Math C13 Final Exam: 9 am, Tuesday, March 17, 1998.

Name:

\qquad
You have 2 hours to answer the following 6 questions. Point-values are marked, for a total of 200 . Write all work in the space provided. No calculators or notes. Have fun!

1. (30 points) Let $h_{a, b}(x, y)=\left(a-x^{2}+b y, x\right)$. In the space below, draw the image of the square $S=\{(x, y) \mid-1 \leq x \leq 1,-1 \leq y \leq 1\}$ under $h_{a, b}$ for the parameter values specified.

2. (35 points) The graph of f^{2} is shown below. Explain why f must have at least three fixed points. Identify them on the graph.

3. (30 points) Suppose that a continuous function f is defined on the interval $[1,7]$, passes through the points $(1,4),(2,7),(3,6),(4,5),(5,3),(6,2)$, and $(7,1)$, and is linear in between. For which n does f have a periodic point of period n ?
4. (40 points) Let $a>0$ and define $f_{a}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by the formula

$$
f_{a}(x, y)=\left(1-a x^{2}+y, x\right) .
$$

(a) Find all period-two points for f_{a}.
(b) Find all values of a for which the the period-two cycle is of saddle type.
5. (35 points) Let $F: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be given by

$$
F(x, y)=\left(\frac{1}{2} x, x+\frac{1}{2} y\right) .
$$

(a) Show that all of the eigenvalues of F are less than 1 in modulus.
(b) Find a vector w such that $\|F(w)\|>\|w\|$.
(c) Find a real number $c>0$ such that $\|F(v)\|^{2} \leq c\|v\|^{2}$, for all $v \in \mathbf{R}^{2}$.
6. (30 points) Let $f_{a}(x)=a \sin (x)$, for $0 \leq x \leq 2 \pi$, where $0<a<2 \pi$. Determine the maximal number of attracting periodic orbits of f_{a}.

