ALGEBRA PRELIM – September 13, 2006

(1) Let \(F \) be a field of cardinality 625.
 - What is \(F \) as an additive group?
 - What is the multiplicative group \(F^* \) of units of \(F \)?
 - What is the group of field automorphisms of \(F \)?

(2) Let \(G \) be the cyclic group \(\mathbb{Z}/5 \) and let \(F \) be the field of 625 elements.
 - Describe the group algebra \(FG \) as a \(k \)-vector space and specify its ring structure.
 - Let \(\mathbb{C} \) denote the complex numbers and let \(\mathbb{C}G \) be the group algebra of \(G \) over \(\mathbb{C} \). Decompose \(\mathbb{C}G \) as a direct sum of irreducible \(\mathbb{C}G \) modules.
 - List the simple \(FG \)-modules and determine the Jacobson radical of \(FG \).

(3) Consider the ring \(R = \mathbb{C}[x,y]/(y^2 - x^3) \), where \(\mathbb{C} \) denotes the complex numbers.
 - Show that \(R \) is an integral domain.
 - Find a chain of prime ideals of \(R \) of maximal length.
 - Describe all the maximal ideals of \(R \).
 - Construct the integral closure of \(R \).

(4) Let \(G \) be a group of order 63.
 - Show that every 7-Sylow subgroup \(G_7 \) of \(G \) is normal.
 - Show that \(G \) must be a semi-direct product.
 - List all isomorphism classes of groups of order 63.

(5) Let \(R \) be a ring, \(M \) a right \(R \)-module, and \(N \) a left \(R \)-module.
 - State the universal mapping property of \(M \otimes_R N \).
 - Give an example of a commutative ring \(R \) and non-zero \(R \)-modules \(M, N \) with \(M \otimes_R N \neq 0 \).
 - Let \(K \) be a field and let \(A, B \) be \(K \)-algebras. Describe the natural \(K \)-algebra structure on \(A \otimes_K B \).

(6) Let \(K = \mathbb{Q}[i] \).
 - Show that \(K \) is a field.
 - Determine the degree of the splitting field \(L \) of \(x^{15} - 1 \) over \(K \).
 - Determine \(\text{Gal}(L/K) \).
 - Describe the fields intermediate between \(K \) and \(L \).