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Statistical algebraic geometry

We are interested in asymptotic geometry as

the degree N →∞ of zeros of polynomial sys-

tems 



p1(z1, . . . , zm) = 0

p2(z1, . . . , zm) = 0
...
pk(z1, . . . , zm) = 0.

We are interested both in complex (holomor-

phic) polynomials with cα ∈ C, z ∈ Cm and real

polynomials with cα ∈ R, x ∈ Rm.

More precisely, we are interested in the asymp-

totics as N → ∞ of statistical properties of

random polynomial systems.
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Statistical Algebraic Geometry (2)

• Statistical algebraic geometry: zeros of in-

dividual polynomials define algebraic vari-

eties. Instead of studying complexities of

all possible individual varieties, study the

expected (average) behaviour, the almost-

sure behaviour.

• There are statistical patterns in zeros and

critical points that one does not see by

studying individual varieties, which are of-

ten ‘outliers’.

• Our methods/results concern not just poly-

nomials, but holomorphic sections of any

positive line bundle over a Kähler manifold.
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Plan of talk

• Review the notion of ‘Gaussian random poly-

nomial’ and more generally ‘Gaussian ran-

dom section’.

• How are zeros of random holomorphic poly-

nomials distributed/correlated?

• What if the Newton polytopes are con-

strained?

• How do the results work for Gaussian ran-

dom real polynomials?

• Few proofs, mainly phenomenology of the

subject.
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Complex polynomials in m variables

Some background on polynomials in m com-
plex variables:

z = (z1, . . . , zm) ∈ Cm.

• Monomials: χα(z) = z
α1
1 · · · zαm

m , α ∈ Nm.

• Polynomial of degree p (complex, holomor-
phic, not necessarily homogeneous):

f(z1, . . . , zm) =
∑

α∈Nm:|α|≤p

cαχα(z1, . . . , zm).

• Homogenize to degree p: introduce new
variable z0 and put:

χ̂α(z0, z1 . . . , zm) = z
p−|α|
0 z

α1
1 · · · zαm

m .

We write F = f̂α(z0, z1 . . . , zm) for the ho-
mogenized f .
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Random SU(m + 1) complex poly-
nomials

Definition: Pm
N : = complex polynomials

f(z1, . . . , zm) =
∑

α∈Nm:|α|≤N

cαz
α1
1 · · · zαm

m ,

of degree N in m complex variables with cα ∈ C.

Random polynomial: a probability measure on

the coefficients λα.

Gaussian random:

f =
∑
|α|≤N λα

√(
N
α

)
zα,

E(λα) = 0, E(λαλβ) = δαβ.

In coordinates λα:

dγp(f) =
1

πkN
e−|λ|

2
dλ on Pm

N .
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Gaussian measure versus inner prod-
uct

The Gaussian measure above comes from the

Fubini-Study inner product on the space PCN of

polynomials of degree N . Indeed,

||zα||FS =
(N

α

)−1/2
, 〈zα, zβ〉 = 0, α 6= β.

Namely, let F (z0, . . . , zm) = zN
0 f(z′/z0) homog-

enize f . Then

||f ||2FS =
∫
S2m+1 |F |2 dσ , (Haar measure).

Thus, the same ensemble could be written:

f =
∑
|α|≤N λα

zα

||zα||FS
,

E(λα) = 0, E(λαλβ) = δαβ.
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Why the Fubini-Study SU(m + 1)-
ensemble?

One could use any inner product in defining a

Gaussian measure: Write

s =
∑

j

cjSj, 〈Sj, Sk〉 = δjk

with E(cj) = 0 = E(cjck), E(cjck) = δjk.

We use the Fubini-Study because the expected

distribution of zeros (or critical points etc.)

of ‘typical’ polynomials become uniform over

CPm. Thus, the ensemble is natural for projec-

tive geometry. Taking
∑

cαzα with cα normal

biases the zeros towards the torus |zj| = 1.
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Random real O(m + 1) polynomials

We now consider the same problems for real
polynomials.

Let Poly(NΣ)R be the space of real polynomi-
als

p(x) =
∑

|α|≤N

cαχα(x), χα(x) = xα, x ∈ Rm, α ∈ NΣ

of degree N in m real variables with real coef-
ficients. Define the inner product

〈χα, χβ〉 = δα,β
1(
N
α

).

Define a random polynomial in the O(m + 1)
ensemble as

f =
∑
|α|≤N λα

√(
N
α

)
xα,

E(λα) = 0, E(λαλβ) = δαβ.
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Why O(m + 1)?

If we homogenize the polynomials Poly(NΣ),

we obtain a representation of O(m + 1). The

invariant inner product is

〈P, Q〉 := P (D)Q̄(0) =
∫

Rn
P (2πiξ) ¯̂Q(ξ)dξ,

where P (D) is the constant coefficient differ-

ential operator defined by the Fourier multiplier

P (2πiξ).

We may regard the zeros as points of RPm.

The expected distribution of zeros will be uni-

form there w.r.t. the natural volume form.
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Random holomorphic sections

For geometers: The complex polynomial en-

semble can be defined for any positive holo-

morphic line bundle L → M over any Kähler

manifold.

Recall: Pm
p ' H0(CPm,O(p)) (holomorphic sec-

tions on the Nth power of the hyperplane sec-

tion bundle).

More generally: define Gaussian holomorphic

sections s ∈ H0(M, LN) of powers of any posi-

tive line bundle over any Kähler manifold (M, ω):

s =
∑

j

cjSj, 〈Sj, Sk〉 = δjk

with E(cj) = 0 = E(cjck), E(cjck) = δjk. [〈, 〉
= inner product on H0(M, LN) using unique

hermitian metric h of curvature form ω.]
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How are zeros distributed? Corre-
lated?

• Problem 1: How are the simultaneous ze-

ros Zs = {z : s1(z) = · · · = sm(z) = 0} of

a m-tuple s = (s1, . . . , sm) of independent

random polynomials (holomorphic sections)

distributed?

• Problem 2 How are the zeros correlated?

For a full system of m equations in m un-

kowns, the simultaneous zeros form a dis-

crete set. Do zeros repel each other like

charged particles? Or behave independently

like particles of an ideal gas? Or attract

like gravitating particles?
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Definition of ‘distribution of zeros’

Since the zeros of a full system of m polynomi-

als in m variables form a discrete set, we define

distribution of zeros of the system (f1, . . . , fm)

by

Zf1,...,fm =
∑

{zj:f1(zj)=···=fm(zj)=0

δzj .

Here, δ(z) is the Dirac point mass at z. I.e.∫
ψδ(z) = ψ(z).

Note that Zf1,...,fm is not normalized, i.e. its

mass is the number of zeros.
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Expected zero distributions: Defi-
nition

We denote the expected distribution of the si-

multaneous zeros of a random system of m

polynomials by EN(Zf1,...,fm, ϕ). It is the av-

erage value of the measure (Zf1,...,fm, ϕ) w.r.t.

f .

We have:

EN(Zf1,...,fm)(U) =
∫

dγp(f1) · · ·
∫

dγp(fm)

×
[
#{z ∈ U : f1(z) = · · · = fm(z) = 0}

]
,

for U ⊂ C∗m, where the integrals

are over PCN .

Similarly for any other complex phase space,

or for real polynomials.
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Expected distribution of zeros in the
SU(m + 1) and O(m + 1) ensembles

• SU(m+1) ensemble: E(Zf) = Nm

V ol(CPm)dV olCPm.
It is a volume form on CPm invariant un-
der SU(m+1), so is a constant multiple of
the invariant volume form. The constant
is determined by integrating, which gives
the expected number of zeros. This must
equal the Bezout number Nm, the product
of the degrees of the fj’s.

• O(m+1) ensemble: E(Zf) = Nm/2

V ol(RPm)dV olRPm.
For the same reason, it must be a constant
multiple of the invariant volume form. But
this time the number of zeros is a random
variable. Shub-Smale (1995) showed that
the expected number of zeros is the square
root of the Bezout number for complex
roots.
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Expected distribution of zeros on a
general Kähler manifold

Less obvious: same result is true asymptoti-

cally on any Kähler manifold.

Theorem 1 (Shiffman-Z) We have:

1

(N)m
EN(Zf1,...,fm) → ωm

in the sense of weak convergence; i.e., for any

open U ⊂ M , we have

1
(N)mEN

(
#{z ∈ U : f1(z) = · · · = fm(z) = 0}

)

→ m!Volω(U) .

Zeros concentrate in curved regions. Curva-

ture causes sections to oscillate and hence ze-

ros to occur.
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Correlations between zeros

Expected distribution of zeros is uniform, but

zeros are not thrown down independently; they

are “correlated”:

Definition: The 2 point correlation function

of k sections of degree N in m variables is:

KN
2m(z1, z2) = E(|Z(s1,...,sm)|2),

= the probability density of finding a pair of

simultaneous zeros at z1, z2

= conditional probability of finding a second

zero at z2 if there is a zero at z1. Here,

|Z(s1,...,sm)|2 = |Z(s1,...,sm)| × |Z(s1,...,sm)|
is product measure on

M2 = {(z1, z2) ∈ M2 : z1 6= z2} .
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Scaling limit of correlation functions
As the degree N increases, the density of ze-

ros increases. If we scale by a factor
√

N , the

expected density of zeros stays constant. We

now scale to keep the density constant.

Fix z0 ∈ M and consider the pattern of zeros in

a small ball B(z0, 1√
N

). We fix local coordinates

z for which z0 = 0 and rescale the correlation

function by
√

N . In the limit we obtain the

2-point scaling limit zero correlation function

(1)

K∞
2km(z1, z2)

= limN→∞
(
cmNk

)−2
KN

2m

(
z1√
N

, z2√
N

)
.
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Universality of the scaling limit

Theorem 1 (Bleher-Shiffman-Z) The scaling limit

pair correlation functions K∞
2m(z1, z2) are uni-

versal, i.e. independent of M, L, ω.

The universal limit correlation function is the

two-point correlation function for the Gaussian

‘Heisenberg ensemble’, namely H2(Cm, e−|z|2).
The trivial bundle Cm × C → Cm with curva-

ture dz ∧ dz̄ is local model for all positive line

bundles.
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Fast decay of correlations

Universal scaling limit pair correlation function

= function

K∞
2km(z1, z2) = κkm(|z1 − z2|)

of distance between points. Very short range

even on length scale r√
N

.

Theorem 2 (BSZ) κkm(r) = 1+O(r4e−r2), r →
+∞.

κ ≡ 1 for independent random points (’ideal

gas’).
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Small distance behavior

(In the real case, replace r by
√

r)

Theorem 3 (Bleher-Shiffman-Z, 2001):

κmm(r) =





m+1
4 r4−2m + O(r8−2m) , as r → 0,

1 + O(r4e−r2), r → +∞.

• When m = 1, κmm(r) → 0 as r → 0 and one
has “zero repulsion.”

• When m = 2, κmm(r) → 3/4 as r → 0 and
one has a kind of neutrality.

• With m ≥ 3, κmm(r) ↗ ∞ as r → 0 and
zeros attract (or ‘clump together’): One
is more likely to find a zero at a small dis-
tance r from another zero than at a small
distance r from a given point.
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Discriminant variety

One can understand this dimensional depen-

dence heuristically in terms of the geometry of

the discriminant varieties Dm
N ⊂ H0(M, LN)m of

systems S = (s1, . . . , sm) of m sections with a

‘double zero’. The ‘separation number’ sep(F )

of a system is the minimal distance between a

pair of its zeros. Since the nearest element

of Dm
N to F is likely to have a simple dou-

ble zero, one expects: sep(F ) ∼
√

dist(F,Dm
N).

Now,the degree of Dm
N is approximately Nm.

Hence, the tube (Dm
N)ε of radius ε contains a

volume ∼ ε2Nm. When ε ∼ N−m/2, the tube

should cover PH0(M, LN). Hence, any section

should have a pair of zeros whose separation

is ∼ N−m/4 apart. It is clear that this separa-

tion is larger than, equal to or less than N−1/2

accordingly as m = 1, m = 2, m ≥ 3.
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Polynomials with fixed Newton poly-
tope

We now ask: how is the distribution of zeros

affected by the Newton polytope of a polyno-

mial? How about the mass density? Critical

points?

The Newton polytope Pf of a polynomial

f(z) =
∑

|α|≤N

cα zα on Cm

is the convex hull of its support Sf = {α ∈ Zm :

cα 6= 0}.

Similarly for Rm.
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Counting zeros of complex polyno-
mials: Bezout and Bernstein-Kouchnirenko
theorems

• Bezout’s theorem: m generic homoge-
neous polynomials F1, . . . , Fm of degree p
have exactly pm simultaneous zeros; these
zeros all lie in C∗m, for generic Fj.

• Bernstein-Kouchnirenko Theorem The
number of joint zeros in C∗m of m generic
polynomials {f1, . . . , fm} with given Newton
polytope P equals m!Vol(P ).

• More generally, the fj may have different
Newton polytopes Pj; then, the number of
zeros equals the ‘mixed volume’ of the Pj.

Consistency: If P = pΣ, where Σ is the stan-
dard unit simplex in Rm, then Vol(pΣ) = pmVol(Σ) =
pm

m!, and we get Bézout’s theorem.
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Themes

The Newton polytopes of a polynomial system

f1, . . . , fm also have a crucial influence on the

spatial distribution of zeros {f1 = · · · = fm =

0} and critical points {df = 0}.

• (i) There is a classically allowed region

AP = µ−1
Σ (

1

p
P )

region where the zeros or critical points

concentrate with high probability and its

complement, the classically forbidden re-

gion where they are usually sparse.

Here,

µΣ(z) =

( |z1|2
1 + ‖z‖2, . . . ,

|zm|2
1 + ‖z‖2

)

is the moment map of CPm.
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Asymptotic and Statistical

These results are statisctical and asymptotic:

• Not all polynomials f ∈ Pm
P have this be-

haviour; but typical ones. We will endow

Pm
P with a Gaussian probability measure,

and show that the above patterns form the

expected behaviour of random polynomi-

als.

• The variance is small compared to the ex-

pected value: i.e. the statistics are ‘self-

averaging’ in the limit N → ∞. Here, as

N →∞, we dilate P → NP .
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Random polynomials with Pf ⊂ P

Definition of the ensemble: Let Poly(P ) de-

note the space of polynomials with Pf ⊂ P .

Endow Poly(P ) with the conditional probability

measure γp|P :

(2)

dγp|P (s) =
1

π#P
e−|λ|

2
dλ, s =

∑

α∈P

λα
zα

‖zα‖ ,

where the coefficients λα = independent com-

plex Gaussian random variables with mean zero

and variance one. Denote conditional expec-

tation by E|P .
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Asymptotics of expected distribu-
tion of zeros

Let E|P (Zf1,...,fm) = expected distribution of

simultaneous zeros of (f1, . . . , fm), chosen in-

dependently from Poly(P ). We will determine

the asymptotics of the expected density as the

polytope is dilated P → NP, N ∈ N.

Theorem 4 (Shiffman-Z) Suppose that P is a

simple polytope in Rm. Then, as P is dilated

to NP ,

1

(Np)m
E|NP (Zf1,...,fm) →





ωm
FS

on AP

0 on C∗m\AP

.

Thus, the simultaneous zeros of m polynomials

with Newton polytope P concentrate in the

allowed region and are uniform there, giving a

quantitative BK result.
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Asymptotics of expected distribu-
tion of critical points (from jt. work
w/ M. Douglas

Take one random polynomial f ∈ poly(NP ) and

consider its distribution of critical points:

∂f(z0)

∂z1
= · · · = ∂f(z0)

∂z1
= 0.

The polynomials ∂f(z0)
∂zj

are of course far from

independent! Let Cf =
∑

zj:∇f(zj)=0 δ(zj).

Let E|P (Cf) = expected distribution of critical

points of f ∈ poly(NP ).

Theorem 5 (B. Shiffman-Z) Suppose that P is

a simple polytope in Rm. Then, as P is dilated

to NP ,

1

(Np)m
E|NP (Cf) →





ωm
FS

on AP

0 on C∗m\AP

.
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Mass asymptotics

A key ingredient is the mass asymtotics of ran-

dom sections:

Theorem 6

EνNP

(
|f(z)|2

FS

)
∼





ωm

Vol(P ) + O(N−1),

for z ∈ AP = µ−1(1
pP ◦)

N−s/2e−Nb(z)
[
cF
0 (z) + O(N−1)

]
,

for z ∈ (C∗)m\AP

where cF
0 and b|R◦F are positive.

b is a kind of Agmon distance, giving decay of

ground states away from the classically allowed

region.
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Results on random real polynomial
systems with fixed Newton polytope

The analogous result for the expected num-

ber of real roots and the density of real roots

forn the conditional O(m+1) ensemble, where

we constrain all polynomials to have Newton

polytope P :

Theorem 7 (Shiffman-Zelditch, May 1, 2003)

ENP (Zf1,...,fm)(x) =





amNm/2, x ∈ AP

O(N(m−1)/2), x ∈ RPm\AP .

,

where am = V olRPm(AP ). The coefficient am

is NOT the square root of the BKK number

of complex roots.
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Ideas and Methods of Proofs

• For each ensemble, we define the two-point
function

ΠN(z, w) = EN(f(z)f(w)).

It is the Bergman-Szegö (reproducing) ker-
nel for the inner product space of polyno-
mials or sections of degree N .

• All densities and correlation functions for
zeros may be expressed in terms of the
joint probability density (JPD) of the ran-
dom variables X(f) = f(z0),Ξ(f) = df(z0).
For critical points, we also need Hf(z0) =
Hessianf(z0).

• For Gaussian ensembles, the JPD is a Gaus-
sian with covariance matrix depending only
on ΠN(z, w) and its derivatives.
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Bergman-Szegö kernels

More precisely:

• Expected distribution of zeros: EN(Zf) =√−1
2π ∂∂̄ logΠN(z, z) + ω.

• Joint probability distribution (JPD)

DN(x1, . . . , xn; ξ1, . . . , ξn; z1, . . . , zn) of ran-

dom variables xj(s) = s(zj), ξj(s) = ∇s(zj),

= function of ΠN and derivatives.

• Correlation functions in terms of JPD

KN(z1, . . . , zn) =
∫

DN(0, ξ, z)
n∏

j=1

(
‖ξj‖2dξj

)
dξ.
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Scaling asymptotics

Scaling asymptotics of correlation functions re-

duces to scaling asymptotics of ΠN . Here is

the result for H0(M, LN):

Theorem 8 (BShZ) In ‘normal coordinates’ {zj}
at P0 ∈ M and in a ‘preferred’ local frame for

L:

πm

NmΠN(P0 + u√
N

, θ
N ;P0 + v√

N
, ϕ
N )

∼ ei(θ−ϕ)+u·v̄−1
2(|u|2+|v|2)

[
1 + b1(u, v)N−1

2 + · · ·
]
.

Note: ei(θ−ϕ)+u·v̄−1
2(|u|2+|v|2) = Bergman-Szegö

kernel of Heisenberg group.

Proof based on Boutet de Monvel -Sjostrand

parametrix for the ΠN .
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Fixed Newton polytope

This requires (exponentially decaying) asymp-

totics of the conditional Bergman- Szegö ker-

nel

Π|NP (z, w) =
∑

α∈NP

zαwα

||zα||FS||wα||FS
.

This projection sifts out terms with α ∈ P from

the simple Szegö projector of CPm.

We need asymptotics of Π|NP (z, w). For this

we use the Khovanskii-Pukhlikov (Brion-Vergne,

Guillemin) Euler MacLaurin sum formula.
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Final remarks and open problems

• What happens in other Gaussian ensem-

bles? Or more general ensembles?

• Distribution of zeros of random fewnomial

systems (real or complex)? Expected num-

ber of zeros of random real fewnomial sys-

tems and comparison to Khovanskii’s bound.

• Geometric quantities of random real poly-

nomials: average Betti numbers, number

of components, etc.
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