e itλϕ.

This equation is only valid if ϕ is a global eigenfunction. U(t, x , y) is related
to geodesics, and as λ→∞ the eigenfunction becomes related to geodesics.
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Universal sup norm estimate

How does the geometry of (M, g) affect the SIZE of the eigenfunction, as
measured by a norm such as the sup norm ||ϕ||L∞ := supx |ϕ(x)|? The

exponentials e i〈
~k,x〉 on Rn/Zn are flat. But this is very special.

There is a universal estimate for compact M:

||ϕλ||L∞ ≤ Cg λ
n−1

2 ,(
∆ϕλ = −λ2ϕλ, ||ϕλ||L2 = 1, n = dim M

)
,

where Cg depends only on g and not on λ

The proof is “semi-local”: it uses the wave group

U(t) = e it
√
−∆, for small |t|

but only for arbitrarily small times 2

2Can you prove this using elliptic estimates?
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Global harmonic analysis of sup norms

When does a Riemannian manifold (M, g) have a sequence ϕjk of eigenfunctions
satisfying

||ϕjk ||L∞ ≥ C ′g λ
n−1

2
jk

,

Definition: Say that (M, g) has maximal sup norm growth if it possesses a
sequence of eigenfunctions ϕλjk which saturates the L∞ bounds.

Example: Any surface of revolution. The eigenfunctions attaining the maximal sup
norm bounds are the rotationally invariant ones.
E.g. S2 The eigenvalues of ∆ are `(`+ 1). The zonal (rotationally invariant)
eigenfunction Y 0

` has the largest L∞ norm:

||Y 0
` ||L∞

||Y 0
` ||L2

'
√
`,

It has huge peaks at the north and south poles.
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Graphics of spherical harmonics
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Real analytic (M , g) of maximal eigenfunction growth

Zonal spherical harmonics bulge out at the poles. It turns out this is the only way
to get maximal sup norm growth3:

Theorem

(Sogge-Z, 2014) Suppose (M, g) is a real analytic Riemannian surface without
boundary and with maximal eigenfunction growth, i.e. having a sequence {ϕλjk } of

eigenfunctions which achieves (saturates) the bound ||ϕλ||L∞ ≤ λ1/2.

Then there must exist a pole i.e. a point x ∈ M such that every geodesic through
x is closed. In particular, M must be a topological S2.

Question: Must (M, g) actually be a surface of revolution? (Need more than just
poles!).

3This result is the culmination of a series of works of Y. Safarov, Sogge-Z, Sogge-Toth-Z



Billiards and
vibrations of

drums

Steve Zelditch

Pole of a surface of revolution and umbilic points on an ellipsoid

On the left, the north and south pole of the surface of revolution are “poles”: All
geodesics through the poles are smoothly closed.

On the right, at the four umbilic points of the ellipsoid, all geodesics starting at an
umbilic point P return to P at time 2π, but are not smoothly closed: they are just
“loops” at P. The ellipsoid does not have “maximal eigenfunction growth”.
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Nodal domains

We now turn from size to shape as measured by the nodal set:

The nodal set is Nϕλ
= {x : ϕλ(x) = 0}. A nodal domain is a connected

component of M\Nϕλ
. The nodal domains partition M into disjoint open sets:

M\Nϕλ
=

N(ϕλ)⋃
j=1

Ωj .

When 0 is a regular value of ϕλ the level sets are smooth curves. When 0 is a
singular value, the nodal set is a singular (self-intersecting) curve.

N(ϕλ) = the number of nodal domains of ϕλ.
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Counting nodal domains

Question: how large is N(ϕλj ); i.e. how many connected components does the
nodal set have? The classical Courant bound is that the number N(ϕλj ) of the jth
eigenfunction in an orthonormal basis is bounded by j + 1;.

There is no non-trivial lower bound for N(ϕλ): it was shown by H. Lewy that there
exist (M, g) and sequences of ϕλj , λj →∞ with only 2 or 3 nodal domains.

Problem (T. Hoffman-Ostenhof) Let (M, g) be a compact Riemannian manifold.
Show that it has some sequence of eigenfunctions ϕλj with λj →∞ so that the
number of nodal domains of ϕλj tends to infinity.
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1
λ-density of nodal sets

Nodal sets are useful to visualize the “shape” of an eigenfunction.

The following “fundamental existence theorem’ is a local result:

Theorem

For any (M, g) and ∆ϕλ = −λ2ϕλ, there exists a zero of ϕλ in every ball

B(p,
Cg

λj
) ⊂ M. I.e. the nodal set Nϕλ

= {x : ϕλ(x) = 0} is 1
λ -dense.

The proof only uses that ∆ϕλ = −λ2ϕλ in a ball B(p, r) and not globally on
(M, g),
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Ergodicity and “chaos” of geodesics and Nodal sets

Global problem: How does “chaotic geodesic flow” impact nodal lines and number
of nodal domains. Intuitive idea: if the billiard trajectories are ergodic (uniformly
distributed), then the nodal lines should also be uniformly distributed, and there
should be a lot of nodal domains.
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Ergodicity =⇒ N(ϕj)→∞

The following result with Junehyuk Jung4 uses ergodicity of the billiard flow to
prove that the number of nodal domains of eigenfunctions tends to infinity:

Theorem

[J.Jung-Z, 2014] Let (X , g) be a surface with curvature k ≤ 0 and with concave
boundary. Then for any orthonormal eigenbasis {ϕj} of Dirichlet (or Neumann)
eigenfunctions, one can find a density 1 subset A of N such that

lim
j→∞
j∈A

N(ϕj) =∞,

A density one subset A ⊂ N is one for which 1
N #{j ∈ A, j ≤ N} → 1, N →∞.

4Inspired by work of Ghosh-Reznikov-Sarnak on the modular domain, using L-functions
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Sinai billiards (chaotic): remove a disc from a square or torus

An example of a non-positively curved surface with concave boundary is a
Sinai-Lorentz billiard in which one removes a small disc D from X .
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Log lower bound

In a related geometric setting5, the number of nodal domains grows at least
logarithmically for almost all eigenfunctions:

Theorem

(S.Z. 2015) Let (M, J) be a real Riemann surface and let g be a negatively curved
invariant metric on M. Then for j ∈ A (a set of density one),

N(ϕj) ≥ Cg (log λj)
K , (∀K <

1

6
).

resp.

N(ψj) ≥ Cg (log λj)
K , (∀K <

1

6
).

5N(ϕj) → ∞ was also proved by J.Jung-S.Z. in this setting
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Main ideas of the proof

1 Show that the number N(ϕλ) of nodal domains is ≥ 1
2 N(ϕλ|∂M , 0, ∂M), the

number of zeros of ϕλ on the boundary (in the Neumann case). This is
purely topological and is why we need ∂M 6= ∅.

2 Prove that Neumann eigenfunctions have a lot of zeros on ∂M, resp.
Dirichlet eigenfunctions have many zeros of ∂νϕj = 0 on ∂M. This is
where ergodicity is used: Neumann eigenfunctions, restricted to the
boundary, are “ergodic”. 6

3 To prove (2), we show that
∫
β ϕjds <<

∫
β |ϕj |ds on any arc β ⊂ ∂M.

4 For log lower bounds, adapt recent log-scale quantum ergodicity results of
Hezari-Riviere and X. Han to restrictions of eigenfunctions to curves on
surfaces.

6the quantum ergodic restriction theorem of Hassel-Z and of Christianson-Toth-Z.
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Quantum ergodic restriction theorem

Theorem

[Christianson-Toth-Z, 2013] Let γ be either ∂M for the surface with boundary or
Fix(σ) for the surface with involution. Then, for a subsequence of Neumann
eigenfunctions of density one,

〈f ϕj |γ , ϕj |γ〉L2(γ)

→ 4
2πArea(M)

∫
γ f (s)ds.

Similarly for normal derivatives of Dirichlet eigenfunctions. Cauchy data of
eigenfunctions to γ are quantum ergodic along γ. This is part of a much more
general result.


