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Our Topic

A fundamental invariant associated to a poly-

nomial f is its Newton polytope Pf . This talk

is about the impact of Pf on

• The distribution of zeros of f or of several

polynomials with the same polytope;

• The distribution of mass |f(z)|2dV ;

• The distribution of critical points of f ;

• The positions of the ‘tentacles’ of the ‘amoeba’

associated to f .

We begin by recalling some basic definitions

and results about polynomials and polytopes.
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Polynomials and their Newton poly-
topes

• Monomials: χα(z) = z
α1
1 · · · zαm

m , α ∈ Nm.

• Polynomial of degree p (complex, holomor-
phic, not necessarily homogeneous):

f(z1, . . . , zm) =
∑

α∈Nm:|α|≤p

cαχα(z1, . . . , zm).

• Support of f

Sf = {α ∈ Nm : cα 6= 0},

• Newton polytope Pf

Pf := Ŝf = the convex hull in Rm of Sf .

• We denote by Pm
P the space of polynomials

f in m variables with Pf ⊂ P.
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Convex integral polytopes

By a convex integral polytope we mean the
convex hull of a finite number of lattice points
α1, . . . , αd ∈ Nm.

A convex integral polytope P with n facets (i.e.
codimension-one faces) can be defined by lin-
ear equations

`i(x) := 〈x, ui〉+ ai ≥ 0, (i = 1, . . . , n),

where ui ∈ Zm is the primitive interior normal
to the i-th facet. The polytope P is called
Delzant if each vertex is the intersection of
exactly m facets whose primitive normal vec-
tors generate the lattice Zm.

The Newton polynomial of a typical polyno-
mial of degree p is the simplex pΣ in Rm with
vertices at (0, . . . ,0), (1,0, . . . ,0),
(0,1, . . . ,0), . . . , (0, . . . ,0,1).

By Vol(P ) we denote the Euclidean volume of
P .
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Counting zeros of polynomials: Be-
zout and Bernstein-Kouchnirenko the-
orems

• Bezout’s theorem: m generic homoge-
neous polynomials F1, . . . , Fm of degree p
have exactly pm simultaneous zeros; these
zeros all lie in C∗m, for generic Fj.

• Bernstein-Kouchnirenko Theorem The
number of joint zeros in C∗m of m generic
polynomials {f1, . . . , fm} with given Newton
polytope P equals m!Vol(P ).

• More generally, the fj may have different
Newton polytopes Pj; then, the number of
zeros equals the ‘mixed volume’ of the Pj.

Consistency: If P = pΣ, where Σ is the stan-
dard unit simplex in Rm, then Vol(pΣ) = pmVol(Σ) =
pm

m!, and we get Bézout’s theorem.
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Theme of talk

The Newton polytope of a polynomial f also
has a crucial influence on its mass density |f(z)|2dV ,
and on the spatial distribution of zeros {f = 0}
and critical points {df = 0}.

• (i) There is a classically allowed region

AP = µ−1
Σ (

1

p
P )

region where the mass almost surely con-
centrates and a classically forbidden region
where it almost surely is exponentially de-
caying. Here, µΣ is the standard moment
map of CPm, restricted to (C∗)m.

• (ii) The simultaneous zeros of m generic
polynomials f1, . . . , fm in C∗m almost surely
concentrates (in the limit of high degrees)
in the classically allowed region (a quanti-
tative Bernstein-Kouchnirenko theorem).
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Theme of talk (cont.)

• (iii) The Newton polytope has an equally

strong (though different) impact for k < m

polynomials f1, . . . , fk. For instance, when

k = 1, the image µΣ(Zf) of the zero set of

one polynomial f under the moment map

is (up to a logarithmic re-parametrization)

known as an amoeba. Our results show

that the ‘free tentacles’ of typical amoebas

have their ends in the classically allowed

region.

• (iv) (Work in progress) The critical points

of f with Newton polytope P almost surely

concentrate in the classically allowed re-

gion AP .
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Allowed and Forbidden regions

µΣ(z) =

( |z1|2
1 + ‖z‖2, . . . ,

|zm|2
1 + ‖z‖2

)
.

Via this moment map we define:

Definition: Let P ⊂ Rm
+ be an integral poly-

tope. The classically allowed region for poly-

nomials in H0(CPm,O(p), P ) is the set

AP := µ−1
Σ

(
1

p
P ◦

)
⊂ C∗m

(where P ◦ denotes the interior of P ), and the

classically forbidden region is its complement

C∗m \ AP .
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Asymptotic and Statistical

Our results are:

• Statistical: Not all polynomials f ∈ Pm
P

have this behaviour; but typical ones do in

the probabilistic sense. We will endow Pm
P

with a Gaussian probability measure, and

show that the above patterns form the ex-

pected behaviour of random polynomials.

With more work, we can also show that

the patterns are true of ‘almost every’ se-

quence of polynomials fN ∈ Pm
NP .

• Asymptotic: the results become more and

more accurate as the degree → ∞. More

precisely, we consider statistics of f ∈ Pm
NP

as N →∞, where NP is the dilate of P .
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Motivation to study asymptotic sta-
tistical patterns

• Polynomials exhibit a wide variety of be-
haviour vis a vis zeros, critical points, etc.
Some patterns in their zeros and critical
points are deterministic (e.g.one knows that
certain tentacles of amoebas must land at
vertices), but others are random and one
wants to know the pattern of typical be-
haviour.

• Roughly, the degree of a polynomial is a
measure of its ‘complexity’. (More pre-
cisely, complexity is measured by the num-
ber of its monomials (Khovanskii)). High
degree asymptotics are those in which the
complexity of the polynomials grows. What
becomes of zeros, critical points, topology
of level sets, Lp norms (etc.) as the de-
gree grows? Asymptotics with P → NP is
a controlled increase in complexity.
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Pm and Pm
P

We now define probability measure on Pm and
Pm

P . The simplest are the Gaussian measures,
which only require an inner product. To de-
fine them, we homogenize the polynomials on
(C∗)m so that homogeneous polynomials F of
degree p in m+1 complex variables. This iden-
tifies:

• Pm = H0(CPm,O(p)), the space of holo-
morphic sections of the pth power of the
hyperplane line bundle OCPm(1). Equiv-
alently, they are CR functions on S2m+1

satisfying F (eiθx) = eipθF (x).

• Pm
P = H0(CPm,O(p), P ) = {F ∈ H0(CPm,O(p)) :

Pf ⊂ P}, the space of homogeneous poly-
nomials F of degree d whose associated in-
homogeneous form f(z1, . . . , zm) = F (1, z1, . . . , zm)
has Newton polytope Pf contained in P .
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Random SU(m + 1) polynomials

H0(CPm,O(p)) carries the SU(m+1)-invariant

inner product

〈F1, F̄2〉 =
∫

S2m+1
F1F̄2 dσ ,

where dσ is Haar measure on the (2m + 1)-

sphere S2m+1. An orthonormal basis of H0(CPm,O(p))

is given by
{
‖χα‖−1χα

}
|α|≤p

, where ‖·‖ denotes

the norm in H0(CPm,O(p)). (Note that ‖χα‖
depends on p.) The corresponding SU(m+1)-

invariant Gaussian measure γp is defined by

(1) dγp(s) =
1

πkp
e−|λ|

2
dλ, s =

∑

|α|≤p

λα
χα

‖χα‖
,

where kp = #{α : |α| ≤ p} =
(
m+p

p

)
. Thus,

the coefficients λα are independent complex

Gaussian random variables with mean zero and

variance one.
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Random polynomials with prescribed
Newton polytope

We then endow the space H0(CPm,O(p), P )

with the associated conditional probability mea-

sure γp|P :

(2)

dγp|P (s) =
1

π#P
e−|λ|

2
dλ, s =

∑

α∈P

λα
χα

‖χα‖
,

where the coefficients λα are again indepen-

dent complex Gaussian random variables with

mean zero and variance one. ( #P denotes

the cardinality of P ∩ Zm.) As a subspace of

H0(CPm,O(p)), H0(CPm,O(p), P ) inherits the

inner product 〈s1, s2〉 and γ|P is the induced

Gaussian measure. Probabilities (or expecta-

tions) relative to γ|P can be considered as con-

ditional probabilities; i.e. for any event E,

Probγ{f ∈ E|Pf = P} = Probγ|P (E).
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Expected Mass density

Theorem Suppose that P is a Delzant

polytope in Rm. Then the expected

mass density of random L2 normalized

polynomials with Newton polytope NP

has C∞ asymptotic expansions of the

form: EνNP

(
|f(z)|2

FS

)

∼




∏m
j=1(pN+j)

#(NP ) , for z ∈ AP = µ−1
Σ (1pP ◦)

N−s/2e−Nb(z)cF
N(z), for z ∈ R◦F

where b|R◦F > 0, cF
N(z) = c0 + c1N−1 +

c2N−2+ · · · , and s = codimF (for each

face F ⊂ Σ◦).
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Ground state geometry

Ground states of Schrodinger opera-

tors Hh = −~2∆+V of energy E0 con-

centrate in the allowed region {x : V (x) ≤
E0} and satisfy |ϕ(x)|2 = O(e−d(x,CE)/~)

in the complement. Here, d(x, CE) is

the action to the allowed region.

In our setting, the Hamiltonian is ∂̄∗∂̄
on L2-sections of powers O(Np) of the

hyperplane section bundle, ~ = 1/N ,

and the ground states are the holomor-

phic sections H0(CPm,O(p), P ).
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Action to allowed region

For H0(CPm,O(p), P ), b is C1 (but not

C2) on all of C∗m. Our formula for b is,

for z ∈ C∗m \ AP :

(3)

b(z) =
∫ τz

0

[
q(eσ/2 · z)− pµΣ(eσ/2 · z)

]
·dσ

(for any path in Rm from 0 to τz).

Here, we associate to z ∈ C∗m \ AP

a unique point ξ ∈ ∂AP of the form

ξ = eτ/2 · z, where −τ is in the (real)

normal cone to the convex set P at the

point pµΣ(ξ) ∈ ∂P . We write τz = τ ,

q(z) = pµΣ(ξ).
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Distribution of zeros

We first define ‘delta’ functions on zero sets

of one or several polynomials.

Given f1, . . . , fk, k ≤ m, put Zf1,...,fk
= {z ∈

(C∗)m : f1(z) = · · · = fk(z) = 0}. Zf1,...,fk
de-

fines a (k, k) current of integration:

〈ψ, Zf1,...,fk
〉 =

∫

Zf

ψ.

By Wirtinger’s formula, the integral of a scalar

function ϕ over Zf can be defined as

∫

Zf1,...,fk

ϕ
ωn−k

FS

(n− k)!
.
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Expected zero current: Definition

Now consider m independent random polyno-

mials with Newton polytope P , using the con-

ditional probability dγp|P . We let E|P (Zf1,...,fm)

denote the expected density of their simulta-

neous zeros. It is the measure on C∗m given

by

E|P (Zf1,...,fm)(U) =
∫

dγp|P (f1) · · ·
∫

dγp|P (fm)

×
[
#{z ∈ U : f1(z) = · · · = fm(z) = 0}

]
,

for U ⊂ C∗m, where the integrals

are over H0(CPm,O(p), P ).
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Expected distribution of zeros

Theorem 1 Suppose that P is a Delzant poly-

tope in Rm. Then

1

(Np)m
E|NP (Zf1,...,fm) →





ωm
FS

on AP

0 on C∗m \ AP

,

in the distribution sense; i.e., for any open U ⊂
C∗m, we have

1
(Np)mE|NP

(
#{z ∈ U : f1(z) = · · · = fm(z) = 0}

)

→ m!VolCPm(U ∩ AP ) .

Convergence on the classically allowed region

is exponentially fast in the sense that

E|NP (Zf1,...,fm) = (Np)mωm
FS

+O
(
e−λN

)
on AP ,

for some positive continuous function λ on AP .
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Expected zeros of k ≤ m polynomi-
als

Theorem Let P be a Delzant polytope. Then

there exists a closed semipositive (1,1)-form

ψP on C∗m with piecewise C∞ coefficients such

that:

i) N−1E|NP (Zf) → ψP in L1
loc(C

∗m).

ii) ψP = pωFS on the classically allowed region

µ−1
Σ (1

pP ◦).

iii) On each region R◦F , the (1,1)-form ψP is

C∞ and has constant rank equal to dimF ;

in particular, if v ∈ Σ◦ is a vertex of 1
pP ,

then ψP |R◦v = 0.
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Theorem Let P1, . . . , Pk be Delzant polytopes.

Then

N−kE|NP1,...,NPk
(Zf1,...,fk

) → ψP1
∧· · ·∧ψPk

in L1
loc(C

∗m) , as N →∞ .

We see that |Zf | for a polynomial with polytope

NP almost surely creeps into the classically for-

bidden region µ−1
Σ (Σ \ 1

pP ) in the semiclassical

limit N → ∞. Indeed the expected volume of

the zero set, or more generally the simultane-

ous zero set of k polynomials, has the following

exotic distribution law:

Corollary 1 Let P1, . . . , Pk be Delzant polytopes.

Then for any open set U ⊂⊂ C∗m,

1

Nk
E|NP1,...,NPk

Vol(|Zf1,...,fk
|∩U) → 1

(m− k)!

∫

U
ψP1

∧· · ·∧ψPk
∧ωm−k

FS
.
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Amoebas

Let f(z1, z2) ∈ P2
P . One defines:

Compact Amoeba of f = µΣ(Zf);

Amoeba of f = Log (Zf), where Log : C∗m →
Rm, is (z1, . . . , zm) 7→ (log |z1|, . . . , log |zm|).

Tentacles of Amoeba: its ends on ∂Σ. For

a generic 2-dimensional amoeba with polytope

P , lattice points in ∂P ⇐⇒ tentacle. Hence

# tentacles of A = #∂P ∩ Z = length of ∂P .

We can decompose ∂P into two pieces: ∂◦P =

∂P ∩ pΣ◦ and ∂eP = P ∩ ∂(pΣ).

Each tentacle corresponds to a segment con-

necting 2 adjacent lattice points on ∂P . They

correspond to segments of ∂◦P end (in the

compact picture Σ) at a vertex of Σ, and ten-

tacles corresponding to segments of ∂eP are
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free to end anywhere on the face of Σ con-

taining the segment. We call the latter free

tentacles, and we say that a free tentacle is a

classically allowed tentacle if its end is in the

classically allowed region AP . For an amoeba

A, we let νAT(A) denote the number of clas-

sically allowed tentacles of A. It is clear from

the above that

νAT(A) ≤ #{free tentacles} = Length(∂eP )

and that this bound can be attained for any

polytope P . Here, ‘Length’ means the length

in the above sense; i.e., the diagonal face of pΣ

is scaled to have length p. Our result is that

the maximum is asymptotically the average:

Corollary 1 For a Delzant polytope P , we have

1

N
E|NP

(
νAT

(
Log (Zf)

) )
→ Length(∂eP ) .



Ideas of Proof

A key object is the conditional Szegö projector

Π|P (x, y) =
∑

α∈P

χ̂α(x)χ̂α(y)

||mα||2

of H0(CPm,O(p), P ). Its importance stems from:

• E|P
(
|f(z)|2

FS

)
= 1

#P Π|P (z, z);

• E|P (Zf) = 1
#P ∂̄∂ logΠ|P (z, z);

• E|P (Zf1,...,fk
) = [ 1

#P ∂̄∂ logΠ|P (z, z)]∧k;
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Szegö kernels, line bundles and cir-
cle bundles

The ‘Szegö kernel’ of a space S of holomorphic
sections of a line bundle L → M refers to the
kernel for the orthogonal projection to S from
the space of L2 sections.

For asymptotic analysis, it is best to lift sec-
tions, Szegö kernels etc. to the lined bundle
X = ∂D → M associated to L, i.e. boundary
of the associated unit disk bundle D relative
to a hermitian metric. Then Π is orthogo-
nal projection from space L2(∂D) of sections
to lifts of sections in S. It is of the form
Π(x, y) =

∑
j sj(x)sj(y), where {sj} is an or-

thonormal basis of S.

In the case M = CPm, L = O(p), X = S2m+1

and sections are just homogeneous polynomi-
als restricted to S2m+1. In this case,

ΠCP
m

p (x, y) = Cp
m〈x, y〉p.
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Conditional Szegö projector

We need the asymptotics of Π|NP (z, z) as N →
∞.

Put:

(4)

χNP (eiϕ) =
∑

α∈NP

ei〈α,ϕ〉 , eiϕ = (eiϕ1, . . . , eiϕm) .

It is the character of the torus Tm = {(eiϕ1, . . . , eiϕm)}
on H0(CPm,O(pN), NP ). Therefore:

(5) Π|NP (z, z) =
∫

Tm
ΠCP

m

Np (t · z, z)χNP (t)dt.

We have: ΠCP
m

Np (x, y) = C
Np
m 〈x, y〉Np. To ob-

tain asymptotics, we would like an oscillatory

integral formulae for χNP (eiϕ).
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Polytope character

There are several different approaches to χNP .

• Via the toric variety MP of P . It car-
ries a holomorhic line bundle LP such that
H0(CPm,O(Np), NP ) ≡ H0(MP , LN

P ). We

define ΠMP
N as the Szegö projector for H0(MP , LN

P ).
We then have:

χNP (eiϕ) =
∫

MP

ΠMP
N (eiϕ · w, w) dVolMP

(w).

• Lattice sum to integral approach. One
has (Khovanskii-Pukhlikov, Brion-Vergne,
Guillemin):

χP (eiϕ) = Todd(∂/∂h)

(∫

P (h)
ei〈x,ϕ〉dx

)∣∣∣∣∣
h=0

,

where P (h) = {x : 〈uj, x〉+ aj +hj ≥ 0, 1 ≤
j ≤ n}, and Todd(∂/∂h) is a certain infinite
order differential operator known as a Todd
operator.
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Exact formula for Szegö kernel ΠMP
N

of a toric variety

We will follow the Szegö kernel approach here.
We need a formula for ΠMP

N from which we can
obtain exponentially small asymptotics. The
key formula is:

ΠMP
N = (PQ)−1

N ΠN
1 .

Here, Π1(x, y) := 〈ιP (x), ιP (y)〉, where ιP : XP →
S2δ+1 is the lift of the monomial embedding
MP ↪→ CPδ which defines MP . Also, (PQ) is a
‘Fourier multiplier’ on MP defined by:

(i) The ‘partition function’ PN(α) = #{(β1, . . . , βN) :
βj ∈ P, β1 + · · ·+ βN = α}, where α ∈ NP.

(ii) The norming function:
QN(α) :=

∫
XP

|χ̂P
α(x)|2dVolXP

(x).

‘Fourier multiplier’ means an operator com-
muting with the Tm action.

27



Complex oscillatory integrals

To use the exact formula, one proves:

• (PQ) is an elliptic Toeplitz operator on

MP . Its inverse can be written ΠMP
N σNΠMP

N

for a symbol σN .

• Putting things together (and using the Boutet

de Monvel-Sjostrand parametrix): Π|NP (z, z)

=
1

(2π)m

∫

MP

∫

Tm
eNΨ(ϕ,w;z)aN(w) dϕ dVolMP

(w)

where the phase Ψ(ϕ, w; z)

= log
∑

α∈P

e−i〈α,ϕ〉|m̂P
α(w)|2+log

∑

|α|≤p

ei〈α,ϕ〉|m̂pΣ
α (z)|2 ,

aN(w) = (Np+m)!
(Np)! σN(w) is a symbol of or-

der 2m.
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Asymptotics

Using this oscillatory integral expression, we
find:

• The critical points occur only at ϕ = 0, µP (w) =
µpΣ(z), i.e. only in the allowed region. By
stationary phase (etc.) one derives mass
asymptotics.

• When z /∈ AP one must deform the Tm con-
tour until one picks up the critical points
with maximum < part on the contour. The
critical point equations are tricky and some-
times degenerate.

• Then methods of complex analysis (Poincare-
Lelong, Bedford-Taylor) give asymptotics
of zeros. For critical points one needs to
use a different approach via Federer’s coarea
formula.

29



Final Remarks and Open problems

• If you are solving sparse polynomial sys-
tems, it pays most to hunt for zeros in the
allowed region.

• How many forbidden zeros of m polynomi-
als in m variables are there? How large are
the ‘holes’ in the forbidden zero set?

• How are zeros, critical points distributed
for polynomials whose monomials lie only
on the boundary of NP? Or at its vertices?
(These are fewnomials).

• There is a similar story for real polynomials
with fixed Newton polytope (in progress).
Besides the distribution of zeros, one may
ask about the topology of the zero sets
(how many components? what are their
genera?)
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