Errata for

Introduction to Dynamical Systems: Discrete and Continuous, 2nd edition

by R. Clark Robinson
Published by American Mathematics Society, 2012
p. 58 L. 13: (Problem 4) More complete statement of the problem is as follows:

Consider an LRC electric circuit with linear inductor, resistor, and capacitor: $L \frac{d i_{L}}{d t}=v_{L}, v_{R}=R i_{R}$, and $C \frac{d v_{C}}{d t}=i_{C}$ with $R>0, L>0$, and $C>0$. Setting the two variables $x=i_{R}=i_{L}=i_{C}$ and $y=v_{C}$, we get the system of linear differential equations

$$
\begin{aligned}
& L \frac{d x}{d t}=-R x-y \\
& C \frac{d y}{d t}=x
\end{aligned}
$$

(Compare with Section 6.8.2 for a nonlinear resistor.) Sketch the phase portrait for the three cases (a) $R^{2}>$ $4 L / C$, (b) $R^{2}=4 L / C$, and (c) $R^{2}<4 L / C$. What happens when $R=0$ but $L>0$ and $C>0$.
p. 99 L. 18: $\tau<\min \left\{\frac{r}{K}, \frac{1}{L}\right\}$
p. 101 L. 6: Insert the following sentence: "For a small time interval, both solutions are in some closed ball $\overline{\mathbf{B}}\left(\mathbf{x}_{0}, r\right)$ and there is some constant L as in Theorem 3.3.1." Then,
p. $113 \mathbf{L}$ 10: Insert the following: "Also assume that the differential equation is defined in all of $\overline{\mathbf{B}}(\mathbf{0}, C)$."
p. 148 L-4:

$$
D \mathbf{F}_{\left(\mathbf{x}^{*}\right)}==\left(\begin{array}{ccc}
-x_{1}^{*} & -\alpha x_{1}^{*} & -\beta x_{1}^{*} \\
-\beta x_{2}^{*} & -x_{2}^{*} & -\alpha x_{2}^{*} \\
-\alpha x_{3}^{*} & -\beta x_{3}^{*} & -x_{3}^{*}
\end{array}\right) .
$$

p. 149 L 2:

$$
\frac{1}{1+\alpha+\beta}\left(-1+\frac{\alpha+\beta}{2}\right)=\frac{\alpha+\beta-2}{2(1+\alpha+\beta)}>0 .
$$

p. 149 L 1-2: (An alternative argument is as follows:) Once we know that two eigenvalues are complex pairs, then we can find their real parts as follows.

$$
\begin{aligned}
2 \operatorname{Re}\left(\lambda_{2}\right) & =\lambda_{2}+\lambda_{3} \\
\lambda_{1}+\lambda_{2}+\lambda_{3} & =\operatorname{tr}\left(D \mathbf{F}_{\left(\mathbf{x}^{*}\right)}=\frac{-3}{1+\alpha+\beta}\right. \\
2 \operatorname{Re}\left(\lambda_{2}\right) & =\frac{-3}{1+\alpha+\beta}-(-1) \\
& =\frac{\alpha+\beta-2}{1+\alpha+\beta} \\
\operatorname{Re}\left(\lambda_{2}\right)=\operatorname{Re}\left(\lambda_{3}\right) & =\frac{\alpha+\beta-2}{2(1+\alpha+\beta)}>0 .
\end{aligned}
$$

p. 149 L -12: Therefore, any orbit with $S(0)>0$ must enter and remain in the set where $S \leq 2$.
p. 149 L -3: strict Lyapunov function and any trajectory off the diagonal must go to the minimum
p. 204 L 10: Since $\hat{\mathbf{S}}_{I}=\bigcup_{J \supset I} \mathbf{S}_{J}$,
p. 204 L-8,-7: Better, "For all $\mathbf{x} \in \operatorname{int}(S), \mathbf{z}=\mathbf{A x} \in \mathbf{W}$, so $\mathbf{c} \cdot \mathbf{A x}<0$."
p. 209 L 1: $f_{j}^{\prime}\left(x_{j}\right)>0$
p. 348 L -4: delete "most initial conditions do converge to a root of the polynomial, and certainly,", so it reads "Still, if we start near a root ..."
p. 376 L -13: delete "most initial conditions do converge to a root of the polynomial, and certainly,", so it reads "Still, if we start near a root ..."

