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Statistical algebraic geometry

We are interested in asymptotic geometry as

the degree N →∞ of zeros of polynomial sys-

tems 



p1(z1, . . . , zm) = 0

p2(z1, . . . , zm) = 0
...
pk(z1, . . . , zm) = 0.

We are interested both in complex (holomor-

phic) polynomials with cα ∈ C, z ∈ Cm and real

polynomials with cα ∈ R, x ∈ Rm.

More precisely, we are interested in the asymp-

totics as N → ∞ of statistical properties of

random polynomial systems.
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Statistical Algebraic Geometry (2)

• Statistical algebraic geometry: zeros of in-

dividual polynomials define algebraic vari-

eties. Instead of studying complexities of

all possible individual varieties, study the

expected (average) behaviour, the almost-

sure behaviour.

• There are statistical patterns in zeros and

critical points that one does not see by

studying individual varieties, which are of-

ten ‘outliers’.

• Our methods/results concern not just poly-

nomials, but holomorphic sections of any

positive line bundle over a Kähler manifold.
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Plan of talk

• Define ‘Gaussian random polynomial’ and

Gaussian random polynomial with constrained

spectra.

• Describe impact of the Newton polytope

on the expected distribution of random poly-

nomials with prescribed Newton polytope.

Application to amoebas.

• Impact of the spectrum on the distribution

of random complex fewnomials. Partial re-

sults on real fewnomials.

• Statements/pictures of results. Little dis-

cussion of proofs.
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Complex polynomials in m variables

Some background on polynomials in m com-
plex variables:

z = (z1, . . . , zm) ∈ Cm.

• Monomials: χα(z) = z
α1
1 · · · zαm

m , α ∈ Nm.

• Polynomial of degree p (complex, holomor-
phic, not necessarily homogeneous):

f(z1, . . . , zm) =
∑

α∈Nm:|α|≤p

cαχα(z1, . . . , zm).

• Homogenize to degree p: introduce new
variable z0 and put:

χ̂α(z0, z1 . . . , zm) = z
p−|α|
0 z

α1
1 · · · zαm

m .

We write F = f̂α(z0, z1 . . . , zm) for the ho-
mogenized f .
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Spectrum (support) and Newton poly-
tope

• The spectrum (= support) of a polynomial

p is the set S = Sp of exponents of its non-

zero monomials:

p(z) =
∑

α∈S

cαzα.

• Newton polytope ∆p of p is the convex hull

of Sp.
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Spaces of (complex) polynomials

• Space of polynomials with spectrum con-

tained in S is denoted by

Poly(S) = {p(z) =
∑

α∈S cαzα, S ⊂ Nm}.

• Space of polynomials with Newton poly-

tope ∆: P∆ = Poly(∆).

• Space of polynomials of degree N in m vari-

ables is denoted

Pm
N = Poly(NΣ) = {p(z) =

∑

|α|≤N

cαzα)},

where Σ ⊂ Rm
+ is the unit simplex and NΣ

denotes its dilate by N .
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Gaussian random SU(m + 1) com-
plex polynomials

Random polynomial: a probability measure on

the space Pm
N

Gaussian random:

f =
∑
|α|≤N λα

√(
N
α

)
zα,

E(λα) = 0, E(λαλβ) = δαβ.

In coordinates λα:

dγp(f) =
1

πkN
e−|λ|

2
dλ on Pm

N .
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Gaussian measure versus inner prod-
uct

The Gaussian measure above comes from the

Fubini-Study inner product on the space Pm
N of

polynomials of degree N . Indeed,

||zα||FS =
(N

α

)−1/2
, 〈zα, zβ〉 = 0, α 6= β.

Namely, let F (z0, . . . , zm) = zN
0 f(z′/z0) homog-

enize f . Then

||f ||2FS =
∫
S2m+1 |F |2 dσ , (Haar measure).

Thus, the same ensemble could be written:

f =
∑
|α|≤N λα

zα

||zα||FS
,

E(λα) = 0, E(λαλβ) = δαβ.
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Why the Fubini-Study SU(m + 1)-
ensemble?

One could use any inner product in defining a

Gaussian measure: Write

s =
∑

j

cjSj, 〈Sj, Sk〉 = δjk

with E(cj) = 0 = E(cjck), E(cjck) = δjk.

We use the Fubini-Study because the expected

distribution of zeros (or critical points etc.)

of ‘typical’ polynomials become uniform over

CPm. Thus, the ensemble is natural for projec-

tive geometry. Taking
∑

cαzα with cα normal

biases the zeros towards the torus |zj| = 1.
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‘Distribution of complex zeros’

Easiest to define for full systems of m polyno-

mials in m variables, since their simultaneous

zeros form a discrete set.

We define the distribution of zeros of a full

system (f1, . . . , fm) by

Zf1,...,fm =
∑

{zj:f1(zj)=···=fm(zj)=0

δzj .

Here, δ(z) is the Dirac point mass at z. I.e.∫
ψδ(z) = ψ(z).

Note that Zf1,...,fm is not normalized, i.e. its

mass is the number of zeros.
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Distribution of zeros

More generally, we define the ‘delta’ function

on the joint zero set of one or several polyno-

mials.

Given f1, . . . , fk, k ≤ m, put Zf1,...,fk
= {z ∈

(C∗)m : f1(z) = · · · = fk(z) = 0}. Zf1,...,fk
de-

fines a (k, k) current of integration:

〈ψ, Zf1,...,fk
〉 =

∫

Zf

ψ.

By Wirtinger’s formula, the integral of a scalar

function ϕ over Zf can be defined as

∫

Zf1,...,fk

ϕ
ωn−k

FS

(n− k)!
.
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Expected zero distributions
= density of zeros: Definition

It is the average EN(Zf1,...,fk
, ϕ) of the mea-

sures (Zf1,...,fk
, ϕ) over the ensemble of poly-

nomials f .

For a random full system of m polynomials by

EN(Zf1,...,fm, ϕ),e.g. we have:

EN(Zf1,...,fm)(U) =
∫

dγp(f1) · · ·
∫

dγp(fm)

×
[
#{z ∈ U : f1(z) = · · · = fm(z) = 0}

]
,

for U ⊂ C∗m, where the integrals

are over PCN .

The definition is analogous for systems of k

polynomials in m variables.
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Expected distribution of zeros in the
SU(m + 1) ensemble

• SU(m+1) ensemble: E(Zf) = Nm

V ol(CPm)dV olCPm.

It is a volume form on CPm invariant un-

der SU(m+1), so is a constant multiple of

the invariant volume form. The constant

is determined by integrating, which gives

the expected number of zeros. This must

equal the Bezout number Nm, the product

of the degrees of the fj’s.

• We now start to look at how constraining

the Newton polytope biases the distribu-

tion from uniformity.
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Polynomials with fixed Newton poly-
tope

We now ask: how is the distribution of zeros
affected by the Newton polytope ∆ of a poly-
nomial? Recall

• Bezout’s theorem: m generic homoge-
neous polynomials F1, . . . , Fm of degree p
have exactly pm simultaneous zeros; these
zeros all lie in C∗m, for generic Fj.

• Bernstein-Kouchnirenko Theorem The
number of joint zeros in C∗m of m generic
polynomials {f1, . . . , fm} with given Newton
polytope ∆ equals m!Vol(∆).

• More generally, the fj may have different
Newton polytopes ∆j; then, the number
of zeros equals the ‘mixed volume’ of the
∆j.
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Theme

The Newton polytopes ∆j of a polynomial sys-
tem f1, . . . , fm with ∆fj

= ∆j also have a cru-
cial influence on the spatial distribution of ze-
ros {f1 = · · · = fm = 0} and critical points
{df = 0}. For simplicity we assume ∆j = ∆:

• There is a classically allowed region

A∆ = µ−1
Σ (

1

p
∆)

region where the zeros or critical points
concentrate with high probability;

• in its complement, the classically forbidden
region, they are usually sparse.

Here,

µΣ(z) =

( |z1|2
1 + ‖z‖2, . . . ,

|zm|2
1 + ‖z‖2

)

is the moment map of CPm.
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Asymptotic and Statistical

These results are statistical and asymptotic:

• Not all polynomials f ∈ Pm
∆ have this be-

haviour; but typical ones. We will endow

Pm
∆ with a Gaussian probability measure,

and show that the above patterns form the

expected behaviour of random polynomi-

als.

• The variance is small compared to the ex-

pected value: i.e. the statistics are ‘self-

averaging’ in the limit N → ∞. Here, as

N →∞, we dilate ∆ → N∆.
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Random polynomials with ∆f ⊂ ∆

Definition of the ensemble: Let Poly(∆) de-

note the space of polynomials with ∆f ⊂ ∆.

Endow Poly(∆) with the conditional probabil-

ity measure γp|∆:

(1)

dγp|∆(s) =
1

π#∆
e−|λ|

2
dλ, s =

∑

α∈∆

λα
zα

‖zα‖ ,

where the coefficients λα = independent com-

plex Gaussian random variables with mean zero

and variance one. Denote conditional expec-

tation by E|∆.
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Asymptotics of expected distribu-
tion of zeros

Let E|∆(Zf1,...,fm) = expected distribution of

simultaneous zeros of (f1, . . . , fm), chosen in-

dependently from Poly(∆) = Pm
∆. We will de-

termine the asymptotics of the expected den-

sity as the polytope is dilated ∆ → N∆, N ∈ N.

Theorem 1 (Shiffman-Z) Suppose that ∆ is a

simple polytope in Rm. Then, as ∆ is dilated

to N∆,

1

(Np)m
E|N∆(Zf1,...,fm) →





ωm
FS

on A∆

0 on C∗m\A∆
.

Thus, the simultaneous zeros of m polynomials

with Newton polytope ∆ concentrate in the

allowed region and are uniform there, giving a

quantitative BK result.
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Zeros of one polynomial

Instead of m polynomials, we could consider
1 ≤ k < m polynomials. For each face F of ∆
let RF denote the flow-out of F w.r.t. the Rm

+
action.

Theorem 1 Let ∆ be a convex integral poly-
tope. Then there exists a closed semipositive
(1,1)-form ψ∆ on C∗m with piecewise C∞ co-
efficients such that:

i) N−1E|N∆(Zf) → ψ∆ in L1
loc(C

∗m).

ii) ψ∆ = pωFS on the classically allowed region
µ−1(1

p∆
◦).

iii) On each region R◦F , the (1,1)-form ψ∆ is
C∞ and has constant rank equal to dimF ;
in particular, if v ∈ Σ◦ is a vertex of 1

p∆,
then ψ∆|R◦v = 0.

20



Discussion

There is an explicit formula for ψ∆ in terms

of a function b∆(z) which (roughly) measures

the ‘distance’ of z to ∆. We only stated some

properties of ψ∆ for simplicity.

The expected volume of the simultaneous zero

set of k polynomials, has the following exotic

distribution law:

For any open set U ⊂⊂ C∗m,

1
NkE|N∆Vol(|Zf1,...,fk

| ∩ U)

→ 1
(m−k)!

∫
U ψ∆ ∧ · · · ∧ ψ∆ ∧ ωm−k

FS
.
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Application to 2D Amoebas and ten-
tacles

Let f(z1, z2) ∈ P2
∆. One defines:

Compact Amoeba of f = µΣ(Zf);

Amoeba of f = Log (Zf), where Log : C∗m →
Rm, is (z1, . . . , zm) 7→ (log |z1|, . . . , log |zm|).

Tentacles of Amoeba:= its ends on ∂Σ. For

a generic 2-D amoeba with polytope ∆, lattice

points in ∂∆ ⇐⇒ unbounded components of

the complement. Each tentacle corresponds to

a segment connecting 2 adjacent lattice points

on ∂∆. Hence # tentacles of A = #∂∆∩Z =

length of ∂∆.
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Free tentacles

We can decompose ∂∆ into two pieces:

∂◦∆ = ∂∆ ∩ pΣ◦, versus ∂e∆ = ∆ ∩ ∂(pΣ).

Tentacles corresponding to segments of ∂◦∆
end (in the compact picture Σ) at a vertex of

Σ, and tentacles corresponding to segments of

∂e∆ are free to end anywhere on the face of

Σ containing the segment. We call the latter

free tentacles.
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Classically allowed tentacles

We say that a free tentacle is a classically al-

lowed tentacle if its end is in the classically

allowed region A∆. For an amoeba A, we

let νAT(A) denote the number of classically al-

lowed tentacles of A. It is clear from the above

that

νAT(A) ≤ #{free tentacles} = Length(∂e∆)

and that this bound can be attained for any

polytope ∆. Here, ‘Length’ means the length

in the above sense; i.e., the diagonal face of pΣ

is scaled to have length p. Our result is that

the maximum is asymptotically the average:

Corollary 2 For a convex lattice polytope ∆,

we have

1

N
E|N∆

(
νAT

(
Log (Zf)

) )
→ Length(∂e∆) .
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Mass asymptotics

A key ingredient is the mass asymtotics of ran-

dom sections:

Theorem 3

EνN∆

(
|f(z)|2

FS

)
∼





ωm

Vol(P∆) + O(N−1),

for z ∈ A∆ = µ−1(1
p∆

◦)

N−s/2e−Nb(z)
[
cF
0 (z) + O(N−1)

]
,

for z ∈ (C∗)m\A∆

where cF
0 and b|R◦F are positive.

b is a kind of Agmon distance, giving decay of

ground states away from the classically allowed

region.
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Ideas and Methods of Proofs

• For each ensemble, we define the two-point
function

ΠN(z, w) = EN(f(z)f(w)).

It is the Bergman-Szegö (reproducing) ker-
nel for the inner product space of polyno-
mials or sections of degree N .

• All densities and correlation functions for
zeros may be expressed in terms of the
joint probability density (JPD) of the ran-
dom variables X(f) = f(z0),Ξ(f) = df(z0).
For critical points, we also need Hf(z0) =
Hessianf(z0).

• For Gaussian ensembles, the JPD is a Gaus-
sian with covariance matrix depending only
on ΠN(z, w) and its derivatives.

26



Bergman-Szegö kernels

More precisely:

• Expected distribution of zeros: EN(Zf) =√−1
2π ∂∂̄ logΠN(z, z) + ω.

• Joint probability distribution (JPD)

DN(x1, . . . , xn; ξ1, . . . , ξn; z1, . . . , zn) of ran-

dom variables xj(s) = s(zj), ξj(s) = ∇s(zj),

= function of ΠN and derivatives.

• Correlation functions in terms of JPD

KN(z1, . . . , zn) =
∫

DN(0, ξ, z)
n∏

j=1

(
‖ξj‖2dξj

)
dξ.
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Fixed Newton polytope

We need exponentially accurate asymptotics of

the conditional Bergman- Szegö kernel

Π|N∆(z, w) =
∑

α∈N∆

zαwα

||zα||FS||wα||FS
.

This projection sifts out terms with α ∈ ∆ from

the simple Szegö projector of CPm.

We need asymptotics of Π|N∆(z, w). For this

we use the Khovanskii-Pukhlikov (Brion-Vergne,

Guillemin) Euler MacLaurin sum formula.
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Non-convex polytopes and fewno-
mials

Our methods extend without much modifica-

tion to non-convex polytopes ∆, possibly with

empty interior. We could thus let ∆ = {α1, . . . , αf}
be some spectrum and consider its dilates N∆.

Poly(N∆) is then a space of fewnomials. The

density of zeros of polynomials in Poly(N∆) is

very singular as N →∞.

But rather than dilate one spectrum, we could

just randomly choose a spectrum with f el-

ements from NΣ. This gives a new theory–

random fewnomials. We describe some of our

work in progress, where we have fairly com-

plete results for random complex fewnomials.

Eventually, we would like to understand the

expected number of real zeros of random real

fewnomial systems.
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Fewnomials

Given S ⊂ Nm, we denote by |S| = #{α ∈ S}
the number of lattice points in S.

By the degree of S we mean the least N such

that S ⊂ NΣ, i.e. the maximum of the degrees

of the monomials in S.

Roughly speaking, p is a fewnomial if

|Sp|
deg p

<< 1.

If P = (p1, . . . , pk) and if

f = #{ monomials appearing in P}
We will refer to f as the fewnomial number of

the system.

We consider asymptotics when N → ∞ while

f = |S| is held fixed.
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Khovanskii’s theorem: preparation

We now state a basic result motivating our

work. Notation:

• P = (p1, . . . , pm) = system of m complex

polynomials on (C∗)m.

• U ⊂ Tm = open set of real m-torus Tm ⊂
(C∗)m.

• N(P, U) = number of zeros with arguments

lying in U .

• S(P, U) = N(P,Tm)V ol(U)/V ol(Tm).

N(P,Tm) = m!V (∆1, . . . ,∆m).
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Khovanskii’s theorem

|N(P, U)−S(P, U)| ≤ Π(U,∆1, . . . ,∆m)ϕ(m, f),

where ϕ(m, f) depends only on f, m and where

f = #{ monomials appearing in P}
and where Π(U,∆1, . . . ,∆m) is the smallest num-

ber of translates of ∆∗ required to cover the

boundary of U .

Khovanskii’s bound:

(2) ϕ(m, f) ≤ 2m2f(f−1)/2(m + 1)f .

Thus: arguments of the zeros of a fewno-

mial system are rather uniformly distributed in

the torus Tm, with an error bound determined

solely by the fewnomial number rather than by

their degrees N .
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Application: Real zeros of Real fewno-
mials

Let P = (p1, . . . , pm) denote a system of m

real polynomials on (R∗)m, and let NR(p) de-

note the number of real zeros of the polynomial

system The fewnomials result gives a bound

(3) |NR(P )| ≤ ϕ(m, f),

just in terms of the fewnomial number.

This bound is believed to be far from sharp.

What is the correct order of magnitude? Our

eventual goal is to find the expected value of

NR(P ) as one averages over all fewnomial sys-

tems with f fixed.
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The random fewnomial ensemble F(N, f)

To define a random system of k ≤ m fewnomi-

als of degree N :

• Fix the degree N and the numbers fj of

elements of each spectrum Sj ⊂ NΣ;

• Then choose the spectra Sj at random,

and then choose the coefficients cjα of p ∈
Poly(Sj) at random.

• We use counting measure for the spectra,

and the SU(m+1)-invariant Gaussian mea-

sure for the coefficients. Before defining

the ensemble precisely, we state our prob-

lems and results.

34



Expected density of zeros: Results
for one polynomial

Theorem 2 Let p be a random fewnomial of

fewnomial number f and of degree N . Then:

E Zp(z) ∼ NKf(z),

Kf(z) :=
∫
Σf Γf(λ, z)dλ1 · · · dλf , with

Γf(λ, z) = ∂z∂z minj=1,...,f [〈λ̂j, log λ̂j〉+ 〈log |z|, λ̂j〉].

Γf(λ, z) and Kf(z) are (1,1) currents on (C∗)m
z .

For fixed λ, the function

min
j=1,...,f

[〈λ̂j, log λ̂j〉+ 〈log |z|, λ̂j〉]

is piecewise linear in log |z|, so for each fixed

λ, Γf(λ, z) is supported on the ‘corner set’ of

the integrand in ρ = log |z| coordinates. Inte-

gration in λ smooths out this current.
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Density of zeros for systems

Using the independence of the polynomials in

a random system, we obtain a similar result for

the higher codimension case:

Theorem 3 Let (p1, . . . , pk) be a random fewno-

mial of k fewnomials with fewnomial numbers

(f1, . . . , fk) and of degree N in the free SU(m+

1) ensemble. Then:

ENZp1,...,pk(z) = Nk Kf ∧Kf ∧ · · · ∧Kf (ktimes)

=
∫
Σf1×···×Σfk

∧k
n=1 Γfn(λn, z)dλ.

For fixed λn,
∧k

n=1 Γfn(λn, ρ) is a current sup-

ported on the intersection of the corner sets of

the k factors. Also, dλ = Πk
n=1λ1

n · · · dλ
fn
n .
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Counting complex zeros in an open
set

Integrating the current gives the count of the

simeltaneous zeros in an open set Ω ⊂ (C∗)m

with smooth boundary for a random fewnomial

system of n fewnomials of fewnomial number

(f1, . . . , fm) and degree N . We denote this

number by N((f1, . . . , fm),Ω).

Corollary 4

EN((f1, . . . , fm),Ω) ∼ Nm ∫
Ω

∫
Σf1×···×Σfm

∧m
n=1 Γfn(λn, z)dλ.

This is averaging over possible ‘limit spectra’

the number of intersection points of the inter-

section of the m corner sets.
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Counting complex zeros with argu-
ments in an open set

The same formula gives the number of simul-

taneous zeros with arguments in an open set

U ⊂ Tm. Indeed, the volume form depends

only on the modulus |z| = eρ of the zeros.

Corollary 5

EF(N,f)Narg((f1, . . . , fm), U) ∼ CfNmV ol(U),

Cf =
∫
arg−1(U)

∫
Σf1×···×Σfm

∧k
n=1 Γfn(λn, ρ)dλ}.

Thus, as Khovanskii suggested, the expected

number Narg((f1, . . . , fm), U) of simultaneous

zeros with arguments in an open set U ⊂ Tm is

a multiple CfNmV ol(U) of the volume of U as

a subset of the torus. Obviously the expected

number of real roots is zero.
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Expected density of real zeros of
real fewnomial systems

The real case is still in progress. It is more

difficult because one must take derivatives first

and asymptotics second. And the asymptotics

have to change by Khovanskii’s theorem!

We define the ensembles Ff,N as in the com-

plex case, but conditioned from the O(N + 1)

polynomial ensemble.
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Random real O(m + 1) polynomials

Let us define the most symmetrical real en-
semble.

Let Poly(NΣ)R be the space of real polynomi-
als

p(x) =
∑

|α|≤N

cαχα(x), χα(x) = xα, x ∈ Rm, α ∈ NΣ

of degree N in m real variables with real coef-
ficients. Define the inner product

〈χα, χβ〉 = δα,β
1(
N
α

).

Define a random polynomial in the O(m + 1)
ensemble as

f =
∑
|α|≤N λα

√(
N
α

)
xα,

E(λα) = 0, E(λαλβ) = δαβ.
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Why O(m + 1)?

If we homogenize the polynomials Poly(NΣ),

we obtain a representation of O(m + 1). The

invariant inner product is

〈P, Q〉 := P (D)Q̄(0) =
∫

Rn
P (2πiξ) ¯̂Q(ξ)dξ,

where P (D) is the constant coefficient differ-

ential operator defined by the Fourier multiplier

P (2πiξ).

We may regard the zeros as points of RPm.

The expected distribution of zeros will be uni-

form there w.r.t. the natural volume form.
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Expected distribution of zeros in the
O(m + 1) ensemble

• O(m+1) ensemble: E(Zf) = Nm/2

V ol(RPm)dV olRPm.

For the same reason, it must be a constant

multiple of the invariant volume form. But

this time the number of zeros is a random

variable. Shub-Smale (1995) showed that

the expected number of zeros is the square

root of the Bezout number for complex

roots.
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Results on random real polynomial
systems with fixed Newton polytope

The analogous result for the expected num-

ber of real roots and the density of real roots

forn the conditional O(m+1) ensemble, where

we constrain all polynomials to have Newton

polytope P :

Theorem 6 (Shiffman-Zelditch, May 1, 2003)

EN∆(Zf1,...,fm)(x) =





amNm/2, x ∈ A∆

O(N(m−1)/2), x ∈ RPm\A∆.

,

where am = V olRPm(A∆). The coefficient am

is NOT the square root of the BKK number

of complex roots.
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Result

A preliminary result:

Proposition 7 We have:

KN
f (x) = 1

πknm
Q

|S(N,f)

∑
S∈S(N,f)

√
det∇x∇y logΠN |S(x,y)|x=y

[
√

ΠN |S(x,x)]m
,

where Q :=
∫
Rm |ξ| exp (−〈ξ, ξ〉) dξ, and where

ΠN |S is the Szegö kernel for the spectrum S

ΠN |S(x, y) =
∑

β∈S

(N

β

)
xβyβ.
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