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Our topics

• (Mathematics) The statistics of critical points

of random holomorphic sections of line bun-

dles over Kähler manifolds.

• (Physics) The vacuum selection problem of

string/M theory. M. R. Douglas’ program

of statistics of vacua.

• (Other physics applications) The statistics

of supersymmetric black holes (Ferrara-Gibbons-

Kallosh, Strominger ).
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Small extra dimensions in string/M
theory

According to string/M theory, our universe is

10- (or 11-) dimensional. In the simplest model,

it has the form M3,1×X where X is a complex

3-dimensional Calabi-Yau manifold.

A CY manifold is a complex manifold with a

nowhere vanishing (3,0)-form Ω, i.e. type dz1∧
dz2 ∧ dz3. In each Kähler class it has a unique

Ricci flat metric.

Reference: P. Candelas, G. T. Horowitz, A.

Strominger, E. Witten, Vacuum configurations

for superstrings, Nucl. Ph. B 258 (1985), 46-

74.
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The vacuum selection problem

The vacuum selection problem: Which CY

manifold (X, τ) forms the ‘small’ or ‘extra’ di-

mensions of our universe? How to select the

right vacuum? Here, τ is the complex struc-

ture on X.

Popular references: Bousso-Polchinski (Sci Am)

or B. Greene, Elegant Universe;

Technical: M. R. Douglas, The statistics of

string/M theory vacua. J. High Energy Phys.

2003, no. 5, 046.
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The string theory landscape

Landscape (L. Susskind) = graph of the vac-

uum energy of a string theory, plotted as a

function on the parameter space M of the 6-

dimensional X giving the small dimensions.

M = moduli space of Calabi-Yau (Ricci-flat

Kähler ) metrics on X. Often fix Kähler class,

then M = moduli space of complex structures

on X.

The string/M vacua are the local minima in the

landscape, i.e the local minima of the energy.
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Enter Complex geometry

The moduli space of CY metrics on X of fixed

Kähler class = moduli space of complex struc-

tures on X.

It is a complex manifold of dimension b =

b2,1(X) = dimH2,1(X), i.e. dimension of holo-

morphic (2,1)-forms on X.

It has a Kähler metric, the Weil Petersson met-

ric ωWP . There is a line bundle L → M with

c1(L) = −ωWP .

The setting of string/M theory (or effective

supergravity) is

(M,L, ωWP ).
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Physics versus complex geometry

• Vacuum energy at τ ∈M
= ||∇WPW (τ)||2WP − 3||W (τ)||2WP .

• W = superpotential, usually flux superpo-
tential W = γ̂(τ) =

∫
γ Ωτ

• W is a holomorphic section of a line bundle
L →M.

• || · ||WP = Weil-Petersson hermitian metric
on L; ∇WP = WP connection.

Thus, the setting for the vacuum selection
problem (or SUSY black holes) is hermitian
holomorphic differential geometry of line bun-
dles over Kähler manifolds.
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L = dual of Hodge bundle

Given a complex structure τ on X, let H3,0(Xτ)

be the space of holomorphic (3,0) forms on X,

i.e. type dz1 ∧ dz2 ∧ dz3.

On a Calabi-Yau 3-fold, dimH3,0(Xτ) = 1.

Hence, H3,0(Xτ) →M is a (holomorphic) line

bundle.

The formula: γ̂(Ωτ) =
∫
γ Ωτ defines a linear

functional on H3,0(Xτ), so γ̂ is a holomorphic

section of the line bundle L dual to H3,0 →M.
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Quantized and general flux super-
potentials

A quantized flux superpotential is γ̂(Ωτ) =∫
γ Ωτ where γ ∈ H3(X,Z ⊕ √−1Z) , i.e. γ is

an integral cycle.

Complex superpotentials are complex linear com-

binations W =
∑

α Nγγ̂ of quantized flux super-

potentials.

Define the space of flux superpotentials by:

F ⊂ H0(M, ) = span {γ̂ : γ ∈ H3(X ,Z)}.
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Vacua as critical points

Recall that the small dimensions must be local

mimima of the energy landscape.

The supersymmetric vacua solve

∇WPW (τ) = 0, τ ∈M
where W is a flux superpotential. Moreover,

the Hessian must be negative definite.

Here, ∇WP is the covariant derivative on H0(M,L)

arising from ωWP .
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The discretuum

• Candidate CY’s for small dimension forms

a discrete set: union over topological types

of CY, union over quantized flux superpo-

tentials, union over critical points of each.

• The the possible small dimensions X thus

form a ‘discretuum’.

• This term is also used for the values ||W (τ)||WP

of the Weil-Petersson norm at these local

minima (= cosmological constants).
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Tadpole constraint

Additional constraint on flux superpotentials:

Q[W ] ≤ L

where Q is a quadratic form, the Hodge-Riemann

form corresponding to the intersection form on

3-cycles. It is an indefinite quadratic form on

all of complex flux space. However, ‘special

geometry’ shows that if W has a critical point,

then Q[W ] ≥ 0.

12



M. R. Douglas’ statistical program

1. Count the number of critical points (local

minima) of all flux superpotentials γ̂ with

Q[γ̂] ≤ L.

2. Find out how they are distributed in M.

3. How many are consistent with the stan-

dard model and the known cosmological

constant?

More generally: endow the space F ⊂ H0(M,L)

of superpotentials W with a physically rele-

vant measure and study the statistics of critical

points.
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Douglas and Denef-Douglas conjec-
ture

Let NSUSY (L ≤ L∗) denote the number of su-

persymmetric vacua with tadpole constraint

WηW ≤ L.

Conjecture 1 Let K = dimF. Then,

NSUSY (L ≤ L∗) ∼ L
K/2
∗

K/2
N (1),

with

N (1) '
∫

M
d2mz

∫
dKWe−

1
2WηW δ2m(DW )|detD2W |.

Here, η is the intersection form. A more precise

version will be stated later.
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Discrete vs continuous ensembles
of superpotentials

Discrete shell ensembles

Embed H3(X,Z) → F ⊂ H0(M,L) under γ → γ̂

= Lattice of quantized flux superpotentials.

Discrete shell ensemble: Given L > 0, put

delta-functions at the lattice points γ̂ ∈ FZ ⊂ F
with Q[γ] ≤ L.

Approximation by continuous ensembles

Analysis problem: for large L, this discrete

ensemble may be approximated by Lebesgue

measure in {Q[W ] ≤ L} ⊂ F. Further, this

may be approximated by a Gaussian ensemble

defined by Q on F .
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Mathematical problems

The counting of stable string/M vacua has two

parts:

1. Prove that the continuous shell or Gaus-

sian ensembles are good approximations (a

lattice point problem).

2. Prove statistical results for the continuous

ensembles.

At this time, the statistical results for continu-

ous ensembles are mostly done. The approxi-

mation is in progress. We concentrate on (2).
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General results on critical points of
Gaussian random holomorphic sec-
tions

Setting:

• A holomorphic line bundle L → M ;

• A hermitian metric h on L;

• The Chern connection ∇h of h;

• The curvature Θh of ∇h.

• An inner product 〈, 〉 on the space H0(M, L)
of holomorphic sections (or on a subspace).

• The Gaussian measure γ associated to 〈, 〉.
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Metrics, connections, curvature

A Hermitian metric on L is a family of hz of

hermitian inner products on the lines Lz over

z ∈ M . In a local frame e(z), hz is specified by

the positive function h(z) = ||e(z)||h.

Definition: the metric (Chern) connection ∇ =

∇h of h is the unique connection preserving

the metric h and satisfying ∇′′
s = 0 for any

holomorphic section s. Here, ∇ = ∇′ + ∇′′ is

the splitting of the connection into its L⊗T ∗1,0

resp. L⊗ T ∗0,1 parts.

We denote by Θh the curvature of h:

Θh = ∂∂̄K, K = − logh.
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Critical point

Definition: Let (L, h) → M be a Hermitian

holomorphic line bundle over a complex mani-

fold M , and let ∇ = ∇h be its Chern connec-

tion.

A critical point of a holomorphic section s ∈
H0(M, L) is defined to be a point z ∈ M where

∇s(z) = 0, or equivalently, ∇′s(z) = 0.

We denote the set of critical points of s with

respect to the Chern connection ∇ of a Her-

mitian metric h by Crit(s, h).
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Critical points depend on the met-
ric

The set of critical points Crit(s, h) of s, and

even its number #Crit(s, h), depends on ∇h or

equivalently on the metric h.

In a local frame e critical point equation for

s = fe reads:

∂f + f∂K = 0.

Recall that K = − logh.

The critical point equation is only C∞ and not

holomorphic since K is not holomorphic.
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An equivalent definition of critical
point

An essentially equivalent definition: w ∈ Crit(s, h)

if

(1) d|s(w)|2h = 0.

Since

d|s(w)|2h = 0 ⇐⇒ 0 = ∂|s(w)|2h = hw(∇′s(w), s(w))

it follows that ∇′s(w) = 0 as long as s(w) 6= 0.

So this notion of critical point is the union of

the zeros and critical points.

The Morse theory of connection critical points

∇s(w) = 0 is equivalent to the Morse theory

of |s(w)|2h.
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Gaussian random holomorphic sec-
tions

Now for the statistics. The simplest measures

on H0(M, L) are Gaussian measures. A Gaus-

sian measure γ is induced by an inner product

on H0(M, L).

By definition,

(2) dγ(s) =
1

πd
e−‖c‖

2
dc , s =

d∑

j=1

cjej,

where dc is Lebesgue measure and {ej} is an

orthonormal basis basis. We denote the ex-

pected value of a random variable X on with

respect to γ by Eγ.
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Hermitian Gaussian measures

These are determined entirely by a Hermitian

metric h. The inner product 〈, 〉h is induced by

a hermitian metric h on L:

(3) 〈s1, s2〉h =
∫

M
h(s1(z), s2(z))dV (z)

on H0(M, L), where dV =
Θm

h
m! .

The relevant Gaussian measure for string/M

theory is not Hermitian. But Hermitian Gaus-

sian measures are simple models for geometry

of critical points.
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Two point function

It is the invariant of the Gaussian measure γ

on the space S defined by:

Π(z, w) = E γ(s(z)⊗ s(w)).

In the Hermitian Gaussian case, it is the Szegö

kernel of H0(M, L), i.e. the orthogonal projec-

tion on the space of holomorphic sections.

In the string/M case, it is
∫
X Ωz ∧ Ωw where

z, w ∈M.
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Example: Random SU(m + 1) com-
plex polynomials

Definition: Pm
N : = holomorphic homogeneous

polynomials

F (z0, z1, . . . , zm) =
∑

α∈Nm:|α|=N

λαz
α0
0 z

α1
1 · · · zαm

m ,

of degree N in m complex variables with cα ∈ C.

Random polynomial: a probability measure on
the coefficients λα.

Gaussian random:

f =
∑
|α|=N λα

√(
N
α

)
zα,

E(λα) = 0, E(λαλβ) = δαβ.

In coordinates λα:

dγ(f) =
1

πkN
e−|λ|

2
dλ on Pm

N .
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Polynomials as sections of powers
of the hyperplane section line bun-
dle over CPm

Recall: O(1) → CPm is the line bundle whose

fiber at a line in Cm+1 = linear functions on

that line.

Its tensor powers are O(N) = O(1)N → CPm.

Holomorphic sections s ∈ H0(CPm,O(N)) can

be identified with space of homogeneous holo-

morphic polynomials Pm
N : of degree N on Cm+1.
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Gaussian measure ⇐⇒ inner prod-
uct

The Gaussian measure above on polyomials is

the Fubini-Study inner product on PCN viewed

as sections of O(N). Indeed,

||zα||FS =
(N

α

)−1/2
, 〈zα, zβ〉 = 0, α 6= β.

Namely,

||F ||2FS =
∫
S2m+1 |F |2 dσ , (Haar measure).

Thus, the same ensemble could be written:

F =
∑
|α|=N λα

zα

||zα||FS
,

E(λα) = 0, E(λαλβ) = δαβ.
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Statistics of critical points I: density

Distribution of critical points of a fixed section

s with respect to a connection ∇ is the measure

(4) C∇s :=
∑

z∈Crit(s,∇)

δz,

where δz is the Dirac point mass at z. When

∇ = ∇h we write Ch
s .

Definition: The (expected) density of critical

points of s ∈ S ⊂ H0(M, L) with respect to ∇
and a Gaussian measure γ is defined by

Kcrit(z) dV (z) = E γC∇s ,

i.e.,

∫

M
ϕ(z)Kcrit(z) dV (z) =

∫

S




∑

z:∇s(z)=0

ϕ(z)


 dγ(s).
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Expected number of critical points

Our key new invariant is:

Definition: The expected number of critical

points of a Gaussian random section is defined

by

N crit(∇, γ) =
∫
M Kcrit(z) dV (z)

=
∫
S #Crit(s,∇)dγ(s).

For Hermitian Gaussian measures, where γ comes

from the inner product 〈, 〉h, N crit(h, γ) is a

purely metric invariant of a line bundle.
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Our problems, precisely stated

We would like to estimate N crit(h, γ) in the

string/M problem. But we know little about it

a priori, even for the Hermitian Gaussian mea-

sure:

1. Even for the Hermitian Gaussian measure

γ = γh, how does N crit(h) depend on h?

Does it in fact depend on h, or is it a topo-

logical invariant?

2. If N crit(h) depends on h, which h gives

‘lots’ of critical points to average sections?

Which gives the fewest?

3. How are local minima distributed?
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General formula for density critical
points

We denote by Sym(m,C) the space of complex

m×m symmetric matrices. In well-chosen local

coordinates z = (z1, . . . , zm), in a local frame

e, we have:

Theorem 1 Fix ∇, γ. Then there exist positive-

definite Hermitian matrices

A(z) : Cm → Cm ,

Λ(z) : Sym(m,C)⊕ C→ Sym(m,C)⊕ C , s.th.

Kcrit∇,γ(z) = 1
detA(z) detΛ(z) ×

∫
C

∫
Sym(m,C)

|det

(
H ′ xΘ(z)

x̄ Θ̄(z) H̄ ′
)
| e−〈Λ(z)−1(H ′⊕x), H ′⊕x〉 dH ′ dx .
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Formulae for A(z) and Λ(z)

A(z) and Λ(z) depend only on ∇ and on the

two-point function ΠS(z, w) of γ. Let FS(z, w)

be the local expression for ΠS(z, w) in the frame

eL. Then Λ = C −B∗A−1B, where

A =
(

∂2

∂zj∂w̄j′
FS(z, w)|z=w

)
,

B =
[(

∂3

∂zj∂w̄q′∂w̄j′
)FS|z=w

) (
( ∂
∂zj

FS|z=w

)]
,

C =




(
∂4

∂zq∂zj∂w̄q′∂w̄j′
FS|z=w

) (
∂2

∂zj∂zq
FS

)

(
∂2

∂w̄q′∂w̄j′
FS

)
|z=w FS(z, z)


 ,

1 ≤ j ≤ m ,1 ≤ j ≤ q ≤ m ,1 ≤ j′ ≤ q′ ≤ m .

In the above, A, B, C are m × m, m × n, n × n

matrices, respectively, where n = 1
2(m

2 + m +

2).
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Comments

• This follows from general results of the au-

thors with P. Bleher.

• For real Gaussian random functions on Rn

for n ≤ 3, this kind of formula was stated

by Rice (1940), Halperin (1960), Hammer-

sley (1965), Szalay et al (1985). There are

also formulae for correlations between crit-

ical points.

• The absolute value |det

(
H ′ xΘ(z)

x̄ Θ̄(z) H̄ ′
)
|

makes this a difficult formula. Wick’s for-

mula doesn’t apply. But there is an Itzykson-

Zuber type version which simplifies it to a

contour integral.
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Positive/negative line bundles

These are the simplest bundles. The string/M

line bundle is negative.

In a local frame e, the hermitian metric is a

positive function h(z) = ||e||z.

The curvature form is defined locally by

Θh = ∂∂̄K, K = − logh.

The bundle is called positive (resp. negative)

if Θh is a positive (resp. negative) (1,1) form.

Given one positive metric h0 on L, the other

metrics have the form hϕ = eϕh and Θh =

Θh0
− ∂∂̄ϕ, with ϕ ∈ C∞(M).
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Positive/Negative line bundles

In these cases, we can simplify a bit:

Corollary 2 Let (L, h) → M denote a positive

or negative holomorphic line bundle. Give M

the volume form dV = 1
m!

(
± i

2Θh

)m
induced

from the curvature of L. Let ∇ = ∇h. Then

Kcrit
∇,S(z) = 1

detAdetΛ

∫
Sym(m,C)×C

∣∣∣det(H ′H ′∗ − |x|2I)
∣∣∣

|e−〈Λ(z)−1(H ′,x),(H ′,x)〉 dH ′ dx .

Here, H ′ ∈ Sym(m,C) is a complex symmetric

matrix, and the matrix Λ is a Hermitian opera-

tor on the complex vector space Sym(m,C)×C.
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Density of critical points on Rie-
mann surfaces

Put:

Q =



−1 0

0 1




and denote the eigenvalues of Λ(z)Q by µ1, µ2.

We observe that µ1, µ2 have opposite signs

since detQΛ = −detΛ < 0. Let µ2 < 0 < µ1.

Theorem 3 let (L, h) → M be a positive or

negative Hermitian line bundle on a (possibly

non-compact) Riemann surface M with volume

form dV = ± i
2Θh. Then:

Kcrit
h (z) =

1

πA(z)

µ2
1 + µ2

2

|µ1|+ |µ2|
, .
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Hermitian Gaussian measure on pos-
itive/negative line bundle

In this case:

N crit(h) =
∫
M{ 1

detAdetΛ

∫
Sym(m,C)×C

∣∣∣det(H ′H ′∗ − |x|2I)
∣∣∣ e−〈Λ(z)−1(H ′,x),(H ′,x)〉 dH ′ dx}dVh .

Here, Λ, A depend only h, in fact on the Szegö

kernel (orthogonal projector to H0(M, L).

This is the simplest setting to explore the ge-

ometry of critical points.
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Semi-classical asymtotics

The formula for N (h) simplifies in the semi-

classical limit. Here, we replace L by its tensor

power L⊗N and let N →∞.

We define Kcrit
N (z) to be the density of critical

points of Gaussian random sections in H0(M, LN)

w.r.t. the metric hN .

In the case of projective space, this amounts to

studying the expected number of critical points

of a polynomial of degree N (in the metric

Fubini-Study sense!) and letting N →∞.
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Semiclassical asymptotics of the crit-
ical point density

Theorem 4 For any positive Hermitian line bun-

dle (L, h) → (M, ω) over any Kähler manifold,

the critical point density relative to the curva-

ture volume form has an asymptotic expansion

of the form

N−m Kcrit
N (z) ∼ Γcrit

m +a1(z)N
−1+a2(z)N

−2+· · · ,

where Γcrit
m is a universal constant depending

only on the dimension m of M , and the aj are

curvature invariants of h.

Thus, critical points are uniformly distributed

relative to the curvature volume form in the

N → ∞ limit. [Curvature causes sections to

oscillate more rapidly, so critical points con-

centrate where the curvature concentrates.]
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Universal limit theorem

The leading coefficient depends only in the di-

mension:

Corollary 5 The expected total number of crit-

ical points on M is

N (hN) =
πm

m!
Γcrit

m c1(L)m Nm + O(Nm−1) .

The leading constant in the expansion is given

by the integral formula

Γcrit
m =

(
2π

m+3
2

)−m ∫ +∞
0

∫
Sym(m,C) |det(SS∗ − tI)|

e−
1
2‖S‖2HS−t dS dt ,

As we will see, the leading order constant is

larger than 1, so positive curvature causes poly-

nomials of degree N to have substantially more

critical points than in the classical flat sense of

dF = 0.
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Number of critical points on Rie-
mann surfaces

Corollary 6 For the case where M is a Riemann

surface, we have Γcrit
1 = 5

3π, and hence the

expected number of critical points is N (hN) =
5
3c1(L)N + O(

√
N). The expected number of

saddle points is 4
3N while the expected number

of local maxima is 1
3N .

There are ∼ N critical points of a polynomial of

degree N in the classical sense, all of which are

saddle points. There are an extra 1
3N saddles

cancelled by an extra 1
3N local maxima.
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Exact formula on CP1

Theorem 7 The expected number of critical

points of a random section sN ∈ H0(CP1,O(N))

(with respect to the Gaussian measure on H0(CP1,O(N))

induced from the Fubini-Study metrics on O(N)

and CP1) is

5N2 − 8N + 4

3N − 2
=

5

3
N − 14

9
+

8

27
N−1 · · · .

Of course, relative to the flat connection d/dz

the number is N − 1.
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Asymptotic expansion for number
of critical points

We can calculate the first three terms in the

expansion of the number of critical points for

(LN , hN):

Theorem 8

N (hN) = πm

m!Γ
crit
m c1(L)m Nm +

∫
M ρdVωNm−1

+Cm
∫
M ρ2dVΩNm−2 + O(Nm−3) .

The first two terms are topological invariants

of a positive line bundle, i.e. independent of

the metric! (Both are Chern numbers of L).

But Cm > 0 (by a difficult computer calcu-

lation. In fact, we only proved Cm > 0 for

dimensions ≤ 5 but we expect the same in all

dimensions. The proof is just a matter of com-

puter time).
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Asymptotically minimal number of
critical points

Question Which hermitian metrics minimize

the expected number of critical points? These

would be ideal for vacuum selection.

I.e. let L → (M, [ω]) have c1(L) = [ω], and

consider the space of Hermitian metrics h on

L for which the curvature form is a positive

(1,1) form:

P (M, [ω]) = {h :
i

2
Θ(h) is a positive (1,1)− form }.

Definition: We say that h ∈ P ([ω]) is asymp-

totically minimal if

(5)

∃N0 : ∀N ≥ N0, N (hN) ≤ N (hN
1 ), ∀h1 ∈ P ([ω]).
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Calabi extremal metrics are asymp-
totic minimizers

Theorem 9 Let L → M be a positive line bun-

dle. Then the Calabi extremal hermitian met-

rics on L are the unique minimizers of the met-

ric invariant N (hN) = average number of crit-

ical points for KN .

From the expansion

N (hN) = πm

m!Γ
crit
m c1(L)m Nm +

∫
M ρdVωNm−1

+Cm
∫
M ρ2dVΩNm−2 + O(Nm−3) .

we see that the metric with asymptotically min-

imal N (hN) is the one with minimal
∫
M ρ2dVω.

E.g. for the canonical bundle, Kähler -Einstein

metrics are asymptotic minimizers of the func-

tional N (hN).
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Applications to string/M theory

In the string/M theory problem:

• M = M, the moduli space of CY metrics

on X.

• L = L, the dual of H3,0X.

• h is the Weil-Petersson hermitian metric on

L, hτ(Ω,Ω) =
∫
X Ωτ ∧Ωτ .

• We restrict to the flux superpotential sub-

space F ⊂ H0(M,L) spanned by γ̂, γ ∈
H3(X,Z).

• The ‘inner product’ is the Hodge-Riemann

form Q(ϕ, ψ) = i3
∫
X ϕ ∧ ψ on H3(X,C).
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Problem

Problem Count the total number Nsusy(L) of

critical points ∇WPN(J) = 0 in M as N ranges

over quantized flux superpotentials satisfying

the tadpole constraint: i.e.

FZ,L = {N ∈ FZ : Q[N ] ≤ L}
and J ranges overM, or the number Nsusy(L;B)

in a given compact subset B ⊂ M. Find the

density of such critical points in M.
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Discrete shell ensemble

Let dµL = (un-normalized) measure on H3(X,C)

obtained by putting delta-functions (point masses)

at the lattice points N ∈ H3(X,Z⊕√−1Z) sat-

isfying 0 ≤ H[N ] ≤ L (= the discrete shell en-

semble of height L).

We are interested in:
∫
Mψ(τ)Kcrit

µL
(τ) :

=
∑

N∈H3(X,Z⊕√−1Z):H[N ]≤L〈CN , ψ〉.

Here,

〈CN , ψ〉 =
∑

τ :∇N(τ)=0

ψ(τ).
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Lebesgue shell ensemble

Let dµc
L = Lebesgue measure on W ∈ {0 ≤

H[W ] ≤ L} ⊂ F .

Definition: The distribution of critical points

with respect to dµc
L is defined by

∫
MψKcrit

µc
L

(τ) :

=
∫
0≤H[W ]≤L

{∑
τ∈M:∇WP W (τ)=0 ψ(τ)

}
dW.
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Conjecture

Conjecture 10 Let Ω ⊂M be a bounded smooth

domain with ∂Ω ⊂ int(M). Let ψ ∈ C(Ω)

Then, asymptotically as L →∞, there is a limit

density kcrit∞ (computable from the Gaussian

density) such that
∫
Ω ψKcrit

µc
L

= Lb3
∫
Ω ψKcrit∞

∫
Ω ψKcrit

µL
=

∫
Ω ψKcrit

µc
L

+ O(Lb3−1), as L →∞.

Here, b = dimH3(X,C).

Also need: dependence of O on geometry. Re-

ally estimate number of physically realistic vacua.

See F. Denef and M. R. Douglas, Distributions

of flux vacua, hep-th/0404116 for the conjec-

ture, examples, calculations...

50



Difficulties

This approximates lattice point sums in dilat-

ing domains by volume measure. Problems:

1. Q is indefinite.

2. We are summing a non-smooth function

over lattice points. The function fψ(W ) =∑
τ :∇W (τ)=0 ψ(τ) is not even continuous,

and the integral over W involves |detD∇W (τ)|,
which is not smooth.
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Status of conjecture

• Indefiniteness of Q is cured by special ge-

ometry: Q is positive on each subspace

Fτ = {W : ∇W (τ) = 0}. I.e. as τ varies

over M, Fτ varies in Q > 0. But Q might

degenerate as τ → ∂M.

• kcrit(τ) = E [|detD∇W (τ)| ∇W (τ) = 0],

and the conditional ensembles for fixed τ

are nice Gaussian ensembles.

• For black hole counting, the integrand of

kcrit is smooth, so the conjecture is proba-

bly true (in progress). Estimate in progress

in string/M theory.
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