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Outline of talk

Two dimensional U(N) gauge theory over a
Riemann surface is one of the few mathemati-
cally well-defined models in quantum field the-
ory. ’t Hooft proposed that the large N limit
of gauge theory is or resembles a string theory.
Specific asymptotics were conjectured by D.J.
Gross, A. Matytsin, W. Taylor, M. R. Douglas,
V. Kazakov, V. Kostov, T. Wynter and others.
The purpose of my talk is to:

• Review some of the physics conjectures on
the large N limit of Y M2;

• Give two rigorous calculation of large N

limit asymptotics for U(N) gauge theory
which contradict the physics conjectures.

• Propose one way to make them consistent
with the physics conjectures.
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What is 2D gauge theory?

Y M2 with gauge group U(N) concerns connec-

tions on (all) principal U(N)-bundles P → M

over a Riemann surface M . The Riemann sur-

face could be a closed surface of genus g, or a

surface with boundary such as a cylinder or a

three (or more) legged surface.

Denote the space of connections by A. A

connection is an equivariant u(N)-valued 1-

form on P . The moduli space of connections

is A/G where G is the gauge group. Define

the Yang-Mills action S(A) = 1
4||FA||2 where

FA is the curvature of A and where ||FA||2 =∫
M TrF ∗AFAdV , where dV is the area form on M .

We formally define the Y M measure e−S(A)DA

on A/G.
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Migdal’s formulae

According to Migdal ( Soviet Phys. JETP 42

(1975), no. 3, 413–418), the partition func-

tion of Y M2 over a closed Riemann surface MG

of genus G and area A is:

ZN(A, G) =
∑

R∈Ĝ

d2−2G
R e−

A
2N C2(R).

Here, R ∈ ˆU(N) runs over the irreps of U(N),

• χR = character of R, dR = dimension of

R;

• C2(R) =eigenvalue of Casimir ∆ in the ir-

rep R.
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Large N limit problems

Define the free energy by

FN(A, G) =
1

N2
logZN(A, G).

Problem Find the limiting free energy

lim
N→∞

FN(A, G).

How does it depend on the area A? Does

FN(A, G) admit a complete asymptotic expan-

sion?

Theme (Gross, W. Taylor, ’t Hooft): It should

admit a limit which is may be described in

terms of maps between Riemann surfaces, i.e.

as a ‘string theory.’
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Partition function of a cylinder

In the case of a cylinder, the partition function

involves the holonomies of the connection over

the two boundary circles. Migdal’s formula is:

ZN(U1, U2;A) =
∑

R∈ ˆU(N)

χR(U1)χR(U∗2)e−
A
2N C2(R)

of Y M2 for a cylinder of area A and gauge

group U(N): U1, U2 are the boundary holonomies.

Z(U1, U2;A) is the central heat kernel at time

t = A/2N , i.e. the kernel of e−t∆ on central

functions. It is a class function in U1, U2.

To state the corresponding large N limit prob-

lem, we need more notation.
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Density of eigenvalues

Since Z(U1, U2;A) is conjugacy invariant in U1, U2

we may assume they are diagonal. The eigen-

values of U ∈ U(N) are denoted {eiθk, k =

1, . . . , N}.

The eigenvalue distribution of U is 1
N

∑N
k=1 δ(eiθk).

Given a sequence UN ∈ U(N), we write UN → σ

(as N →∞) if

1

N

N∑

k=1

δ(eiθk) → σ

in the sense of measures, i.e. 1
N

∑N
k=1 f(eiθk) →∫

S1 fdσ
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Density of Young Tableaux

Irreps of U(N) are parametrized by (shifted)

highest weights or Young diagrams: R ⇐⇒
−∞ < `1 < `2 < · · · < `N < ∞. To R we associ-

ated the probability measure

dρR =
1

N

N∑

j=1

δ(
`j

N
).

Here, δ(t) is the point mass at t. Thus,

∫

R
f(y)dρR(y) =

1

N

N∑

j=1

f(
`j

N
).

Given a sequence RN of Young tableaux or

highest weights for U(N), we write RN → dρ

if dρR → dρ in the sense of measures. Any

weak limit is a probability measure satisfying

ρY ([0, T ]) ≤ T , since `j+1 − `j ≥ 1. If the limit

has a density, which is written dρY = ρ′Y (y)dy,

then ρ′Y (y) ≤ 1. A limit measure is called a

“distribution on Young tableaux”.
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Large N limit of cylinder partition
function

The free energy for Y M2 on the cylinder is

again defined by

FN(UC1
, UC2

|A) =
1

N2
logZN(UC1

, UC2
|A).

Problem : Find limN→∞ FN(UC1
, UC2

|A) as-

suming UN
j → σj.

More generally: FN(UC1
, . . . , UCr|A).

Special cases:

• U1 = U2 = I. The sphere; Uj → δ(1).

• U1 = 1, U2 arbitrary: the disc.
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Gross-Taylor conjecture in genus 1

The partition function in genus one equals

Z0(A) =
∑

R∈Ĝ

e−
A
2N C2(R).

Conjecture 1 (Gross-Taylor)

F (A, N) = 1
N2 logZ(A, N)

→ − A
24 − 2

∑∞
n=1 log(1− e−nA/2)

= −2 log η(A/2).

This is the most elementary of the Gross-Taylor

conjectures and probably can be (or has been)

proved rigorously.
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Gross-Taylor conjecture for B ≥ 2

For Y M2 on a closed surface of genus G ≥ 2,

the conjecture is:

Conjecture 2 (Gross-Taylor) The free energy

has an expansion

FN(A, G) ∼
∞∑

g=0

N2−2gfG
g (A),

where

fG
g (A) ∼

∑
n

∑

i

ω
n,i
g,Ge−nAAi.

The coefficients involve ‘statistics of branched

covers of MG. (Refer to the original papers for

the specifics).
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Gross-Matytsin and Kazakov-Wynter
Character asymptotics

Consider a U(N) character, χR(U), with R =

−∞ < `1 < `2 < · · · < `N < −∞. Then

χR(U) =
det(ei`jθk)

∆(eiθ)
, ∆ = Πj<k(e

iθj − eiθk).

As before, assume that U → σ, R → ρ.

Conjecture 3 (Gross-Matytsin)

χR(U) ∼ eN2F0[ρ,σ)], where

F0(ρ, σ) = S(ρ, σ) + 1
2{

∫
R ρ(x)x2dx +

∫
σ(y)y2dy}

−1
2{

∫
R×R ρ(x)ρ(y) ln |x− y|dxdy

+
∫
R×R σ(x)σ(y) ln |x− y|dxdy,
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where S is the classical action corresponding

to the Hopf equation




∂
∂t + f ∂f

∂x = 0

=f(x,0) = πρ(x), =f(x,1) = πσ(x).



Discussion

The boundary problem for the Hopf (Burgers,

1D Euler) equation




∂
∂t + f ∂f

∂x = 0

=f(x,0) = πρ(x), =f(x,1) = πσ(x).

gives 2 boundary conditions for a first order

equation. One real boundary condition (initial

value problem) already gives a unique solution.

the 2 boundary condition problem is well posed

because the boundary conditions are complex,

and only the imaginary parts are specified.
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The cylinder

Conjecture 4 (Kazakov-Wynter, Gross-Matytsin)

Assume that U1 → σ1, U2 → σ2. Then

FN(U1, U2|A) → F (σ1(θ), σ2(θ)|A)

:= S(σ1(θ), σ2(θ)|A)

−1
2

∫
S1

∫
S1 σ1(θ)σ1(φ) log | sin θ−φ

2 |dθdφ

−1
2

∫
S1

∫
S1 σ2(θ)σ2(φ) log | sin θ−φ

2 |dθdφ,

where

where S is the classical action corresponding

to the Hopf equation




∂
∂t + f ∂f

∂x = 0

=f(x,0) = πσ1(x), =f(x,1) = πσ2(x).
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Rigorous results

• (i) (Tate-Zelditch) The conjectured char-

acter asymptotics are not always correct:

they fail for any sequence RN of irreps of

U(N) if one evalutes characters on Kostant’s

elements of type ρ;

• (ii) (Guionnet-Zeitouni) Matytsin’s charac-

ter asymptotics are correct if one evalu-

ates (analytic continuation of) characters

on positive Hermitian matrices;

• (iii) (Zelditch) The large N asymptotics of

the partition function for Y M2 on the cylin-

der also fail for certain sequences.
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Discussion

• The large N limit is not correct as a point-
wise limit for all sequences.

• The counterexamples are to date the only
rigorous calculations. It is not clear how
generally the conjectures fail.

• It is possible that all of the conjectures can
be cured by analytically continuing (Wick
rotating) from U(N) to positive Hermitian
matrices, i.e. that the Guionnet-Zeitouni
methods also work for partition functions.
Physical interpretation?

• Douglas has suggested an alternative view-
point towards large N limites of Y M2 which
is not pointwise.
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Counterexamples

We now give the counterexamples. They are

based on the special sequences

UN = aN = principal elements of type ρ.

Definition (Kostant) A principal element aN ∈
U(N) of type ρ is a regular element of finite

order equal to the Coxeter number N of U(N).

Thus, it is an element whose eigenvalues are

the distinct Nth roots of unity. There is one

conjugacy class of such elements. For SU(2)

they form the equatorial sphere (with north

pole at I).

Theorem (Kostant): the only character val-

ues at this element are χR(a) = −1,0,1.
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Rigorous results on cylinder parti-
tion function

The partition function of Y M2 on a cylinder,

with gauge group equal to G, is given by

(1)

ZG(U1, U2|A) =
∑

R∈Ĝ

χR(U1)χR(U∗2)e−
A
2N C2(R)

Here, A ≥ 0 is the area of the cylinder. It is

the value at time t = A
2N of the central heat

kernel of G:

(2)

HG(t, U1, U2) =
∑

R∈Ĝ

χR(U1)χR(U∗2)e−tC2(R),

i.e. the kernel of the heat operator acting on

the space of central functions on SU(N). It is

obtained from the usual heat kernel by averag-

ing both variables over conjugacy classes.
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Central heat kernel of SU(2)

For example, the central heat kernel of SU(2)

at these special values is given by

(3) HSU(2)(t, e
ix, e

iπ
2 ) =

θ1(e
iπx, it)

2e−πt/4 sinπx

where

(4)

θ1(z, t) = 2
∞∑

n=0

(−1)n sin{(2n+1)z}e−π(n+1/2)2t

is Jacobi’s theta function.

19



Warmup: Unscaled large N limit

We first show that if we do NOT scale t =

A/N , then the partition function has a large N

limit at the Kostant elements.

Theorem 5 Let kN ∈ su(N) be diagonal ma-

trices with entries θN
j , and assume dσN :=

1
`N

∑`N
j=1 δ(e

iθN
j ) → σ. Then, as N →∞,

1
N2 logHSU(N)(t, aN , ekN) → −1

2 log η(it)

+1
2

∫
R logHSU(2)(t, e

ix, e
iπ
2 )dσ ∗ d̄σ(x).

Here, eix is short for the diagonal matrix D(eix, e−ix).

Also, dσ ∗ d̄σ(x) is the measure

(5)∫

S1
f(eix)dσ∗d̄σ(x) :=

∫

S1

∫

S1
f(ei(x−y))dσ(x)dσ(y).
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True large N asymptotics

At first sight, this result seems to explain the
normalization 1

N2 logZN . However, the large
N limit conjectures concern the scaling limit
of the central heat kernel under t → A

2N . This
puts into play a simultaneous limit process in
dσN ∗ d̄σN → dσ ∗ d̄σ and in the asymptotics of
theta functions. We find that for our cases of
the problem, this rescaling changes the growth
rate of the free energy.

Theorem 6 Suppose that ekN is a sequence
such that dσN → dσ. Then,

FN(aN , ekN | A
2N ) = 1

2

∫
S1 logHSU(2)(A/2N, eix, e

iπ
2 )

dσN ∗ dσN(eix)− 1
2 log η( iA

2N ) + O(1/N)

∼ −N
A {∫S1

1
π min{d(eix, eiπ/2), d(eix, e−iπ/2)}2

dσ ∗ dσ(eix)− π
12},

where d(eix, eiy) is the distance along S1.
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Large N limit of partition function

There are two terms of opposite sign in the

leading order term, but they usually do not

cancel. Consider the simplest case, where U2 =

Id. MacDonald’s identity reads:

(6)

HSU(N)(t, aN , I) = e−dimSU(N) t/24η(it)dimSU(N),

where η(t) is Dedekind’s η-function. The eigen-

value distribution of aN tends to dθ
2π, while that

of I is obviously δ1.

Proposition 7 When U1 = aN and U2 = I, so

that σ1 = dθ, σ2 = δ1, then

1
N2 logZSU(N)(e

4πiρ,1|A) = −2N
A { π

12}

−1
2 log( A

2N )−A/48N + O(e−cN).
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Anomalous factor of N

The key point is that there is an extra factor of

N in the asymptotics which is not consistent

with the original idea that the free energy have

a stringy expansion.

Why it occurs: The sign oscillation χR(aN) =

±1,0 causes much more cancellation than ex-

pected, so the asymptotics have the form e−N3Ξ

rather than e−N2Ξ.

Character values might always oscillate this

wildly. The oscillation is cured by analytic con-

tinuation to positive matrices.
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Idea of proof

The asymptotics are based on the use of Mac-

Donald’s identities.

Theorem 8 Let G be compact, connected, semi-

simple and simply connected, and let a be an

element of type ρ. Then

HG(t, a, e−k) = (e−πt/12η(it))−|R+|+`

Πα∈R+
HSU(2)(t, e

i〈α,k〉, eiπ/2).

[History: The heat kernel proof for k = 0 is

due to Kostant. The heat kernel proof for

general k is due to H.D. Fegan, I. B. Frenkel,

D. Bernard. Fegan later published erroneous

generalizations.)
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Dedekind eta function

The Dedekind eta-function is:

(7)

η(z) = e2πiz/24 Π∞n=1(1− e2πinz), =z > 0.

It is a modular cusp form of weight 1/2, i.e. it

satisfies

η(γz) = θ(γ)jγ(z)
1/2η(z), if γ ∈ SL(2,Z),

where θ(γ) is a certain multiplier. When γz =

−1/z, we have

η(−1

z
) = (iz)1/2η(z).

We are particularly interested in log η(iy) as

y → 0+. For real numbers y > 0 we have:

(8)
log η(iy) = − π

12y − 1
2 log y +

∑∞
m=1

1
m

1
1−e2πm/y .
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Dedekind eta function and SU(2)

The central heat kernel H(t, a, y) at the special

point a may be expressed in terms of Jacobi’s

theta function:

(9) HSU(2)(t, a,1) = (e−πt/12η(it))3.
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Partition function: simplest case

When U1 = a and U2 = 1, Macdonald’s identity

gives:

ZSU(N)(a,1;A)

= e−π dimSU(N)A/24Nη(iA/2N)dimSU(N), .

The free energy is then

1
N2 logHSU(N)(A/2N, a, I)

= dimSU(N)
N2 {− Aπ

48N + log η(iA/2N)}.

We note that dimSU(N)
N2 = 1

2 + O( 1
N ). We sub-

stitute y = A/2N in the right side to get:

log η(iA/2N) = −2N
A

π
24 − 1

2 log( A
2N )

+
∑∞

m=1
1
m

1
1−e4Nπm/A

The sum is an exponentially small correction.
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Unscaled limit

We now show that the unscaled large N limit

exists.

We take ek to be a diagonal matrix with entries

e2πiλj(N). Then

1
N2 logHSU(N)(t, a, ek) = 1

N2{(−|R+|+ N)[−πt
12+

log η(−it/4π)}+ 1
N2

∑
α>0 logHSU(2)(t, e

i〈α,k〉, eiπ/2)

The roots of SU(N) are ei− ej and its positive

roots satisfy i < j. Hence, 〈α, k〉 = λi−λj =⇒
∑

α∈R+
logHSU(2)(t, e

i〈α,k〉, eiπ/2)

= 1
2

∑
i6=j logHSU(2)(t, e

i(λi−λj), eiπ/2).
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Unscaled limit

Since `N ∼ N for SU(N), we have

1
N2

∑
α∈R+

logHSU(2)(t, e
i〈α,k〉, eiπ/2)

=
∫
S1 logHSU(2)(t, e

ix, eiπ/2)dσN ∗ dσN(eix)

− 1
N logHSU(2)(t,1, eiπ/2)

where

dσN ∗ dσN(eix) =
∫

S1
dσN(ei(x−x′)) dσN(eix′).

If

σN :=
1

`N

`N∑

j=1

δ(e2πiλj(N)) → σ ∈M(S1),

then

dσN ∗ dσN → dσ ∗ dσ,

since the Fourier coefficients of the left side
tend to those of the right side. Thus, we ob-
tain the stated limit.
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Scaled limit

We now re-do the calculation but make the

scaling t = A
2N . We additionally use the uni-

form off-diagonal asymptotics of the central

heat kernel of SU(2).

The central heat kernel is related to the actual

heat kernel by

log HSU(2)(t, e
ix, a) = log

∫
SU(2)

kSU(2)(t, e
ix, g−1ag)dg

where kSU(2)(t, x, y) is the heat kernel. There-

fore, we are interested in the uniform asymp-

totics of

log HSU(2)(
A
2N , eix, a) = log

∫
SU(2)

kSU(2)(
A
2N , eix, g−1ag)dg

in x for each A.
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Scaled limit (cont)

There exists a uniform heat kernel parametrix

for kSU(2) given by:

(10) kSU(2)(t, u, v) ∼ t−3/2e−
d(u,v)2

πt V (t, u, v)

where V (t, u, v) ∼ ∑∞
j=0 Vj(u, v)tj. Thus,

log HSU(2)(
A
2N , eix, a) ∼ log{(N

A)3/2 ∫
SU(2)

e−
2N
πAd(eix,g−1ag)2V (A/2N, eix, g−1ag)dg},

where V (A/2N, eix, g−1ag) is a semiclassical am-

plitude in N .
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Scaled limit (cont.)

The asymptotics are determined by the mini-

mum point of the phase d(eix, g−1ag)2, namely

by the distance d(eix, Ca) from eix to the con-

jugacy class of a. We note that the conjugacy

class C(a) = {g−1ag : g ∈ SU(2)} is a great

(equatorial) 2-sphere of radius π/2 from (the

north pole) I.

Thus, as eix → 1,

(11)

HSU(2)(
A

2N
, eix, a) ∼





|x|−3/2e−
2N
πAd(eix,Ca)2, x 6= 0

(N
A)3/2e−2Nπ2/4πA, x = 0.
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Scaled limit (cont.)

We eventually obtain the leading order term:

(12) −2N

πA

∫

S1
d(C(a), eix)2dσN ∗ dσN(eix)

plus the canonical terms 1
N logHSU(2)(A/2N,1, a)

and log η( iA
2N ) which are independent of dσ. We

then recognize that d(eix, Ca) = min{d(eix, e±iπ/2)},
completing the proof.

Once again, we see the extra factor of N which

came from the time-rescaled heat kernel.
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Character asymptotics

The following result shows that the oscillation

of values of χR(aN) is much too regular for any

such results. There is simply no separation of

the possible limiting shapes of Young diagrams

into the three discrete classes of possible limits

0,±1; all possible limit shapes are consistent

with the limit 0.

Theorem 9 Given any sequence of irreducibles

RN ∈ ŜU(N), with RN → ρ, there exists a se-

quence R′N ∈ ŜU(N) with R′N → ρ with the

property that χR′N
(aN) = 0. Hence, there can-

not exist a limit functional F0(dθ, dρ) depend-

ing only on the limit densities dσ, dρ.
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Character asymptotics: idea of proof

The basic idea of the proof is the following:

suppose that the highest weight R is such that

χR(aN) = ±1. Then, by changing one compo-

nent of R by one unit, one obtains a highest

weight R′ such that χR′(aN) = 0. Taking a

sequence RN → ρ and changing RN → R′N one

obtains a new sequence with R′N → ρ and with

χR′N
(aN) ≡ 0. The reason why this works is

that 0 is by far the likeliest value of χR(aN).

The non-zero values ±1 are surrounded by a

sea of 0’s.
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Discussion/background

The original conjecture of Matytsin pertained

to Itzykson-Zuber integrals

(13) I(A, B) ≡
∫

SU(N)
eNtr[AUBU†]dU,

where A and B are N ×N Hermitian matrices

and dU is (unit mass) Haar measure on SU(N).

This was proved by Guionnet-Zeitouni.

As I understand it, Gross-Matytsin and Kazakov-

Wynter then stated the analogous conjecture

for characters of U(N).
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In the words of Gross-Matytsin

Gross-Matytsin: “for large N the U(N) char-

acters behave asymptotically as

(14) χR(U) ' eN2Ξ[ρY (l/N),σ(θ)]

with some finite functional Ξ[ρY , σ]... we ob-

serve that the U(N) characters can be repre-

sented as analytic continuations of the Itzykson–

Zuber integral (13). Setting ak = lk, bj = θj

and analytically continuing ak → iak, we see

that

(15)
det[eNaibj]

∆(a)∆(b)
→ J

(
eiθs

)
χR(U).

Therefore, we can use the known expressions

for the large N limit of the Itzykson–Zuber in-

tegral to find the functional Ξ...”

37



In the words of Kazakov-Wynter

They also write that character values for U(N)

are, ‘up to a factor of i...the Itzykson-Zuber

determinant...From Matysin’s paper we quote

the result (with the minor change of an extra

factor of i)...’

Moral: It is precisely the analytic continua-

tion of the large N asymptotics of the Itzyk-

son -Zuber integral from Hermitian to skew-

Hermitian matrices (the Lie algebra of U(N)),

i.e. the extra factor of i as we go from eA to

eiA which leads to incorrect results.
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Conjectures/Speculations

Our first conjecture is to Wick rotate the Kazakov-

Wynter, Gross-Matytsin partition function asymp-

totics to positive matrices. We let H1, H2 de-

note sequences of Hermitian matrices and write

Hj → dσj(x) if the eigenvalue distribution of Hj

tends to the probability measure dσj on R.

Conjecture 10 (SZ) Assume that H1 → σ1, H2 →
σ2. Then

FN(eH1, eH2|A) → F (σ1, σ2|A)

:= S(σ1, σ2|A)

−1
2

∫
R

∫
R log |x− y|dσ1(x)dσ1(y)

−1
2

∫
R

∫
R log |x− y|dσ12(x)dσ2(y)

where S is the classical action corresponding

to the Hopf equation.
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Idea

According to a theorem of I. B. Frenkel, the

central heat kernel may be expressed as a spher-

ical integral for the loop-group LU(N):

(16)

ZN(A, eTh, eTk) =
∫
CG(O

eTh)
e−

1
t 〈g−1g′,k〉dwt

G,O
eTh

(g).

This suggests using the large deviations method

of Guionnet-Zeitouni for such spherical inte-

grals. If so, one needs to consider Brownian

motion on the loop algebra Lu(N).
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