Preliminary Examination in Real Analysis

Instructions: Your have **three** hours. Do **one** problem in each part, **five** problems in all. If you try more than one problem in any part, indicate which one is to be graded.

PART I

- 1. State three important properties that hold for the Lebesgue integral, but do **not** hold for the Riemann integral. Illustrate with examples.
- 2. Show that a countable set of real numbers has Lebesgue measure zero. Can a set of Lebesgue measure zero have more than countably many points? Justify your answer with full details and proofs.

PART II

3. Show that if (X, \mathcal{M}, μ) is a measure space and $A_n \in \mathcal{M}, n = 0, 1, 2, \ldots$, then

$$\mu\Big(\cup_{n=1}^{\infty} A_n\Big) = \lim_{m \to \infty} \mu\Big(\cup_{n=1}^m A_n\Big).$$

4. Prove that if $f \in L^p[0,1], 1 \le p < \infty$, and $\epsilon > 0$, then there is a step function φ such that $||f - \varphi||_p < \epsilon$.

PART III

- 5. Prove that a normed linear space X is complete if and only if every absolutely summable series is summable.
- 6. Prove that a linear operator from a normed vector space X into a normed vector space Y is bounded if and only if it is continuous at one point.

PART IV

- 7. (a) State the Baire Category Theorem.
 - (b) Is the set I of irrational numbers an F_{σ} set? Justify your answer.
- 8. (a) State the Open Mapping Theorem (for Banach spaces) and the Closed Graph Theorem.

(b) Let X be a linear vector space that is complete in the norms $\| \|$ and $\| \| \| \|$. Prove that if there is a constant C such that $\|x\| \leq C \| \|x\| \|$ for all $x \in X$, then the norms are equivalent.

PART V

9. (a) State Tonelli's Theorem.

(b) Prove that if $f \in L^1(0, 1)$ and a > 0, then the integral

$$F_a(x) = \int_0^x (x - y)^{a-1} f(y) \, dy$$

exists for almost every $x \in (0, 1)$ and $F_a \in L^1(0, 1)$.

- 10. A function f is said to satisfy a Lipschitz condition on an interval if there is a constant C such that $|f(x) f(y)| \le C|x y|$ for all x and y in the interval.
 - (a) Show that a function satisfying a Lipschitz condition is absolutely continuous.
 - (b) Show that an absolutely continuous function f satisfies a Lipschitz condition if and only if |f'| is bounded.