(1) Let F be a field of cardinality 729. For the following question only, you do not need to justify your answer.
 (a) What is the additive group F as an abstract abelian group?
 (b) What is the multiplicative group F^\times of units of F as an abstract abelian group?
 (c) What is the group of field automorphisms of F?

(2) Prove that $\mathbb{Z}[x]$ is a unique factorization domain.

(3) Let K be a field, and let $R = K[x, y]/(y^2 - x^3)$. Prove that the localization of R at $m = (x, y)$ is not a discrete valuation ring.

(4) Let G be a finite group, and let V be a characteristic zero representation of G. Suppose that for every $g \in G$, the fixed space $V^g \subset V$ of $v \in V$ such that $gv = v$ has dimension at least $\frac{1}{2} \dim(V)$. Prove that there exists a $v \in V$ such that $gv = v$ for all $g \in G$.

(5) Let (A, m) and (B, n) be local noetherian rings. Suppose that $\phi : A \rightarrow B$ is a map such that $\phi(m) \subset n$, and suppose that:
 (a) $A/m \rightarrow B/n$ is an isomorphism,
 (b) $m \rightarrow n/n^2$ is surjective,
 (c) B is finitely generated as an A-module.
 Prove that ϕ is surjective.

(6) Let p be prime. Prove that $x^p - x - 1$ is irreducible over \mathbb{F}_p. What is the Galois group of its splitting field?