Algebra Preliminary Exam, June 2011

1. (a) Show that any group of order 42 contains a normal subgroup of index 6.
 (b) Find (with proof) a group of order 42 that contains a subgroup H such that $H \cong S_3$ and such that H is not normal.

2. Let k be a field.
 (a) Prove that any semi-simple k-algebra of dimension ≤ 3 is commutative.
 (b) Does the result of (ii) remain true if you omit the hypothesis of semi-simplicity?

3. Let G be a finite group and let ρ be an representation of G on an n-dimensional vector space V over the field \mathbb{C} of complex numbers. Suppose that for every element $g \in G$, there exists a basis for V with respect to which the linear automorphism $\rho(g)$ has the form

 \[
 \begin{pmatrix}
 1 & * & \cdots & * \\
 0 & 1 & \cdots & * \\
 0 & 0 & 1 & \cdots & * \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & 1
 \end{pmatrix}
 \]

 (i.e. 0s below the diagonal, 1s on the diagonal, and unspecified entries above the diagonal). Prove that ρ is trivial, i.e. that $\rho(g)$ acts as the identity on V for every $g \in G$.

4. Find the Galois group of $x^4 + 1$ over each of the following fields: \mathbb{Q}, $\mathbb{Q}(i)$, \mathbb{F}_3, \mathbb{F}_5.

5. Let A be a commutative ring with 1, and let M be a finitely generated A-module.
 (a) If m is a maximal ideal of A, prove that M/mM is non-zero if and only if the localization M_m is non-zero.
 (b) Is the analogous statement true if we replace m by a non-maximal prime ideal of A? Carefully explain why or why not.

6. Suppose that A is a commutative ring with 1.
 (a) If $N \subset M$ are A-modules and $N_m = M_m$ for all maximal ideals m, show that $N = M$.
 (b) Suppose that A has only finitely many maximal ideals. If A_m is Noetherian for all maximal ideals m, show that A is Noetherian.
7. Let \(A = \mathbb{C}[x, y, z]/(x^2 + y^2 - 2z^2) \), and let \(I \) be the ideal of \(A \) generated by \(x - y \).

(a) Prove that \(I \) is a radical ideal.
(b) Find all the minimal primes of \(I \).
(c) Determine the height of each of the prime ideals you found in (b).