No books, no notes
Start each problem on a new page.

1. (25 Points) Consider the system of differential equations

$$
\begin{aligned}
& \dot{x}=y \\
& \dot{y}=-x-x^{3} .
\end{aligned}
$$

(a) Find the fixed points.
(b) Find the potential function and graph it.
(c) Draw the phase portrait.
2. (25 Points) Consider the system of differential equations

$$
\begin{aligned}
& \dot{x}=y \\
& \dot{y}=-x-x^{3}-y\left(x^{2}+y^{2}\right) .
\end{aligned}
$$

Use a Lyapunov function to show that the origin is asymptotically stable. Explain your reasons for this to be true.
3. (25 Points) Consider the system of differential equations

$$
\begin{aligned}
\dot{x} & =y \\
\dot{y} & =-x-x^{3}+\mu y-y\left(x^{2}+y^{2}\right) .
\end{aligned}
$$

(a) Show that there is an Andronov-Hopf bifurcation at $\mu=0$. Is it subcritical or supercritical? Is the periodic orbit attracting or repelling?
(b) What are the limit sets for $\mu>0$ and $\mu<0$?
4. (25 Points) Consider the system of differential equations

$$
\begin{aligned}
& \dot{x}=y \\
& \dot{y}=-\frac{x}{4}+16 y-y\left(x^{2}+y^{2}\right) .
\end{aligned}
$$

Show that the system has a periodic orbit.

