Closed book. You may use hand calculators.

1. (40 Points) Let $f(x)=2 x-4 x^{3}$.
(a) Find the fixed points and classify them as attracting, repelling, or neither.
(b) Use the stair step method to determine the behavior of iterates $f^{n}(x)$ for all $x \in$ $(-\infty, \infty)$. Give the basin of attraction for each of the fixed points.
2. (20 Points) For $\mu=3.839$, the quadratic map $Q_{\mu}(x)=\mu x(1-x)$ has a period three cycle at approximately the points $x_{0}=0.959, x_{1}=Q_{\mu}\left(x_{0}\right)=0.150$, and $x_{2}=Q_{\mu}^{2}\left(x_{0}\right)=$ 0.489 . Asssuming these numerical values are exactly the points on the period three cycle, determine the stability of this cycle.
3. (80 Points) Consider the quadratic map $Q_{5}(x)=5 x(1-x)$.
(a) Prove that Q_{5} has sensitive dependence on initial conditions on the whole real line (not just the Cantor set C_{5}).
(b) Prove that Q_{5} is transitive on its invariant Cantor set C_{5}. (If you use facts about another map, verify these facts.)
(c) How many points of period 7 does $Q_{5}(x)$ have?
4. (30 Points) Let $f(x)=x^{3}$ and $g(y)=\frac{1}{4} y^{3}+\frac{3}{2} y^{2}+3 y$. Find an affine map $y=h(x)=$ $a x+b$ which conjugates f and g. Verify that your map h works. (Note that f has fixed points at $-1,0$, and 1 , and g has fixed points at $-4,-2$, and 0 .)
5. (30 Points) Let $f(x)=3 x+\sin (x)$.
(a) Find the Lyapunov exponent for $x=0$.
(b) Show that for any real x, the Lyapunov exponent $\lambda(x)$ satisfies $\ln (2) \leq \lambda(x) \leq \ln (4)$.
