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p. 9 L. 24: sin(x1) should be sin(x).
p. 14 L. 15: Equation 2.0.4 should refer to the un-numbered first equation of the chapter.
p. 15 L. 4: This equation should have A(t).
p. 15 L. -8: If M(t) is a matrix solution and we write c for the constant vector with entries cj , then

d

dt
M(t)c = A(t) M(t)c,

and so M(t)c = c1 x1(t) + · · ·+ cn xn(t) is the vector solution that equals

M(0)c = c1 x1(0) + · · ·+ cn xn(0)

when t = 0.
p. 16 Theorem 2.1.1(c): If c = (c1, . . . , ck)>>> is a constant vector and M(t) is an n × k matrix solution, then

M(t)c is a (vector) solution.
p. 16 L. 23: is called the Wronskian of the system of vector solutions given by the columns of M(t).
p. 21 L. 19 & 21: λ2 − (a+ d)λ+ (ad− bc) and ∆ = (ad− bc) = det(A)
p. 48 L. -1: (

Ċ1

Ċ2

)
= k

(
−(1 + b) b
(1 + b) −(1 + b)

)(
C1

C2

)
+ k

(
C0(t)

0

)
.

p. 49 L. 1: Since (1 + b)2 = 1 + 2b+ b2 > b+ b2

p. 54 L. -12: Therefore,
d

dt
‖x(t)‖2 ≤ 2C‖x(t)‖2

for some constant C. In this case, by dividing by ‖x(t)‖2 and integrating, we see that

‖x(t)‖2 ≤ ‖x(0)‖2e2Ct or

‖x(t)‖ ≤ ‖x(0)‖eCt.

(This is a special case of Gronwall’s inequality given in Lemma 3.3.4, which covers the case when x(t) = 0
for some t.)

p. 64 Ex. 2.1.5(b): etA etA should be etA etB.
p. 65 Ex. 2.2.4: The equation should be mÿ + b ẏ + k y = 0.
p. 70 L -3:

t+x0
=

1
r

(
ln(K − x0)− ln(|x0|)

)
.

p. 87 L 12: τ < min
{
r

K
,

1
L

}
p. 89 L. 12: Insert the following sentence: “For a small time interval, both solutions are in some closed ball

B̄(x0, r) and there is some constant L as in Theorem 3.3.1.” Then,
p. 111 L -11: “next chapter” should be “Chapter 6”
p. 118 L 11: “the the” should be “the”
p. 125 Fig. 4.5.2: The labels L and K/a along the y-axis should be interchanged.
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p. 126 L 9:

DF(x∗) =
1

1 + α+ β

−1 −α −β
−β −1 −α
−α −β −1

 .

p. 126 L 11: λ2 = λ̄3 =
1

1 + α+ β

(
−1− α ei2π/3 − β ei4π/3

)
,

p. 126 L 13:
1

1 + α+ β

(
−1 +

α+ β

2

)
=

α+ β − 2
2(1 + α+ β)

> 0.

p. 127 L 1: Therefore, any orbit with S(0) > 0 must enter and remain in the set where S ≤ 2.
p. 129 L 2: It should read as follows:

d x

dS
=

d

dS

(
− D

βm
S +

D(S(0) − a)
β m

+
DaS(0)

β mS

)
p. 129 L -15: −D −

β (m−D)x∗

a+ S∗
−β mS∗

a+ S∗

(m−D)x∗

a+ S∗
0

 .

p. 129 L -10: −D
βmS(0)

a+ S(0)

0
mS(0)

a+ S(0)
−D

 .

Since λ < S(0), the eigenvalues are

−D < 0 and
mS(0)

a+ S(0)
−D > 0,

p. 130 L 10: We define . . .
p. 131 L 7: . . . Figure 4.6.1. The fixed points are (x∗, 0) and (0, y∗), where

x∗ =
S(0) − λ1

β1
and y∗ =

S(0) − λ2

β1
.

By phase plane analysis similar to that in Section 4.5 for competitive systems, any trajectory φ(t; (x0, y0))
with x0 > 0 and y0 > 0 tends to the fixed point at (x∗, 0) as t goes to infinity.

p. 136 Lemma 4.2.3: In the proof, lim sup and lim inf should be interchanged.
p. 142 Exercise 4.3.1: An easier example to analyze is

ẋ = y − x2

ẏ = x− y.

p. 145 Exercise 4.6.1: V̇ = pµK + γI − µV .
p. 150 L -8:

L−1(C) = {x : L(x) = C }.

p. 156: In Figures 5.2.7 and 5.2.8, π/2 should be replaced by π.
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p. 157 L -3: “The part with x2 ≤ x ≤ x3 closes up . . .
p. 164 L 3:

U =
{

(x, y) ∈ U1 : 0 ≤ L(x, y) <
1

6
, x > −1

}
.

p. 164 L 23: (iv) L̇(x) < 0 for L(x) = C.
p. 166 L -11: Insert the following: “Also assume that the differential equation is defined in all of B̄(0, C).”

p. 167 L 13: L̇ = (−x+ 2x3)y + y
(
x− 2x3 + y(x2 − x4 − y2)

)
p. 167 L -2: only one “See”
p. 174 L -3: “. . . to generalize to the case . . . ”
p. 175 L 10:

V̇ (x) =
∑
i

ci f
−1
i (fi(xi)) f ′i(xi) ẋi −

∑
i

[f(x) + B]>>>T
∂f
∂xi

(x) ẋi

p. 178 Exercise 5.1.2(c): “limit cycles” should be replaced by “periodic orbits”
p. 179 Exercise 5.2.4: ẏ = −x(x− 1)(x+ 2)(x2 − 9) = · · ·
p. 180 Exercise 5.3.4:

r2 = −a21p1 + a22p2 + a23p3

p. 181 Exercise 5.3.4(b): Show that

V̇ = −
3∑
i=1

ciaii(xi − pi)2.

p. 193 L 11:

h′(x) =
2 a − (2 b+ 1)x

2x3
,

p. 196 Figure 6.3.2: The graph of F (x) should be negative for small positive x and positive for small negative
x.

p. 199 L -9: Assume the system in polar coordinates x1 − xµ,1 = r cos(θ) and x2 − xµ,2 = r sin(θ) . . .
p. 209 L -25 to -17: The constant g is different than the function g(x, y). Also, the formula for∇ · (gF)(x,y) is

wrong: Replace with the following:
Consider the equations

ẋ = x (a− b y − f x)

ẏ = y (−c+ e x− h y),

where all the parameters a, b, c, e, f , and h are positive. Notice that this is just the predator–prey system, with
a negative impact of each population on itself. We assume that a/f > c/e, so there is a fixed point (x∗, y∗) in
the first quadrant. The first quadrant is invariant, because ẋ = 0 along x = 0 and ẏ = 0 along y = 0. The
divergence does not have one sign in the first quadrant:

(∇ · F)(x,y) = a− b y − 2 f x− c+ e x− 2h y.

However, if we let g(x, y) = 1/xy, then

∇ · (gF)(x,y) = −f/y − h/x,

which is strictly negative in the first quadrant.
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p. 213 L -14: The iterate Pn is not carefully defined. The following (hopefully) makes it clearer:
Continuing by induction, the nth iterate xn = P (xn−1) = Pn(x0) satisfies

Pn(x0)− x∗ = Pn(x0)−Pn(x∗) = e−nπ/ωe(A+ 1
2 I)n2π/ω

(
x0 − x∗

)
.

p. 213 L -3: It should be

eA2π/ωx0 +
∫ 2π

ω

0

eA((2π/ω)−s)
(

0
cos(ω s+ τ0)

)
ds

p. 214 L 13: The iterate Pn is not carefully defined. Adding the following after the definition of the Poincaré
map (hopefully) makes it clearer:
If the map is applied more than once, we use the notation Pn(x0) = P (Pn−1(x0)) = P ◦P ◦ · · · ◦P (x0) for
the nth iterate. Thus, Pn is the composition of P with itself n times. If xn = P (xn−1), then xn = Pn(x0).

p. 215 L -6:
ẋ = (a+ b cos(θ)) x− x3

p. 216 L 19:
3 ẋ

x
− 2a− 2b cos(t)

p. 216 L 21-22:

P ′(x0) = e

∫ 2π

0
3 ẋ
x −2a−2b cos(t) dt

= e3 ln |P (x0)|−3 ln |x0| e−a4π

p. 219 L -10: Multiplying the third equation by −(1 + x) . . .
p. 219 L -7:

x∗ =
1

2q

(
(1− q − 2 f) +

[
(1− q − 2 f)2 + 4 q(2 f + 1)

]1/2)
.

p. 219 L -3: ε−1(1− y − 2qx) ε−1(1− x) 0
−y −(1 + x) 2f
δ 0 −δ

 .

p. 226 L 7: (The proof of Theorem 6.2.2 needs one more argument.) We have left to show that ω(x0) = O(q).
Assume that ω(x0) \ O(q) 6= ∅. By Theorem 5.4.3, the set ω(x0) is connected. Therefore, there would have
to exist points yj ∈ ω(x0) \O(q) that accumulate on a point y∗ in O(q). Taking a transversal S through y∗,
we can adjust the points yj so they lie on S. But, we showed above that ω(x0) ∩ S has to be a single point.
This contradiction shows that ω(x0) \ O(q) = ∅ and ω(x0) = O(q), i.e., ω(x0) is a single periodic orbit.

p. 224 L -13: must be strictly negative.
p. 229 L 22: µ(0) = µ0

p. 230 L 6: (6.9.3b) · · ·+ r2D4(θ, α) +O(r3)
p. 230 L 9-10:

Cj+1(θ, α) = cos(θ)B1
j (cos(θ), sin(θ), α) + sin(θ)B2

j (cos(θ), sin(θ), α)(6.9.4)

Dj+1(θ, α) = − sin(θ)B1
j (cos(θ), sin(θ), α) + cos(θ)B2

j (cos(θ), sin(θ), α).(6.9.5)
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p. 230 L -8: Add a “+” and change 32
2 to B2

3 :

+
(

cos(θ)B1
3 + sin(θ)B2

3

−r−1 sin(θ)B1
3 + r−1 cos(θ)B2

3

)
+
(
O(r4)
O(r3)

)
,

p. 231 L 4:

=
α r + r2 C3(θ, α) + r3 C4(θ, α) +O(r4)
β(α) + r D3(θ, α) + r2D4(θ, α) +O(r3)

p. 236 L9: J(t) =, one closing ’)’ too much.
p. 236 Ex. 6.2.1: Hint: Use a bounding function. (Do not use ṙ.)
p. 236 Ex. 6.2.2: A more accurate wording for parts (c) and (d) is as follows:

c. Find the maximum radius r1 such that all the solutions are crossing outward across a circle of radius r for
any 0 < r < r1.
d. Find the minimum radius r2 such that all the solutions are crossing inward across a circle of radius r for
any r > r2.

p. 236 Ex. 6.2.3: (This is the same as #2. Change to a new problem.)
Consider the system of differential equations

ẋ = 3x+ 2y − x(x2 + y2)

ẏ = −x+ y − y(x2 + y2).

a. Classify the fixed point at the origin.
b. Show that (0, 0) is the only fixed point.
c. Calculate rṙ in terms of x and y.
d. Show that ṙ is positive for small r and negative for large r. Hint: To show the quadratic terms are positive

definite (positive for all (x, y) 6= (0, 0)), either (i) complete the square or (ii) use the test for a minimum
of a function.

e. Prove that the system has a periodic orbit.
p. 238 Ex. 6.2.7c: Use Theorem 6.2.8 to show that, any point p0 = (x0, y0) in with x0 > 0, y0 > 0, and

p0 6= (5, 12.5), ω(p0) must be a periodic orbit. Hints: (i) If ω(p0) contained either (0, 0) or (30, 0) then it
must contain both. (ii) Thus, ω(p0) would contain an orbit γ with α(γ) = (30, 0) and ω(γ) = (0, 0), i.e.,
γ ⊂ Wu(30, 0) ∩W s(0, 0). Since there are no such orbits, this is impossible and ω(p0) must be a periodic
orbit.

p. 240 Ex. 6.6.2: A better problem is obtained by using ẏ = y(−3a+ x).
p. 241 Ex. 6.7.2(c) : . . . Show that P (x) < x for x ≥ 2. . . .
p. 242 Ex. 6.7.4(b): Show the divergence is −2y2 along the periodic orbit.
p. 247 L. 11-12:

(x, y, z) = (±
√
b/σ(r + σ)/2, 0, (r + σ)/2),

= (0,±
√
b(r + σ)/2, (r + σ)/2),

p. 247 L. 16-17:
(r + σ)2

8

(
b

σ
+ 1
)
,

(r + σ)2

8
(b+ 1) ,

(r + σ)2

2
, and 0.

For σ > 1 and b < 3, the largest of these is
(r + σ)2

2
.

p. 250 L. 12-14: The definition of a Milnor attractor should read as follows: A closed invariant set A is called a
Milnor attractor for a flow φ provided that (i) the basin of attraction of A, B(A), has positive measure, and
(ii) there is no smaller closed invariant set A′ ⊂ A such that the measure of B(A) \B(A′) equals zero.
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p. 252 L. 10: It should be “In Examples 5.4.4 and 7.1.9 . . . ”.
p. 257 L. 5: For r > 1 and σ > b− 1,
p. 264 L. 4: f2([−1, 0)) = [−1, 1)
p. 264 L. 14-21: If x1 = f2(x0), 2y0 = x0 + 1, and 2y1 = x1 + 1, then for 0 ≤ x0 < 1,

2 y1 = x1 + 1 = f2(x0) + 1 = 2x0 − 1 + 1 = 2 (2 y0 − 1), or

y1 = 2 y0 − 1 = 2 y0 ( mod 1 ) = D(y0).

A similar calculation for x0 < 0, also shows that y1 = D(y0).
p. 266 L. -11&-10:

T (x) = T2(x) =

{
2x for 0 ≤ x ≤ 0.5
2− 2x for 0.5 ≤ x ≤ 1.

p. 274 L. 10: (Theorem 7.6.4) Then, the n− 1 principal Lyapunov exponents . . .
p. 274 L. -10: “direction” should be “direct”
p. 284 L. 3-6: The trapping set U is closed and bounded, so all the sets φt(U) are closed and bounded for t ≥ 0.

The intersection of closed sets is closed so the attracting set is closed. In fact the sets for 0 < t1 < t2 are
nested with φt2(U) ⊂ φt1(U) ⊂ U. A standard theorem in analysis states that the intersection of nested
compact sets is a nonempty compact set, so A is a nonempty compact set.

p. 287 Exercise 7.1.3: This exercise repeats example 7.1.9. A new replacement problem is given in the list of
extra problems.

p. 288 Exercise 7.2.2: This exercise repeats example 7.2.5. A new replacement problem is given in the list of
extra problems.

p. 288 Exercise 7.3.2:

T (x) = 3x ( mod 1 )

=


3x for 0 ≤ x < 1

3

3x− 1 for 1
3 ≤ x <

2
3

3x− 2 for 2
3 ≤ x < 1

0 for 1 = y.

.

Show that this map has sensitive dependence on initial conditions. Hint: If yn = xn + δ3n > xn is on a
different side of a discontinuity from xn, then yn+1 = xn+1 + 3(δ3n)− 1. Try using r = 1/4.

p. 297, L. 6: xn+1 = N(xn) = xn − ... instead of = xn−1

p. 308, Theorem 9.1.7.a: “any integer k” should be “any positive integer k”.
p. 308 L. 11: . . . period-n point return . . .
p. 309 L. 10: ... “eventually determine the form” ... –¿ instead of “from”
p. 310 L. 3: ... “maps the subinterval [1/2, 1] across the whole interval [0, 1],” ...
p. 312, L. -10: “The vertical line segment from (x1, x1) to (x1, g(x1)) and the horizontal line segment”
p. 313 L. -1: All the “f” should be “g”.
p. 314 L. 1: The “f” should be “g”.
p. 314 L. 13: All three “x1” should be “xn”.
p. 314, L. -8: period-k point p
p. 315, L. 19: Line 3 of Definition 9.3.1. (line 3): ... “differentiable of order r” ... instead of “or”
p. 315, L. -4: “and all k ≥ 0” should be deleted.
p. 318, L. -3: |fn(x)− p0| ≈ 1

2 |(f
n)′′(p0)| · |x− p0|2.
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p. 324, L. 17: x+ =
1 +

√
1− 2/a

2
p. 330, L. 6: . . . if f ′′(x) = 0, then Sf (x) = N ′f (x).
p. 332, L. -17: f ′0(0) = 1
p. 334, Theorem 9.5.2(v): It should read

∂f

∂x
(x,m(x)) = 1 +

∂2f

∂x2
(x0, µ0)(x− x0) +O(|x− x0|2).

p. 334, L. -5: ... for µ near 1.
p. 335, L. 7: m(0) = 1.
p. 337 L. 5: “For 3 < a < 1 +

√
3” should be “For 3 < a < 1 +

√
6”

p. 338 L. 9: The parameter value for 256 should be 3.569934 . . . .
p. 340: (Figure 9.5.9) The labels on the horizontal axis should be 3.54, 3.55, 3.56, and 3.57 and not 2.54 etc.
p. 340, L. 13-16: remove the words “odd”: Similar windows with other periods occur in the bifurcation diagram,

but they are harder to see because they occur over a shorter range of parameters. After the introduction of one
of these period-p sinks by a saddle-node bifurcation, there occurs a period doubling cascade of period p 2k

sinks. The largest windows start with periods 3, 5, and 6.
p. 342, L. -6: Delete “the two maps,”.
p. 344, L. -13: xn = fn(x0) instead of xn = f(x0)
p. 346, L. 9: it should be = [2 sin (πs/2) cos (πs/2)]2.
p. 346, L. 15: h ◦ T (s) = h(2− 2s)

p. 347, L. 3: q0 = h(p0) not q0 = h(q0)

p. 347, L. -13:
[
−
√

(1− a)b−1,
√

(1− a)b−1
]

p. 354, L. 15: Therefore, we can assume that there exist a < p < b such that x < f(x) < p for a < x < p,
p < f(x) < x for p < x < b, f(a) = a or f(a) = p, and f(b) = b or f(b) = p.

p. 354 L. 17: (iii) Assume that there exists a b > p such that f(b) = p and p < f(x) < x for p < x < b. Let
b > p be the smallest such value b > p with f(b) = p and p < f(x) < x for p < x < b.

p. 354 L. -16: Case c:
p. 355, Theorem 9.5.2(v): It should read

∂f

∂x
(x,m(x)) = 1 +

∂2f

∂x2
(x0, µ0)(x− x0) +O(|x− x0|2).

p. 358 L. 7: The value of T̂ (θ) for π/2 ≤ θ ≤ π should be 2(π − θ).
p. 359 L. 14: g1+j(x) ◦ h0 ◦ f−1−j(x)(f(x)x) should be g1+j(x) ◦ h0 ◦ f−1−j(x)(f(x))
p. 359, L. -2 : (Exer. 9.1.3) Make a table like 9.1.1 for the number . . .
p. 360, L. -21 : (Exer. 9.2.1a) In other words, for initial conditions x0 in different intervals, describe where the

iterates fn(x0) tend.
p. 365 Exercise 9.4.6(a):

a x3 + b x2 + c x+ d = a z3 +
(
c− b2

3a

)
z + r = g(z)

p. 365, Problem 9.5.5: “and let bk” should be “and let bk+1”.
p. 368, Lemma 10.1.1(b): The added condition should be added to the conclusion that f((a1, b1)) = (a, b).
p. 379, L. -8,-7: Definition 10.2.5. A map f from a space X to itself with an invariant set A is called topologi-

cally transitive on A, provided that there is a point x∗ such that the orbit O+
f (x∗) is dense in A.
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p. 382 L. -1:

=
n⋂
j=0

T−j(Isj )

p. 383, Figure 10.3.2: At the far right, IRR should be IRL.
p. 388 L. 17: (last line of Theorem 10.2.6) .. “by the logistic map G” instead of “tent map G”
p. 397 L. -9: To find a point in K \E, we take a ternary expansion . . .
p. 399, L. -16: “and x1 be the end points of Is0···sn−1 , which . . .
p. 400, Theorem 10.5.10: It should read “The set S is closed and bounded.”
p. 403 L. 7: 0 = a2 − a− 1
p. 405 L. 1: The transition graph is reducible, but it does not come from the map given.
p. 405 L. -10: . . . based on the transition graph on N symbols, . . .
p. 407 L. 2,10: n× n should be N ×N .
p. 407 L. 2,12: “between 1 and n” should be “between 1 and N”.
p. 409 L. 23: . . . and let b be a sequence with bm = j

p. 411 L. 8: Let z+
i and z−i be chosen with y2,i < z+

i < c−i < c+i < z−i < y0,i,
p. 414 L. -13: Ii = J for q + 1 ≤ i ≤ n− 1
p. 416 L. -15: Now assume that s is not an element of the left-hand side . . .
p. 419 L. -1: closed
p. 420 L. -6: (Exercise 10.1.5b) fk(x) = fn(x) for 1/3n ≤ x ≤ 1 and fk(x) ≥ fn(x) for 0 ≤ x ≤ 1/3n+1.
p. 428 Theorem 11.1.3: .. ω(x∗;T ) instead of x0

p. 430 L. 2: A better example is given by

W (x) =


1
2 x if x ≤ 0
2x if 0 ≤ x ≤ 0.5
2 (1− x) if 0.5 ≤ x ≤ 1
1
2 (1− x) if 1 ≤ x.

p. 430 L. -7: int(S) = {x ∈ Rn : there is a r > 0 such that B(x, r) ⊂ S }
p. 437 L. 24: c < f2(b) < b, so the whole line is

a < f(b) < c, c < f2(b) < b.

p. 438 L. 2: (e) The basin of attraction of A, B(A; f), is dense and open in [a, b].
p. 438 L. 6: h. If there is no periodic orbit . . .
p. 438-439: (Example 11.2.19) Consider the example

f(x) =

{
1.25x+ 1 for x < 0
1.25x− 1.05 for x > 0.

Notice that f ′(x) = 1.25 <
√

2, so Williams theorem does not apply. The ends of the invariant interval are
a = f(0+) = r+0 = −1.05 and b = f(0−) = r−0 = 1; they have images in the open interval, f(a) =
−0.3125, f(b) = 0.2 ∈ (a, b). A direct check shows that the interval U = [−1.1, 1.1] is a trapping region for
the attracting set [−1.05, 1]: f([−1.1, 1.1]) = [−1.05, 1] and f([−1.05, 1]) = [−1.05, 1]. The iterates of r±0
are not dense in the whole interval [−1.05, 1], so [−1.05, 1] is not the attractor: See Figure 11.2.5.

To find the attractor A, we need to calculate a few more iterates f j(r−0 ) = r−j and f j(r+0 ) = r+j . Because
both slopes are positive, any attracting set with 0 in its interior must contain all points just to the right of
all the r+j and just to the left of all the r−j . Thus, we seek intervals with left end points from the {r+j } and
right end points from the {r−j }. Some iterates are r−1 = f(r−0 ) = 0.2, r−2 = f2(r−0 ) = f(0.2) = −0.8,
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r−3 = f3(r−0 ) = f(−0.8) = 0, r+1 = f(r+0 ) = −0.3125, r+2 = f2(r+0 ) = f(−0.3125) = 0.609375, and
r+3 = f3(r+0 ) = f(0.609375) = −0.28828125. The order of these points on the line is as follows:

a = r+0 < r−2 < r+1 < r+3 < r−3 = 0 < r−1 < r+2 < b = r−0 = 1.

Consider the union of the three closed intervals

A = [r+0 , r
−
2 ] ∪ [r+1 , r

−
1 ] ∪ [r+2 , r

−
0 ],

where [r+1 , r
−
1 ] = [r+1 , 0] ∪ [0, r−1 ]. Since

f([r+0 , r
−
2 ]) = [r+1 , 0],

f([r+1 , 0]) = [r+2 , r
−
0 ],

f([0, r−1 ]) = [r+, r−2 ] and

f([r+2 , r
−]) = [r+3 , r

−
1 ] ⊂ [r+1 , r

−
1 ],

A is invariant. See Figure 11.2.5. Notice that r+3 , r
−
3 ∈ (r+1 , r

−
1 ) are in the interior of A. Since the end

points of A eventually get mapped into its interior, no periodic orbit is contained entirely on the end points, a
trapping region for A can be found, and A is an attracting set.

We want to show that A is indecomposable, and so an attractor. In the general situation of Theorem 11.2.17,
an attracting set A that contains the single discontinuity c is indecomposable provided that the forward orbit
of an arbitrarily small open interval (−δ + c, δ + c) about c covers all of A. In our example, the one-sided
small intervals (−δ, 0] ⊂ [r+1 , 0] have a forward orbits that cover A. First we check the iterates of the whole
interval [r+1 , 0]:

f([r+1 , 0]) = [r+2 , r
−
0 ],

f([r+2 , r
−
0 ] = [r+3 , r

−
1 ] ⊃ [0, r−1 ],

f([0, r−1 ]) = [r+0 , r
−
2 ], and

f([r+0 , r
−
2 ]) = [r+1 , 0].

Since f4([r+1 , 0] ⊃ [r+1 , 0] and f4(0−) = 0, there is a subinterval [x1, 0] in [r+1 , 0] such that f4([x1, 0]) =
[r+1 , 0] and f4 is an expansion from [x1, 0] onto [r+1 , 0]. Because f4

∣∣
[x1,0]

is an expansion, for any smaller
interval (−δ, 0] ⊂ [0, x1], there is an an integer j such that f4j((−δ, 0]) ⊃ [x1, 0] and f4j+4((−δ, 0]) ⊃
[r+1 , 0]. Thus, the forward orbit of any small (−δ, 0] must contain the entire interval [r+1 , 0] and its iterates,
hence all of A. It follows that A is generated by iterates of an arbitrarily small interval (−δ, 0] and must be
indecomposable and a chaotic attractor made up of three intervals.

In the gaps (r−2 , r
+
2 ) and (r−1 , r

+
2 ) of points left out of the attractor, . . .

p. 439 L. -11: = 9
16 x+ 1

5

p. 444 L. 3: (i) If there is no periodic orbit . . .
p. 445 L. -1: |ln(|f ′(xj)|)− ln(|f ′(pj)|)| < ε for all j ≥ N .
p. 448 L. -7: sn . . . sn+N−1 = LN

p. 449 L. 1: Therefore, (π/2) sin(πyn) ≥ (π/2)π21−N/2 = π22-(N+1) . . .

p. 449 L. 3: ≥ limN→∞
ln
(
π2 2−N−1

)
2N−1

p. 449 L. -5: . . . with ω(x0; f) = A and `(x0, f) > 0.
p. 451 L. 1: The support supp(µ) of a probability measure µ is defined to be
p. 453 L. -10: (First printing only) For a closed set S,
p. 455 L. -6: First if U1 and U2 are disjoint open sets, then . . .

p. 459 L. -5: F
(
r0
θ0

)
=
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p. 472, Problem 11.2.7: (Alternative to 11.2.4) Consider the map

f(x) =

{
−1.2x− 0.288 for x < 0
−1.2x+ 0.2 for x ≥ 0.

a. Calculate the first four iterates of 0− and 0+ (r−, r−1 , r−2 , r−3 , r+, r+1 , r+2 , r+3 ) and give their order them
on the line.

b. Show that there is a set A made up of three intervals, and that A is invariant. The middle interval
contains 0 in its interior. Hint: Because both sides of f have negative slope, any attracting set with 0
in its interior contains all points just to the right of { r−, r+1 , r

−
2 , r

+
3 } and all points just to the left of

{r+, r−1 , r
+
2 , r

−
3 }.

c. Show that the forward iterates of the end points of A eventually fall into the interior of A. Conclude that
A has a trapping region and is an attracting set.

d. Show that there is an interval [0, δ] that has an iterate that covers itself by an expansion and takes 0 to 0.
Argue why the expanding set A of part (b) is indecomposable and a chaotic attractor.

e. Find the two fixed points, one positive and one negative. Show that the fixed points are not in the set A
found in the last part, but are in the gaps between the intervals.

p. 473, Problem 11.3.1: pa = 13/19, not 16/19.
p. 474, Problem 11.4.5, L -8: 2x− 5

4 for 3
4 < x ≤ 1.

p. 476: Line 1 after Example 12.1.1: one “with”
p. 476 L. -1: A linear sink is allowed to have complex as well as real eigenvalues as long as every eigenvalue of

A has |λ| < 1.
p. 492 L. -16: It has characteristic equation λ2 + λ− a cos(xa) = 0 . . .
p. 496 L. 26: (First printing only) Should be

D(F−1)(y) =
(
DF(x)

)−1
,

p. 510 L. 22-3: (In the definition of irreducible) jq = i2 not jm. And “the (i1, i2)-entry of Mq is nonzero.”
p. 511 L. 14: Thus, 2v1 = v3, 2v2 = −3v3, . . .
p. 513 L. -9: Case (ii)
p. 519 L. 1: At the nth stage, Sn is the size of the susceptible population and In is the size of the infected

population.
p. 526 L. 11: (First printing only) (12.5.2) The iterate should be

In+1 = In

(
1− γ +

α

N
Sn

)
p. 526 L. 16: (First printing only) (12.5.2(b)) p = 1− γ + α

p. 534, Figure 13.1.4(b): B.10 should be above B.11, i.e., interchange the two labels in the figure.
p. 546: (Definition 13.2.8) Several “∂” should be replaced by “bd”. Also

∂ in(R) = bd
(
B̄n1(0, r1)

)
× B̄n2(0, r2),

∂ out(R) = B̄n1(0, r1)× bd
(
B̄n2(0, r2)

)
.

p. 548 L. 19: F (∂ out(Ri)) ∩ int (Rj) = ∅.
p. 548 L. 21: φi({x× B̄n2(0, 1)) })
p. 558: (Figure 13.3.1) The following figure shows more of the stable and unstable manifold for a saddle with a

transverse homoclinic point.
p. 574 L. 4: “λ1 ≥ λ2 ≥ · · · ≥ λn,” should be “`1 ≥ `2 ≥ · · · ≥ `n,”
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p q

F(q)
F2(q)

FIGURE 1. A transverse homoclinic point q

p. 577: (Example 13.6.4) To obtain the map f(r) as given in polar coordinates, we need

F
(
x
y

)
=
(

cos(2π ω) − sin(2π ω)
sin(2π ω) cos(2π ω)

)(
3x (1 + 2

√
x2 + y2)−1

3 y (1 + 2
√
x2 + y2)−1

)
Then the second coordinate function in polar coordinates should be θ + 2π ω (mod 2π).

p. 584: (First printing only) (13.2.1(e)) The second map labeled “e” should be part “f”.

p. 587 Ex 13.4.3: R2 = { (t, z) ∈ N : 2/3 ≤ t ≤ 1 } instead of R0.

p. 591, L. -4: (The count is slightly off because the intervals are half open.)
of the intervals. This leaves k points 1, . . . , k that are . . .

N(rk,S) = k + 1 + k = 2k + 1.

p. 591 L. 1,: It would be better to define N ′(r,S) using closed boxes. Similarly, N ′′(r,S) is defined using
closed balls.

p. 593, Theorem 14.1.7: A right parenthesis is missing in the third display. It is probably better to state this
theorem with N ′(rk,S) rather than N(rk,S).

p. 597 L. 8: For small r > 0,

p. 605 L. 9:
ln(3)
ln(2)

> 1.

p. 607: Definition 14.3.9: The δ should all be d.

p. 609: (After Theorem 14.3.15) Remark: The unique fixed set A in Theorem 14.3.15 is the same set as the
attractor A in Theorem 14.3.7. The construction in Theorem 14.3.7 is closer to the treatment of attractors from
trapping regions in the earlier part of the book and is less abstract. The contraction in terms of the Hausdorff
metric considered in Section 14.3.1 is more mathematically elegant and is presented in many other books.

p. 614 L. 11: The last term in the display should be

≤
ln(1/rj+1)
ln(1/rj)

N ′(rj+1,S)
ln(1/rj+1)

.

Note that ln(1/rj) replaces ln(1/j).
p. 623: (First printing only) The label for Figure 14.4.1 should read “Fractals for Exercise 14.3.7.”
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p. 634 L -12:
p(x) = (x− λ1)m1 · · · (x− λq)mq ,

p. 635 L 11: Av(2) = λkv(2) + v(1), and

Thanks goes to the following people who have pointed out many errors or typographical mistakes: John Alongi,
Keith Burns, William Floyd, Héctor Lomelı́, and Konrad Schrempf.


